Voacamine (BioDeep_00000000173)

 

Secondary id: BioDeep_00000408518

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs Antitumor activity natural product


代谢物信息卡片


methyl (1S,15S,17S,18S)-17-ethyl-6-[(1R,12R,14R,15E)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0^{3,11}.0^{4,9}]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0^{2,10}.0^{4,9}.0^{13,18}]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

化学式: C43H52N4O5 (704.3938)
中文名称: 老刺木胺
谱图信息: 最多检出来源 Homo sapiens(blood) 63.42%

分子结构信息

SMILES: C/C=C1/CN(C)C2Cc3c([nH]c4ccccc34)C(c3cc4[nH]c5c(c4cc3OC)CCN3CC4CC(CC)C3C5(C(=O)OC)C4)CC1C2C(=O)OC
InChI: InChI=1S/C43H52N4O5/c1-7-24-15-23-20-43(42(49)52-6)39-27(13-14-47(21-23)40(24)43)29-19-36(50-4)30(17-34(29)45-39)31-16-28-25(8-2)22-46(3)35(37(28)41(48)51-5)18-32-26-11-9-10-12-33(26)44-38(31)32/h8-12,17,19,23-24,28,31,35,37,40,44-45H,7,13-16,18,20-22H2,1-6H3/b25-8-/t23-,24-,28-,31+,35+,37?,40-,43+/m0/s1

描述信息

Voacamine is only found in individuals that have used or taken this drug. It is an alkaloid isolated from the bark of the Pescheria fuchsiae folia tree. It is an antimalarial drug approved for use in several African countries. Voacamine is also under investigation for use in modulating multidrug-resistance in tumor cells. Voacamine is possibly a substrate for P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. Voacamine may compete with anticancer drugs such as doxorubicin for P-gp transport, decreasing removal of doxorubicin.
Voacamine is a citraconoyl group.
Voacamine is an alkaloid isolated from the bark of the Pescheria fuchsiae folia tree. It is an antimalarial drug approved for use in several African countries. Voacamine is also under investigation for use in modulating multidrug-resistance in tumor cells.
Voacamine is a natural product found in Voacanga schweinfurthii, Voacanga africana, and other organisms with data available.
Voacamine, an indole alkaloid, exhibits potent cannabinoid CB1 receptor antagonistic activity[1]. Voacamine also inhibits P-glycoprotein (P-gp) action in multidrug-resistant tumor cells[1].

同义名列表

12 个代谢物同义名

methyl (1S,15S,17S,18S)-17-ethyl-6-[(1R,12R,14R,15E)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0^{3,11}.0^{4,9}]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0^{2,10}.0^{4,9}.0^{13,18}]nonadeca-2(10),4,6,8-tetraene-1-carboxylate; methyl (1S,15S,17S,18S)-17-ethyl-6-[(1R,12R,14R,15E)-15-ethylidene-18-(methoxycarbonyl)-17-methyl-10,17-diazatetracyclo[12.3.1.0³,¹¹.0⁴,⁹]octadeca-3(11),4,6,8-tetraen-12-yl]-7-methoxy-3,13-diazapentacyclo[13.3.1.0²,¹⁰.0⁴,⁹.0¹³,¹⁸]nonadeca-2(10),4,6,8-tetraene-1-carboxylate; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3alpha-yl)ibogamine-18-carboxylic acid; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3alpha-yl)ibogamine-18-carboxylate; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3α-yl)ibogamine-18-carboxylic acid; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3a-yl)ibogamine-18-carboxylic acid; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3a-yl)ibogamine-18-carboxylate; Methyl-12-methoxy-13-(17-methoxy-17-oxovobasan-3α-yl)ibogamine-18-carboxylate; Voacanginine; Voacamine; Vocamine; Voacamine



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

41 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ABCB1, ANG, ANXA5, BCL2, CDK2, CNR1, EGFR, FASN, MTOR, PIK3CA, PTPN1
Peripheral membrane protein 3 ANXA5, MTOR, PTPN1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 5 BCL2, EGFR, HSD17B7, MTOR, PTPN1
Nucleus 7 ANG, BCL2, CDK2, DDX53, EGFR, MTOR, PARP1
autophagosome 1 MAP1LC3A
cytosol 11 ANG, ANXA5, BCL2, CDK2, DDX53, FASN, MAP1LC3A, MTOR, PARP1, PIK3CA, PTPN1
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 1 CDK2
nucleoplasm 4 CDK2, DDX53, MTOR, PARP1
Cell membrane 3 ABCB1, CNR1, EGFR
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 2 MTOR, PTPN1
lamellipodium 1 PIK3CA
ruffle membrane 1 EGFR
Cell projection, axon 1 CNR1
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 ABCB1, CNR1
Golgi apparatus membrane 1 MTOR
cell junction 1 EGFR
cell surface 2 ABCB1, EGFR
glutamatergic synapse 4 CNR1, EGFR, MAP1LC3A, PTPN1
Golgi apparatus 1 FASN
Golgi membrane 2 EGFR, MTOR
growth cone 2 ANG, CNR1
lysosomal membrane 1 MTOR
neuronal cell body 1 ANG
postsynapse 1 PTPN1
presynaptic membrane 1 CNR1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
Lysosome 1 MTOR
Presynapse 1 CNR1
endosome 2 CDK2, EGFR
plasma membrane 5 ABCB1, CNR1, EGFR, FASN, PIK3CA
Membrane 8 ABCB1, ANXA5, BCL2, EGFR, FASN, MTOR, PARP1, PTPN1
apical plasma membrane 2 ABCB1, EGFR
axon 1 CNR1
basolateral plasma membrane 1 EGFR
extracellular exosome 3 ABCB1, ANXA5, FASN
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, PTPN1
extracellular space 2 ANG, EGFR
perinuclear region of cytoplasm 2 EGFR, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, HSD17B7, PARP1
protein-containing complex 4 BCL2, EGFR, PARP1, PTPN1
intracellular membrane-bounded organelle 2 DDX53, MAP1LC3A
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 EGFR
Secreted 1 ANG
extracellular region 2 ANG, ANXA5
Mitochondrion outer membrane 3 BCL2, CNR1, MTOR
Single-pass membrane protein 2 BCL2, HSD17B7
mitochondrial outer membrane 3 BCL2, CNR1, MTOR
mitochondrial matrix 1 PTPN1
transcription regulator complex 2 CDK2, PARP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CDK2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 ANXA5
actin cytoskeleton 2 ANG, CNR1
nucleolus 3 ANG, DDX53, PARP1
Early endosome 1 PTPN1
Apical cell membrane 1 ABCB1
Membrane raft 2 CNR1, EGFR
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 MAP1LC3A
focal adhesion 2 ANXA5, EGFR
microtubule 1 MAP1LC3A
GABA-ergic synapse 1 CNR1
basement membrane 1 ANG
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
Late endosome 1 MAP1LC3A
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
chromatin 1 PARP1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
Chromosome 2 ANG, PARP1
mitochondrial crista 1 PTPN1
Nucleus, nucleolus 2 ANG, PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 2 CDK2, PARP1
organelle membrane 1 MAP1LC3A
site of double-strand break 1 PARP1
nuclear envelope 3 CDK2, MTOR, PARP1
Endomembrane system 3 MAP1LC3A, MTOR, PTPN1
endosome lumen 1 PTPN1
sorting endosome 1 PTPN1
Melanosome 1 FASN
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
male germ cell nucleus 1 CDK2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
Cajal body 1 CDK2
protein-DNA complex 1 PARP1
external side of apical plasma membrane 1 ABCB1
condensed chromosome 1 CDK2
Cytoplasmic vesicle, phagosome 1 MTOR
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CDK2
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Autolysosome 1 MAP1LC3A
angiogenin-PRI complex 1 ANG
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
cytoplasmic side of endoplasmic reticulum membrane 1 PTPN1
cyclin A2-CDK2 complex 1 CDK2
cyclin A1-CDK2 complex 1 CDK2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN


文献列表

  • Yao Chen, Jirui Yang, Yi Zuo, Chaozheng Zhang, Yiru Pu, Qing Ren, Xiao Li, Yunqian Huang, Hui Huang, Huan Yang, Ouyang You, Xila Xia, Aiping Lu, Sanjun Shi, Yun Deng, Jun Lu. Voacamine is a novel inhibitor of EGFR exerting oncogenic activity against colorectal cancer through the mitochondrial pathway. Pharmacological research. 2022 10; 184(?):106415. doi: 10.1016/j.phrs.2022.106415. [PMID: 36029932]
  • Lakhveer Singh, Manjari Singh, Shubham Rastogi, Anurag Choudhary, Dinesh Kumar, Ritu Raj, Mohd Nazam Ansari, Abdulaziz S Saeedan, Gaurav Kaithwas. Effect of Voacamine upon inhibition of hypoxia induced fatty acid synthesis in a rat model of methyln-nitrosourea induced mammary gland carcinoma. BMC molecular and cell biology. 2021 Jun; 22(1):33. doi: 10.1186/s12860-021-00371-9. [PMID: 34090331]
  • Maria Condello, Evelin Pellegrini, Giuseppina Multari, Francesca Romana Gallo, Stefania Meschini. Voacamine: Alkaloid with its essential dimeric units to reverse tumor multidrug resistance. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Jun; 65(?):104819. doi: 10.1016/j.tiv.2020.104819. [PMID: 32135239]
  • Yan-Qiu Wang, Hong-Xiang Li, Xiao-Chun Liu, Jin-Shuang Zhao, Rong-Qiang Liu, Wen-Ying Huai, Wei-Jun Ding, Tian-E Zhang, Yun Deng. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment. Natural product research. 2019 Dec; 33(23):3459-3463. doi: 10.1080/14786419.2018.1480623. [PMID: 29852800]
  • Luisa Giansanti, Maria Condello, Barbara Altieri, Luciano Galantini, Stefania Meschini, Giovanna Mancini. Influence of lipid composition on the ability of liposome loaded voacamine to improve the reversion of doxorubicin resistant osteosarcoma cells. Chemistry and physics of lipids. 2019 09; 223(?):104781. doi: 10.1016/j.chemphyslip.2019.05.006. [PMID: 31229409]
  • Somenath Roy Chowdhury, Ashish Kumar, Joseane Lima Prado Godinho, Sara Teixeira De Macedo Silva, Aline Araujo Zuma, Sourav Saha, Neha Kumari, Juliany Cola Fernandes Rodrigues, Shyam Sundar, Jean-Claude Dujardin, Syamal Roy, Wanderley De Souza, Sibabrata Mukhopadhyay, Hemanta K Majumder. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochemical pharmacology. 2017 08; 138(?):19-30. doi: 10.1016/j.bcp.2017.05.002. [PMID: 28483460]
  • Hong-Mei Chen, Yu-Ting Yang, Hong-Xiang Li, Zhi-Xing Cao, Xiao-Mei Dan, Ling Mei, Da-Le Guo, Chuan-Xia Song, Yu Dai, Jia Hu, Yun Deng. Cytotoxic monoterpenoid indole alkaloids isolated from the barks of Voacanga africana Staph. Natural product research. 2016; 30(10):1144-9. doi: 10.1080/14786419.2015.1046132. [PMID: 26140390]
  • Antonio Currais, Chandramouli Chiruta, Marie Goujon-Svrzic, Gustavo Costa, Tânia Santos, Maria Teresa Batista, Jorge Paiva, Maria do Céu Madureira, Pamela Maher. Screening and identification of neuroprotective compounds relevant to Alzheimer׳s disease from medicinal plants of S. Tomé e Príncipe. Journal of ethnopharmacology. 2014 Aug; 155(1):830-40. doi: 10.1016/j.jep.2014.06.046. [PMID: 24971794]
  • Maria Condello, Dario Cosentino, Silvia Corinti, Gabriella Di Felice, Giuseppina Multari, Francesca Romana Gallo, Giuseppe Arancia, Stefania Meschini. Voacamine modulates the sensitivity to doxorubicin of resistant osteosarcoma and melanoma cells and does not induce toxicity in normal fibroblasts. Journal of natural products. 2014 Apr; 77(4):855-62. doi: 10.1021/np400950h. [PMID: 24720452]
  • Ling Mei, Yun Deng, Fu Li, Da-le Guo, Chong-yu Lu. [Study on the alkaloids constituents from Voacanga africana]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Feb; 35(2):226-9. doi: . [PMID: 22822667]
  • Stefania Meschini, Maria Condello, Annarica Calcabrini, Manuela Marra, Giuseppe Formisano, Pasquale Lista, Angelo De Milito, Elena Federici, Giuseppe Arancia. The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy. 2008 Nov; 4(8):1020-33. doi: 10.4161/auto.6952. [PMID: 18838862]
  • S Meschini, M Condello, M Marra, G Formisano, E Federici, G Arancia. Autophagy-mediated chemosensitizing effect of the plant alkaloid voacamine on multidrug resistant cells. Toxicology in vitro : an international journal published in association with BIBRA. 2007 Mar; 21(2):197-203. doi: 10.1016/j.tiv.2006.09.007. [PMID: 17070665]
  • S Meschini, M Marra, M Condello, A Calcabrini, E Federici, M L Dupuis, M Cianfriglia, G Arancia. Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. International journal of oncology. 2005 Dec; 27(6):1597-603. doi: . [PMID: 16273216]
  • S Meschini, M Marra, A Calcabrini, E Federici, C Galeffi, G Arancia. Voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia, enhances the cytotoxic effect of doxorubicin on multidrug-resistant tumor cells. International journal of oncology. 2003 Dec; 23(6):1505-13. doi: 10.3892/ijo.23.6.1505. [PMID: 14612920]
  • Claudia Orellana. Doubts cast on antimalarial drug. The Lancet. Infectious diseases. 2003 Feb; 3(2):61. doi: 10.1016/s1473-3099(03)00528-0. [PMID: 12560176]
  • François Lépine, S Milot, L Zamir, R Morel. Liquid chromatographic/mass spectrometric determination of biologically active alkaloids in extracts of Peschiera fuschiaefolia. Journal of mass spectrometry : JMS. 2002 Feb; 37(2):216-22. doi: 10.1002/jms.277. [PMID: 11857766]
  • D Ramanitrahasimbola, P Rasoanaivo, S Ratsimamanga-Urverg, E Federici, G Palazzino, C Galeffi, M Nicoletti. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytotherapy research : PTR. 2001 Feb; 15(1):30-3. doi: 10.1002/1099-1573(200102)15:1<30::aid-ptr680>3.0.co;2-t. [PMID: 11180519]
  • D D Ku, R B Roberts, B M Sellers, E Meezan. Regression of renal hypertrophy and elevated renal Na+,K+-ATPase activity after insulin treatment in streptozotocin-diabetic rats. Endocrinology. 1987 May; 120(5):2166-73. doi: 10.1210/endo-120-5-2166. [PMID: 3032576]