Gene Association: PAPSS2
UniProt Search:
PAPSS2 (PROTEIN_CODING)
Function Description: 3'-phosphoadenosine 5'-phosphosulfate synthase 2
found 26 associated metabolites with current gene based on the text mining result from the pubmed database.
Adenosine phosphosulfate
Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups. Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).
Phosphoadenosine phosphosulfate
3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms. [HMDB] 3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.
Deoxynivalenol
Deoxynivalenol is found in cereals and cereal products. Deoxynivalenol is produced by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals Vomitoxin, also known as deoxynivalenol (DON), is a type B trichothecene, an epoxy-sesquiterpeneoid. This mycotoxin occurs predominantly in grains such as wheat, barley, oats, rye, and maize, and less often in rice, sorghum, and triticale. The occurrence of deoxynivalenol is associated primarily with Fusarium graminearum (Gibberella zeae) and F. culmorum, both of which are important plant pathogens which cause Fusarium head blight in wheat and Gibberella ear rot in maize. Deoxynivalenol is a direct relationship between the incidence of Fusarium head blight and contamination of wheat with deoxynivalenol has been established. The incidence of Fusarium head blight is strongly associated with moisture at the time of flowering (anthesis), and the timing of rainfall, rather than the amount, is the most critical factor. Furthermore, deoxynivalenol contents are significantly affected by the susceptibility of cultivars towards Fusarium species, previous crop, tillage practices, and fungicide us Production by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
3'-AMP
Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. 3-AMP has been identified in the human placenta (PMID: 32033212). Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 11
3,4-Dihydroxymandelic acid
3,4-Dihydroxymandelic acid, also known as DOMA or 3,4-dihydroxyphenylglycolate, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxymandelic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3,4-dihydroxymandelic acid participates in a number of enzymatic reactions. In particular, 3,4-dihydroxymandelic acid can be biosynthesized from 3,4-dihydroxymandelaldehyde through its interaction with the enzyme aldehyde dehydrogenase, dimeric nadp-preferring. In addition, 3,4-dihydroxymandelic acid and guaiacol can be converted into vanillylmandelic acid and pyrocatechol through the action of the enzyme catechol O-methyltransferase. In humans, 3,4-dihydroxymandelic acid is involved in the metabolic disorder called tyrosinemia type I. Outside of the human body, 3,4-Dihydroxymandelic acid has been detected, but not quantified in several different foods, such as yellow wax beans, soy beans, pomegranates, cucurbita (gourd), and daikon radish. 3,4-dihydroxymandelic acid, also known as 3,4-dihydroxyphenylglycolate or (3,4-dihydroxyphenyl)(hydroxy)acetic acid, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-dihydroxymandelic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3,4-dihydroxymandelic acid can be found in a number of food items such as lime, pitanga, sapodilla, and persimmon, which makes 3,4-dihydroxymandelic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxymandelic acid can be found primarily in blood and urine, as well as in human nerve cells tissue. In humans, 3,4-dihydroxymandelic acid is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelic acid is also involved in several metabolic disorders, some of which include hawkinsinuria, alkaptonuria, dopamine beta-hydroxylase deficiency, and tyrosinemia, transient, of the newborn. D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D066 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
Dehydroepiandrosterone sulfate
Dehydroepiandrosterone sulfate or DHEA-S is the sulfated form of dehydroepiandrosterone (DHEA). This sulfation is reversibly catalyzed by sulfotransferase 2A1 (SULT2A1) primarily in the adrenals, the liver, and small intestine. In the blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than those of free DHEA. Orally-ingested DHEA is converted into its sulfate when passing through the intestines and liver. Whereas DHEA levels naturally reach their peak in the early morning hours, DHEAS levels show no diurnal variation. From a practical point of view, measurement of DHEA-S is preferable to DHEA since levels are more stable. DHEA (from which DHEA-S comes from) is a natural steroid prohormone produced from cholesterol by the adrenal glands, the gonads, adipose tissue, brain, and in the skin (by an autocrine mechanism). DHEA is the precursor of androstenedione, which can undergo further conversion to produce the androgen testosterone and the estrogens estrone and estradiol. DHEA is also a potent sigma-1 agonist. Serum dehydroepiandrosterone sulfate is a classic marker for adrenarche, and subsequently for the individual hormonal milieu (PMID: 10599744). Dehydroepiandrosterone sulfate is an endogenously produced sex steroid that has been hypothesized to have anti-aging effects (PMID: 16960027). It also has been inversely associated with the development of atherosclerosis (PMID: 8956025). DHEAS or Dehydroepiandrosterone sulfate is the sulfated form of DHEA. This sulfation is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestine. In the blood, most DHEA is found as DHEAS with levels that are about 300 times higher than those of free DHEA. Orally-ingested DHEA is converted to its sulfate when passing through intestines and liver. Whereas DHEA levels naturally reach their peak in the early morning hours, DHEAS levels show no diurnal variation. From a practical point of view, measurement of DHEAS is preferable to DHEA, as levels are more stable. DHEA (from which DHEAS comes from) is a natural steroid prohormone produced from cholesterol by the adrenal glands, the gonads, adipose tissue, brain and in the skin (by an autocrine mechanism). DHEA is the precursor of androstenedione, which can undergo further conversion to produce the androgen testosterone and the estrogens estrone and estradiol. DHEA is also a potent sigma-1 agonist. DHEAS can serve as a precursor for testosterone; androstenedione; estradiol; and estrone. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Adenosine 2'-phosphate
Adenosine 2-phosphate is converted enzymatically from adenosine 2,3-cyclic phosphate via the enzyme 2,3-cyclic-nucleotide 3-phosphodiesterase (EC 3.1.4.37). In the brain, this enzyme acts on 2,3-cyclic AMP more rapidly than on the UMP or CMP derivatives. In the liver, this enzyme acts on 2,3-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3,5-cyclic phosphates, more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase. (KEGG). This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric diester bonds. The systematic name of this enzyme class is nucleoside-2,3-cyclic-phosphate 2-nucleotidohydrolase. (Wikipedia). Adenosine 2-phosphate is converted enzymatically from adenosine 2,3-cyclic phosphate via the enzyme 2,3-cyclic-nucleotide 3-phosphodiesterase (EC 3.1.4.37). In the brain, this enzyme acts on 2,3-cyclic AMP more rapidly than on the UMP or CMP derivatives. In the liver, this enzyme acts on 2,3-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3,5-cyclic phosphates, more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase. (KEGG) Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2].
Glucotropaeolin
Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.
Lithocholic acid
Lithocholic acid, also known as 3alpha-hydroxy-5beta-cholan-24-oic acid or LCA, is a secondary bile acid. It is formed from chenodeoxycholate by bacterial action and is usually conjugated with glycine or taurine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as cholagogue and choleretic. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, lithocholic acid can act as an oncometabolite. An oncometabolite is a compound that when present at chronically high levels promotes tumour growth and survival. Chronically high levels of lithocholic acid are associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Dietary fibre can bind to lithocholic acid and aid in its excretion in stool. As such, fibre can protect against colon cancer. CONFIDENCE standard compound; INTERNAL_ID 1308; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5396; ORIGINAL_PRECURSOR_SCAN_NO 5394 CONFIDENCE standard compound; INTERNAL_ID 1308; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5371; ORIGINAL_PRECURSOR_SCAN_NO 5368 CONFIDENCE standard compound; INTERNAL_ID 1308; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5386; ORIGINAL_PRECURSOR_SCAN_NO 5384 A bile acid formed from chenodeoxycholate by bacterial action, usually conjugated with glycine or taurine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as cholagogue and choleretic. [Analytical] Sample of 1 micorL methanol solution was flow injected. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Lithocholic acid is a toxic secondary bile acid that can promote intrahepatic cholestasis and promote tumorigenesis.
12-Hydroxyjasmonic acid
An oxo carboxylic acid that is jasmonic acid in which one of the hydrogens of the methyl group is replaced by a hydroxy group.
Adenosine 3',5'-diphosphate
Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.
Sulfur dioxide
Sulfur dioxide is a food preservative. Sanitising agent for food containers and fermentation equipment. Also used in foods as stabiliser, moisture control agent, flavour modifier and texturise Food preservative. Sanitising agent for food containers and fermentation equipmentand is) also used in foods as stabiliser, moisture control agent, flavour modifier and texturiser D004785 - Environmental Pollutants > D000393 - Air Pollutants
Allolithocholic acid
Allolithocholic acid is a bile acid present in normal serum and feces, with a tendency to be at higher concentrations in patients with colon cancer, particularly in men (PMID 16548228). A bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Allolithocholic acid is a bile acid present in normal serum and feces, with a tendency to be at higher concentrations in patients with colon cancer, particularly in men (PMID 16548228). D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Lithocholic acid is a toxic secondary bile acid that can promote intrahepatic cholestasis and promote tumorigenesis.
3'-phosphonato-5'-adenylyl Sulfate(4-)
3-phosphonato-5-adenylyl Sulfate(4-) is also known as 3-Phosphonatoadenosine 5-phosphosulfate or PAPS. 3-phosphonato-5-adenylyl Sulfate(4-) is considered to be slightly soluble (in water) and acidic. 3-phosphonato-5-adenylyl Sulfate(4-) can be found throughout numerous foods such as Pigeon pea, New Zealand spinachs, White lupines, and Allspices
Lithocholic acid
A monohydroxy-5beta-cholanic acid with a alpha-hydroxy substituent at position 3. It is a bile acid obtained from chenodeoxycholic acid by bacterial action. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.575 Lithocholic acid is a toxic secondary bile acid that can promote intrahepatic cholestasis and promote tumorigenesis.
3-Adenylic acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056
3,4-Dihydroxymandelic acid
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids A catechol that is the 3,4-dihydroxy derivative of mandelic acid; a metabolite of L-dopa. 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
Dehydroepiandrosterone sulfate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A steroid sulfate that is the 3-sulfooxy derivative of dehydroepiandrosterone.
2-Adenylic acid
Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2].
Sulfur oxide
D004785 - Environmental Pollutants > D000393 - Air Pollutants