Biological Pathway: Reactome:R-HSA-77289

Mitochondrial Fatty Acid Beta-Oxidation related metabolites

find 120 related metabolites which is associated with the biological pathway Mitochondrial Fatty Acid Beta-Oxidation

this pathway object is a organism specific pathway, which is related to taxonomy Homo sapiens (human).

Beta-oxidation begins once fatty acids have been imported into the mitochondrial matrix by carnitine acyltransferases. The beta-oxidation spiral of fatty acids metabolism involves the repetitive removal of two carbon units from the fatty acyl chain. There are four steps to this process: oxidation, hydration, a second oxidation, and finally thiolysis. The last step releases the two-carbon acetyl-CoA and a ready primed acyl-CoA that takes another turn down the spiral. In total each turn of the beta-oxidation spiral produces one NADH, one FADH2, and one acetyl-CoA.

Further oxidation of acetyl-CoA via the tricarboxylic acid cycle generates additional FADH2 and NADH. All reduced cofactors are used by the mitochondrial electron transport chain to form ATP. The complete oxidation of a fatty acid molecule produces numerous ATP molecules. Palmitate, used as the model here, produces 129 ATPs.

Beta-oxidation pathways differ for saturated and unsaturated fatty acids. The beta-oxidation of saturated fatty acids requires four different enzymatic steps. Beta-oxidation produces and consumes intermediates with a trans configuration; unsaturated fatty acids that have bonds in the cis configuration require three separate enzymatic steps to prepare these molecules for the beta-oxidation pathway.

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Octanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H50N7O17P3S (893.2197)


Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase. [HMDB]. Octanoyl-CoA is found in many foods, some of which are millet, loganberry, horseradish, and sea-buckthornberry. Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase.

   

Nicotinamide adenine dinucleotide phosphate

{[(2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-[({[({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C21H30N7O17P3 (745.0911)


NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

NADP+

beta-Nicotinamide adenine dinucleotide phosphate oxidized form sodium salt hydrate

[C21H29N7O17P3]+ (744.0833)


[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Propionyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(propanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C24H40N7O17P3S (823.1414)


Propionyl-CoA is an intermediate in the metabolism of propanoate. Propionic aciduria is caused by an autosomal recessive disorder of propionyl coenzyme A (CoA) carboxylase deficiency (EC 6.4.1.3). In propionic aciduria, propionyl CoA accumulates within the mitochondria in massive quantities; free carnitine is then esterified, creating propionyl carnitine, which is then excreted in the urine. Because the supply of carnitine in the diet and from synthesis is limited, such patients readily develop carnitine deficiency as a result of the increased loss of acylcarnitine derivatives. This condition demands supplementation of free carnitine above the normal dietary intake to continue to remove (detoxify) the accumulating organic acids. Propionyl-CoA is a substrate for Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acetyl-coenzyme A synthetase 2-like (mitochondrial), Propionyl-CoA carboxylase alpha chain (mitochondrial), Methylmalonate-semialdehyde dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Malonyl-CoA decarboxylase (mitochondrial), Acetyl-coenzyme A synthetase (cytoplasmic), 3-ketoacyl-CoA thiolase (mitochondrial) and Propionyl-CoA carboxylase beta chain (mitochondrial). (PMID: 10650319) [HMDB] Propionyl-CoA is an intermediate in the metabolism of propanoate. Propionic aciduria is caused by an autosomal recessive disorder of propionyl coenzyme A (CoA) carboxylase deficiency (EC 6.4.1.3). In propionic aciduria, propionyl CoA accumulates within the mitochondria in massive quantities; free carnitine is then esterified, creating propionyl carnitine, which is then excreted in the urine. Because the supply of carnitine in the diet and from synthesis is limited, such patients readily develop carnitine deficiency as a result of the increased loss of acylcarnitine derivatives. This condition demands supplementation of free carnitine above the normal dietary intake to continue to remove (detoxify) the accumulating organic acids. Propionyl-CoA is a substrate for Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acetyl-coenzyme A synthetase 2-like (mitochondrial), Propionyl-CoA carboxylase alpha chain (mitochondrial), Methylmalonate-semialdehyde dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Malonyl-CoA decarboxylase (mitochondrial), Acetyl-coenzyme A synthetase (cytoplasmic), 3-ketoacyl-CoA thiolase (mitochondrial) and Propionyl-CoA carboxylase beta chain (mitochondrial). (PMID: 10650319).

   

Water

oxidane

H2O (18.0106)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.9898)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

(S)-3-Hydroxybutyryl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-{2-[(2-{[(3S)-3-hydroxybutanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid

C25H42N7O18P3S (853.152)


(S)-3-Hydroxybutyryl-CoA is classified as a member of the (S)-3-hydroxyacyl CoAs. (S)-3-hydroxyacyl CoAs are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. (S)-3-Hydroxybutyryl-CoA is considered to be slightly soluble (in water) and acidic

   

Linoleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z,12Z)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H66N7O17P3S (1029.3449)


Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long-chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation. ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (PMID: 17184976, 16020546).

   

Tetradecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetradecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H62N7O17P3S (977.3136)


Tetradecanoyl-CoA (or myristoyl-CoA) is an intermediate in fatty acid biosynthesis, fatty acid elongation and the beta oxidation of fatty acids. It is also used in the myristoylation of proteins. The first pass through the beta-oxidation process starts with the saturated fatty acid palmitoyl-CoA and produces myristoyl-CoA. A total of four enzymatic steps are required, starting with VLCAD CoA dehydrogenase (Very Long Chain) activity, followed by three enzymatic steps catalyzed by enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and ketoacyl-CoA thiolase, all present in the mitochondria. Myristoylation of proteins is also catalyzed by the presence of myristoyl-CoA along with Myristoyl-CoA:protein N-myristoyltransferase (NMT). Myristoylation is an irreversible, co-translational (during translation) protein modification found in animals, plants, fungi and viruses. In this protein modification a myristoyl group (derived from myristioyl CoA) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. It is more common on glycine residues but also occurs on other amino acids. Myristoylation also occurs post-translationally, for example when previously internal glycine residues become exposed by caspase cleavage during apoptosis. Myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase (NMT) gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. Myristoyl-coa, also known as S-tetradecanoyl-coenzyme a or myristoyl-coenzyme a, is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Myristoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Myristoyl-coa can be found in a number of food items such as sea-buckthornberry, anise, chicory, and cassava, which makes myristoyl-coa a potential biomarker for the consumption of these food products. Myristoyl-coa can be found primarily in human fibroblasts tissue. Myristoyl-coa exists in all eukaryotes, ranging from yeast to humans. In humans, myristoyl-coa is involved in few metabolic pathways, which include adrenoleukodystrophy, x-linked, beta oxidation of very long chain fatty acids, and fatty acid metabolism. Myristoyl-coa is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(18:0/14:0/22:0), de novo triacylglycerol biosynthesis tg(i-21:0/12:0/14:0), de novo triacylglycerol biosynthesis TG(18:1(9Z)/14:0/22:2(13Z,16Z)), and de novo triacylglycerol biosynthesis TG(14:0/16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)).

   

(S)-3-Hydroxyhexadecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxyhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C37H66N7O18P3S (1021.3398)


(S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716) [HMDB] (S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716).

   

3-Oxohexadecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxohexadecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C37H64N7O18P3S (1019.3241)


3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB] 3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA.

   

(S)-3-Hydroxytetradecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxytetradecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H62N7O18P3S (993.3085)


(S)-3-Hydroxytetradecanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. (S)-3-Hydroxytetradecanoyl-CoA is the 7th to last step in the synthesis of Hexadecanoic acid and is converted from 3-Oxotetradecanoyl-CoA via the enzyme long-chain 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211). It is then converted to trans-Tetradec-2-enoyl-CoA via the enzyme enoyl-CoA hydratase (EC 4.2.1.17). [HMDB] (S)-3-Hydroxytetradecanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. (S)-3-Hydroxytetradecanoyl-CoA is the 7th to last step in the synthesis of Hexadecanoic acid and is converted from 3-Oxotetradecanoyl-CoA via the enzyme long-chain 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211). It is then converted to trans-Tetradec-2-enoyl-CoA via the enzyme enoyl-CoA hydratase (EC 4.2.1.17).

   

3-Oxotetradecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxotetradecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H60N7O18P3S (991.2928)


3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202). Myristoyl-CoA:protein N-myristoyltransferase (E.C. 2.3.1.97) is a eukaryotic enzyme that catalyzes the transfer of myristate (C14:O) from myristoyl-CoA to the amino nitrogen of glycine. This covalent protein modification occurs cotranslationally, is apparently irreversible, and affects proteins with diverse functions. (PMID: 2818568). 3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202)

   

(S)-3-Hydroxydodecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydodecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C33H58N7O18P3S (965.2772)


(S)-3-Hydroxydodecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA. [HMDB] (S)-3-Hydroxydodecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA.

   

3-Oxododecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxododecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C33H56N7O18P3S (963.2615)


3-oxododecanoyl-coa, also known as 3-oxolauroyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxododecanoic acid thioester of coenzyme A. 3-oxododecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxododecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxododecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Oxododecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Oxododecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Oxododecanoyl-CoA into 3-oxododecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-oxododecanoylcarnitine is converted back to 3-Oxododecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Oxododecanoyl-CoA occurs in four steps. First, since 3-Oxododecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Oxododecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ket... 3-Oxododecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme acetyl-CoA C-acyltransferase catalyzes the formation of this metabolite from Acetyl-CoA. [HMDB]

   

(S)-Hydroxydecanoyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H54N7O18P3S (937.2459)


(s)-hydroxydecanoyl-coa, also known as S-(3-hydroxydecanoate) CoA or 3S-hydroxy-decanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxydecanoic acid thioester of coenzyme A. (s)-hydroxydecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (s)-hydroxydecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (s)-hydroxydecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (S)-Hydroxydecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (S)-Hydroxydecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (S)-Hydroxydecanoyl-CoA into 3-Hydroxydecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxydecanoylcarnitine is converted back to (S)-Hydroxydecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (S)-Hydroxydecanoyl-CoA occurs in four steps. First, since (S)-Hydroxydecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (S)-Hydroxydecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bo... (S)-Hydroxydecanoyl-CoA has a role in the synthesis and oxidation of fatty acids. It is involved in fatty acid elongation in mitochondria. In this pathway 3-Oxodecanoyl-CoA is acted upon by two enzymes, 3-hydroxyacyl-CoA dehydrogenase and long-chain-3-hydroxyacyl-CoA dehydrogenase to produce (S)-Hydroxydecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB]

   

3-Oxodecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxodecanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H52N7O18P3S (935.2302)


3-oxodecanoyl-coa, also known as 3-ketodecanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxodecanoic acid thioester of coenzyme A. 3-oxodecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxodecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxodecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Oxodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Oxodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Oxodecanoyl-CoA into 3-oxodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-oxodecanoylcarnitine is converted back to 3-Oxodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Oxodecanoyl-CoA occurs in four steps. First, since 3-Oxodecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Oxodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is ... 3-Oxodecanoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme acetyl-Coenzyme A acetyltransferase 1 and 2 [EC:2.3.1.16-2.3.1.9]; 3-Oxodecanoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]. (KEGG) [HMDB]. 3-Oxodecanoyl-CoA is found in many foods, some of which are chinese cabbage, calabash, safflower, and sunburst squash (pattypan squash).

   

(S)-Hydroxyoctanoyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxyoctanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H50N7O18P3S (909.2146)


Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. Specifically (S)-Hydroxyoctanoyl-CoA is involved in fatty acid metabolism. It is the product of a reaction between 3-Oxooctanoyl-CoA and two enzymes; 3-hydroxyacyl-CoA Dehydrogenase and long-chain- 3-hydroxyacyl-CoA dehydrogenase. [HMDB] Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. Specifically (S)-Hydroxyoctanoyl-CoA is involved in fatty acid metabolism. It is the product of a reaction between 3-Oxooctanoyl-CoA and two enzymes; 3-hydroxyacyl-CoA Dehydrogenase and long-chain- 3-hydroxyacyl-CoA dehydrogenase.

   

3-Oxooctanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxooctanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H48N7O18P3S (907.1989)


3-Oxooctanoyl-CoA is the substrate of the acetyl-CoA C-acyltransferase/oxoacyl-CoA thiolase A (EC 2.3.1.16, SCP2/3-oxoacyl-CoA thiolase) present in peroxisomes from normal liver. Peroxisomes beta -oxidize a wide variety of substrates including straight chain fatty acids, 2-methyl-branched fatty acids, and the side chain of the bile acid intermediates di- and trihydroxycoprostanic acids. Peroxisomes contain several beta -oxidation pathways with different substrate specificities; or example, straight chain acyl-CoAs are desaturated by palmitoyl-CoA oxidase, and their enoyl-CoAs are then converted to 3-oxoacyl-CoAs by MFP-1, which forms (hydration) and dehydrogenates L-3(3S)-hydroxyacyl-CoAs; for example, straight chain acyl-CoAs are desaturated by palmitoyl-CoA oxidase (23), and their enoyl-CoAs are then converted to 3-oxoacyl-CoAs by 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), which forms (hydration) and dehydrogenates L-3(3S)-hydroxyacyl-CoAs and their enoyl-CoAs are then converted to the corresponding 3-oxoacyl-CoAs by long-chain-enoyl-CoA hydratase(EC 4.2.1.74), which forms and dehydrogenates D-3(3R)-hydroxyacyl-CoAs. (PMID: 9325339). 3-Oxooctanoyl-CoA is the substrate of the acetyl-CoA C-acyltransferase/oxoacyl-CoA thiolase A (EC 2.3.1.16, SCP2/3-oxoacyl-CoA thiolase) present in peroxisomes from normal liver.

   

(S)-Hydroxyhexanoyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-{2-[(2-{[(3S)-3-hydroxyhexanoyl]sulfanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-3,3-dimethylbutanimidic acid

C27H46N7O18P3S (881.1833)


(s)-3-hydroxyhexanoyl-coa is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. Thus, (s)-3-hydroxyhexanoyl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxyhexanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxyhexanoyl-coa can be found in a number of food items such as common grape, yam, grass pea, and roman camomile, which makes (s)-3-hydroxyhexanoyl-coa a potential biomarker for the consumption of these food products. (S)-Hydroxyhexanoyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211) and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). (S)-Hydroxyhexanoyl-CoA is also an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase (EC 4.2.1.17) and long-chain-enoyl-CoA hydratase (EC 4.2.1.74) (KEGG).

   

3-Oxohexanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxohexanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C27H44N7O18P3S (879.1676)


3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). [HMDB]. 3-Oxohexanoyl-CoA is found in many foods, some of which are soy bean, cloudberry, other bread, and lemon thyme. 3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35).

   

(2E)-Tetradecenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2E)-tetradec-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H60N7O17P3S (975.2979)


(2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG) [HMDB] (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG).

   

(2E)-Decenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-{[({[(3-{[2-({2-[(2E)-dec-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H52N7O17P3S (919.2353)


(2E)-Decenoyl-CoA is a beta-oxidation intermediate, the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (PMID: 11673457) [HMDB] (2E)-Decenoyl-CoA is a beta-oxidation intermediate, the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (PMID: 11673457).

   

S-2-Octenoyl CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(oct-2-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C29H48N7O17P3S (891.204)


S-2-Octenoyl coenzyme A is an intermediate metabolite of fatty acid metabolism. Mitochondrial beta-oxidation of saturated acyl-CoA esters proceeds by a repeated cycle of four concerted reactions: flavoprotein-linked dehydrogenation, hydration, NAD-linked dehydrogenation and thiolysis. The three chain-length-specific acyl-CoA dehydrogenases which catalyse the first dehydrogenation step are linked to the respiratory chain by the electron-transferring flavoprotein (ETF) and ETF: ubiquinone oxidoreductase (ETF: QO). The second dehydrogenation step is catalysed by two chain-length-specific NAD+-dependent 3-hydroxyacyl-CoA dehydrogenases. The control of beta-oxidation in the mitochondrial matrix occurs at several steps and depends on the redox state and the rate of recycling of CoA. The rate is lowered with reduced states, since high NAD+/NADH ratios impair the activity of the hydroxyacyl-CoA dehydrogenase and increase the formation of ETF semiquinone (ETFSq), which is a potent inhibitor of the acyl-CoA dehydrogenases. These changes affect the steady-state concentrations of acyl-CoA intermediates, which in turn may change the control strength of other enzymes of the pathway. In liver mitochondria, acetyl-CoA produced by each cycle of beta-oxidation has four major routes of disposal: ketogenesis, oxidation by the citrate cycle, conversion into acetylcarnitine or hydrolysis to acetate; each of these reactions generates free CoA. During maximum flux through beta-oxidation, up to 95 \\% of the mitochondrial CoA pool is acylated, and thus the rate of recycling of CoA may partly control beta-oxidation. Increased steady-state concentrations of some acyl-CoA esters may also occur when one or more of the enzymes of beta-oxidation is inhibited, as in hypoglycin poisoning, or where one or more of the enzymes of the pathway is absent. Such inborn errors of beta-oxidation are being increasingly recognized as important causes of disease, especially in children, and deficiencies of long-chain-acyl-CoA dehydrogenase, medium-chain-acyl-CoA dehydrogenase, short-chain-acyl-CoA dehydrogenase, ETF, ETF: QO and acetoacetyl-CoA thiolase have been described. (PMID: 2818568).

   

(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E,6Z)-dodeca-2,6-dienoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C33H54N7O17P3S (945.251)


(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is also known as (2t,6C)-Dodecadienoyl-coenzyme A or trans,cis-2,6-Laurodienoyl-coenzyme A. (2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is considered to be slightly soluble (in water) and acidic. (2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is a fatty ester lipid molecule

   

cis,cis-3,6-Dodecadienoyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(3Z,6Z)-dodeca-3,6-dienoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C33H54N7O17P3S (945.251)


cis,cis-3,6-Dodecadienoyl-CoA is an intermediate in Fatty acid metabolism. cis,cis-3,6-Dodecadienoyl-CoA is produced from trans,cis-Lauro-2,6-dienoyl-CoA via the enzyme dodecenoyl-CoA delta-isomerase (EC 5.3.3.8). [HMDB] cis,cis-3,6-Dodecadienoyl-CoA is an intermediate in Fatty acid metabolism. cis,cis-3,6-Dodecadienoyl-CoA is produced from trans,cis-Lauro-2,6-dienoyl-CoA via the enzyme dodecenoyl-CoA delta-isomerase (EC 5.3.3.8).

   

Docosanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(docosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C43H78N7O17P3S (1089.4388)


Docosanoyl-CoA is an acyl-CoA with the C-22 fatty acid Acyl chain moiety. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Docosanoyl-CoA is a acyl-CoA with the C-22 fatty acid Acyl chain moiety.

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

CoA 4:1;O2

5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

C25H40N7O19P3S (867.1312)


The (R)-enantiomer of methylmalonyl-CoA.

   

trans-D-Decenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-dec-2-enoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C31H52N7O17P3S (919.2353)


Fatty acid elongation in mitochondria; Fatty acid metabolism [HMDB] Fatty acid elongation in mitochondria; Fatty acid metabolism.

   

trans-3-Decenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-{[2-({2-[(3E)-dec-3-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H52N7O17P3S (919.2353)


trans-3-Decenoyl-CoA is an intermediate in fatty acid metabolism. trans-3-Decenoyl-CoA is the substrate of medium-chain acyl-CoA dehydrogenase (MCAD, EC 1.3.99.3) MCAD acts on C4-C16 acyl-CoAs with its peak activity toward medium-chain (C6-C12) substrates. MCAD is a key enzyme for the beta-oxidation of fatty acids. MCAD deficiency is caused by mutation in the medium-chain acyl-CoA dehydrogenase gene (ACADM; OMIM 607008). Inherited deficiency of medium-chain acyl-CoA dehydrogenase is characterized by intolerance to prolonged fasting, recurrent episodes of hypoglycemic coma with medium-chain dicarboxylic aciduria, impaired ketogenesis, and low plasma and tissue carnitine levels. The disorder may be severe, and even fatal, in young patients. It has been reported that between 19 and 25\\% of patients with undiagnosed deficiency of MCAD die during their first episode of metabolic decompensation. (PMID: 15850406) [HMDB] trans-3-Decenoyl-CoA is an intermediate in fatty acid metabolism. trans-3-Decenoyl-CoA is the substrate of medium-chain acyl-CoA dehydrogenase (MCAD, EC 1.3.99.3) MCAD acts on C4-C16 acyl-CoAs with its peak activity toward medium-chain (C6-C12) substrates. MCAD is a key enzyme for the beta-oxidation of fatty acids. MCAD deficiency is caused by mutation in the medium-chain acyl-CoA dehydrogenase gene (ACADM; OMIM 607008). Inherited deficiency of medium-chain acyl-CoA dehydrogenase is characterized by intolerance to prolonged fasting, recurrent episodes of hypoglycemic coma with medium-chain dicarboxylic aciduria, impaired ketogenesis, and low plasma and tissue carnitine levels. The disorder may be severe, and even fatal, in young patients. It has been reported that between 19 and 25\\% of patients with undiagnosed deficiency of MCAD die during their first episode of metabolic decompensation. (PMID: 15850406).

   

S-Methylmalonyl-CoA

(2S)-3-[(2-{3-[(2R)-3-[({[({[(3S,4R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

(2E)-Octenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2E)-oct-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H48N7O17P3S (891.204)


(2E)-Octenoyl-CoA is the main metabolite produced in medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3, MCAD) deficiency; however the product of the enzymatic reaction is not directly detected in several methods for screening of inborn errors of fatty acid oxidation. In order to aid the timely follow-up of screening results that suggest abnormalities in MCAD, rapid and simple confirmatory tests for the enzyme activity and/or gene mutation analysis should be available. Medium-chain fatty acyl-CoA dehydrogenase (MCAD) catalyzes the conversion of different chain length fatty acyl- CoAs into their corresponding trans-enoyl-CoA moieties via two consecutive sequences of steps. The first step involves the concerted abstraction of a proton and a hydride ion from the a- and 8-carbon chains of the fatty acyl-CoA substrates, concomitant with the reduction of the enzyme (E)-bound FAD to FADH2. The reoxidation of EFADH2, to propagate further rounds of catalysis, is accomplished via transfer of electrons to a variety of organic electron acceptors; the natural electron acceptor for this process, under physiological conditions, is the electron-transferring flavoprotein. Of the different chain length fatty acyl-CoA substrates, octanoyl-CoA/octenoyl-CoA have been known as the most efficient (and physiological) substrates for the medium-chain fatty acyl-CoA dehydrogenase (MCAD)-catalyzed reaction. (PMID: 16046200, 1390638, 8038175). (2E)-Octenoyl-CoA is the main metabolite produced in medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3, MCAD) deficiency; however the product of the enzymatic reaction is not directly detected in several methods for screening of inborn errors of fatty acid oxidation. In order to aid the timely follow-up of screening results that suggest abnormalities in MCAD, rapid and simple confirmatory tests for the enzyme activity and/or gene mutation analysis should be available.

   

trans,cis-Lauro-2,6-dienoyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-{[2-({2-[(2E,5Z)-dodeca-2,5-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C33H54N7O17P3S (945.251)


Trans,cis-Lauro-2,6-dienoyl-CoA is a co-enzyme A intermediate that participates in fatty acid metabolism, especially long chain fatty acid biosynthesis. trans,cis-Lauro-2,6-dienoyl-CoA is converted from cis,cis-3,6-Dodecadienoyl-CoA via the enzyme known as dodecenoyl-CoA delta-isomerase [EC:5.3.3.8] and vice-versa. Fatty acid degradation is the process in which fatty acids are broken down, resulting in release of energy. It includes three major steps: Activation and transport into mitochondria, β-oxidation and movement through the electron transport chain. Fatty acids are transported across the outer mitochondrial membrane by carnitine-palmitoyl transferase I (CPT-I), and then couriered across the inner mitochondrial membrane by carnitine (PMID:11413487). Once inside the mitochondrial matrix, fatty acyl-carnitine reacts with coenzyme A to release the fatty acid and produce acetyl-CoA. CPT-I is believed to be the rate limiting step in fatty acid oxidation. Once inside the mitochondrial matrix, fatty acids undergo β-oxidation (PMID: 25703630). During this process, two-carbon molecules (in the form of acetyl-CoA) are repeatedly cleaved from the fatty acid. Acetyl-CoA can then enter the TCA cycle, which produces NADH and FADH. NADH and FADH are subsequently used in the electron transport chain to produce ATP, the energy currency of the cell. trans,cis-Lauro-2,6-dienoyl-CoA participates in fatty acid metabolism. trans,cis-Lauro-2,6-dienoyl-CoA is converted from cis,cis-3,6-Dodecadienoyl-CoA via dodecenoyl-CoA delta-isomerase [EC:5.3.3.8] and vice-versa.

   

2-trans-4-cis-decadienoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-{[2-({2-[(2E,4Z)-deca-2,4-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H50N7O17P3S (917.2197)


2-trans-4-cis-decadienoyl-CoA is also known as (2-trans,4-cis)-Deca-2,4-dienoyl-coenzyme A or 2,4-Decadienoyl-CoA. 2-trans-4-cis-decadienoyl-CoA is considered to be slightly soluble (in water) and acidic. 2-trans-4-cis-decadienoyl-CoA is a fatty ester lipid molecule

   

(S)-3-hydroxybutanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxybutanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O18P3S (853.152)


3-hydroxybutyryl-coa is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. Thus, 3-hydroxybutyryl-coa is considered to be a fatty ester lipid molecule. 3-hydroxybutyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-hydroxybutyryl-coa can be found in a number of food items such as agar, garland chrysanthemum, kelp, and oval-leaf huckleberry, which makes 3-hydroxybutyryl-coa a potential biomarker for the consumption of these food products. 3-hydroxybutyryl-coa may be a unique E.coli metabolite. 3-Hydroxybutyryl-CoA, also known as L-3-hydroxybutanoyl-CoA, belongs to the class of organic compounds known as (s)-3-hydroxyacyl coas. These are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. Thus, 3-hydroxybutyryl-CoA is considered to be a fatty ester lipid molecule. 3-Hydroxybutyryl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral.

   

(S)-3-hydroxydecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxydecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H54N7O18P3S (937.2459)


(s)-3-hydroxydecanoyl-coa, also known as 3-oh 10:0-coa or beta-hydroxydecanoyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative (s)-3-hydroxydecanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxydecanoyl-coa can be found in a number of food items such as black crowberry, pomegranate, deerberry, and winter savory, which makes (s)-3-hydroxydecanoyl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxydecanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

decanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl-coa, also known as 10:0-coa or decanoyl-coenzyme a, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, decanoyl-coa is considered to be a fatty ester lipid molecule. Decanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Decanoyl-coa can be synthesized from decanoic acid and coenzyme A. Decanoyl-coa can also be synthesized into 3-oxodecanoyl-CoA. Decanoyl-coa can be found in a number of food items such as swede, triticale, ohelo berry, and moth bean, which makes decanoyl-coa a potential biomarker for the consumption of these food products. Decanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

NADP+

1-[(2R,3R,4S,5R)-5-[({[({[(2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxy-4-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl]-3-carbamoyl-1lambda5-pyridin-1-ylium

C21H29N7O17P3+ (744.0833)


Nadp+, also known as nicotinamide adenine dinucleotide phosphate or nadp, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Nadp+ is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Nadp+ can be found in a number of food items such as small-leaf linden, redcurrant, root vegetables, and fenugreek, which makes nadp+ a potential biomarker for the consumption of these food products. Nadp+ can be found primarily in blood, as well as throughout all human tissues. Nadp+ exists in all eukaryotes, ranging from yeast to humans. In humans, nadp+ is involved in several metabolic pathways, some of which include folate malabsorption, hereditary, carprofen action pathway, valdecoxib action pathway, and glutathione metabolism. Nadp+ is also involved in several metabolic disorders, some of which include monoamine oxidase-a deficiency (MAO-A), apparent mineralocorticoid excess syndrome, hyperprolinemia type I, and hyperphenylalaninemia due to dhpr-deficiency. Moreover, nadp+ is found to be associated with pellagra. Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

H2O

oxidane

H2O (18.0106)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

3-hydroxybutanoyl CoA

(S)-3-hydroxybutanoyl-CoA

C25H42N7O18P3S (853.152)


   

NADPH

ent-NADPH

C21H30N7O17P3 (745.0911)


The reduced form of NADP+; used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-oxodecanoyl-CoA

3-oxodecanoyl-CoA

C31H52N7O18P3S (935.2302)


An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-oxodecanoic acid.

   

3-Oxolauroyl-CoA

3-Oxododecanoyl-CoA

C33H56N7O18P3S (963.2615)


An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-oxolauroic acid.

   

3-oxopalmitoyl-CoA

3-oxohexadecanoyl-CoA

C37H64N7O18P3S (1019.3241)


The S-(3-oxopalmitoyl) derivative of coenzyme A.

   

CoA 18:2

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


   

CoA 8:1;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-({3-[(2-{[(1-hydroxycyclohexyl)acetyl]sulfanyl}ethyl)amino]-3-oxopropyl}amino)-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C29H48N7O18P3S (907.1989)


   

CoA 12:2

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-{[2-({2-[(2E,5Z)-dodeca-2,5-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C33H54N7O17P3S (945.251)


   

CoA 14:1

(cis-Delta(5))-tetradecanoyl-CoA;(cis-Delta(5))-tetradecanoyl-coenzyme A;14:1(n-9)-CoA;5Z-tetradecenoyl-CoA;5Z-tetradecenoyl-coenzyme A;C14:1(n-9)-CoA;Z-tetradec-5-enoyl-CoA;Z-tetradec-5-enoyl-coenzyme A;cis-5-tetradecenoyl-CoA;cis-5-tetradecenoyl-coenzyme A;cis-tetradec-5-enoyl-coenzyme A

C35H60N7O17P3S (975.2979)


   

CoA 4:0;O

(S)-3-hydroxy-2-methylpropanoyl-coenzyme A;(S)-3-hydroxy-2-methylpropionyl-coenzyme A;(S)-3-hydroxyisobutanoyl-CoA;(S)-3-hydroxyisobutanoyl-coenzyme A;(S)-3-hydroxyisobutyryl-coenzyme A

C25H42N7O18P3S (853.152)


   

CoA 8:0;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-({3-[(2-{[(3R)-3-hydroxyoctanoyl]sulfanyl}ethyl)amino]-3-oxopropyl}amino)-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C29H50N7O18P3S (909.2146)


   

CoA 6:0;O

(S)-3-hydroxycaproyl-CoA;(S)-3-hydroxycaproyl-coenzyme A;3-hydroxyhexanoyl-coenzyme A

C27H46N7O18P3S (881.1833)


   

CoA 12:0;O

(S)-3-hydroxydodecanoyl-coenzyme A;(S)-3-hydroxylauroyl-coenzyme A

C33H58N7O18P3S (965.2772)


   

CoA 16:0;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-{[3-({2-[(2-hydroxyhexadecanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C37H66N7O18P3S (1021.3398)


   

CoA 10:1;O

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(3-hydroxy-2,6-dimethyl-5-methylideneheptanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H52N7O18P3S (935.2302)


   

CoA 6:1;O

3-Ketohexanoyl-coenzyme A;3-oxohexanoyl-coenzyme A;Coenzyme A, S-(3-oxohexanoate);adenosine 3-phosphoric acid 5-[diphosphoric acid P(2)-[2,2-dimethyl-3-hydroxy-3-[[2-[[2-(3-oxohexanoylthio)ethyl]aminocarbonyl]ethyl]aminocarbonyl]propyl]] ester

C27H44N7O18P3S (879.1676)


   

CoA 16:1;O

3S-Hydroxy-9Z-hexadecenoyl-CoA

C37H64N7O18P3S (1019.3241)


   

CoA 14:1;O

3S-hydroxy-7Z-tetradecadienoyl-CoA

C35H60N7O18P3S (991.2928)


   

CoA 10:1

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-{[2-({2-[(3E)-dec-3-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H52N7O17P3S (919.2353)


   

CoA 10:0

3-phosphoadenosine 5-(3-{(3R)-4-[(3-{[2-(decanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl} dihydrogen diphosphate)

C31H54N7O17P3S (921.251)


   

CoA 14:0

S-tetradecanoyl-coenzyme A;n-C14:0-CoA;n-C14:0-coenzyme A

C35H62N7O17P3S (977.3136)


   

CoA 3:0

3-phosphoadenosine 5-(3-{(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[(3-oxo-3-{[2-(propanoylsulfanyl)ethyl]amino}propyl)amino]butyl} dihydrogen diphosphate)

C24H40N7O17P3S (823.1414)


   

CoA 8:1

(2E)-octenoyl-coenzyme A;2,3-trans-octenoyl coenzyme A;2E-octenoyl-CoA;2E-octenoyl-coenzyme A;oct-2-trans-enoyl-CoA;oct-trans-2-enoyl-CoA;trans-2-octenoyl-coenzyme A;trans-oct-2-enoyl-coenzyme A

C29H48N7O17P3S (891.204)


   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1013)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Butyrate

Butyrate

C4H7O2- (87.0446)


A short-chain fatty acid anion that is the conjugate base of butyric acid, obtained by deprotonation of the carboxy group.

   
   

Hydrogen phosphate

Hydrogen phosphate

HO4P-2 (95.9612)


   

[Hydroxy(oxido)phosphoryl] phosphate

[Hydroxy(oxido)phosphoryl] phosphate

HO7P2-3 (174.9198)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

COENZYME B12

Adenosylcobalamin

C72H100CoN18O17P-3 (1578.6583)


B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BA - Vitamin b12 (cyanocobalamin and analogues) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Linoleoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


An octadecadienoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of linoleic acid. Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976, 16020546) [HMDB]

   

cis-4-Decenoyl-coenzyme A

cis-4-Decenoyl-coenzyme A

C31H52N7O17P3S (919.2353)


   

(2E)-Tetradecenoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2E)-tetradec-2-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C35H60N7O17P3S (975.2979)


(2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG) [HMDB] (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG).

   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-5-monophosphate(2-)

Adenosine-5-monophosphate(2-)

C10H12N5O7P-2 (345.0474)


   
   

Succinyl-CoA

Succinyl-CoA

C25H35N7O19P3S-5 (862.0921)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

But-2-enoyl-CoA

But-2-enoyl-CoA

C25H36N7O17P3S-4 (831.1101)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetyl-CoA(4-)

acetyl-CoA(4-)

C23H34N7O17P3S-4 (805.0945)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetoacetyl-CoA(4-)

acetoacetyl-CoA(4-)

C25H36N7O18P3S-4 (847.105)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2E)-Hexadecenoyl-CoA

(2E)-Hexadecenoyl-CoA

C37H60N7O17P3S-4 (999.2979)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FADH2 dianion

FADH2 dianion

C27H33N9O15P2-2 (785.1571)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

lauroyl-CoA(4-)

lauroyl-CoA(4-)

C33H54N7O17P3S-4 (945.251)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Butanoyl-CoA

Butanoyl-CoA

C25H38N7O17P3S-4 (833.1258)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

malonyl-CoA(5-)

malonyl-CoA(5-)

C24H33N7O19P3S-5 (848.0765)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Hexadecanoyl CoA

Hexadecanoyl CoA

C37H62N7O17P3S-4 (1001.3136)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

trans-dodec-2-enoyl-CoA(4-)

trans-dodec-2-enoyl-CoA(4-)

C33H52N7O17P3S-4 (943.2353)


   

FAD trianion

FAD trianion

C27H30N9O15P2-3 (782.1337)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

trans-2-docosenoyl-CoA

trans-2-docosenoyl-CoA

C43H76N7O17P3S (1087.4231)


A 2,3-trans-enoyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-2-docosenoic acid.

   

(E)-2-methylpentadec-2-enoyl-CoA

(E)-2-methylpentadec-2-enoyl-CoA

C37H64N7O17P3S (1003.3292)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (E)-2-methylpentadec-2-enoic acid.

   

Carbon Dioxide

carbon dioxide

CO2 (43.9898)


A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Nicotinamide adenine dinucleotide phosphate

NADP nicotinamide-adenine-dinucleotide phosphATE

C21H29N7O17P3+ (744.0833)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

decanoyl-CoA

decanoyl-CoA

C31H54N7O17P3S (921.251)


A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of decanoic acid.

   

Propionyl-CoA

Propionyl-CoA

C24H40N7O17P3S (823.1414)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of propionic acid.

   
   

(S)-3-hydroxyhexanoyl-CoA

(S)-3-hydroxyhexanoyl-CoA

C27H46N7O18P3S (881.1833)


A hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxyhexanoyl-CoA.

   
   

myristoyl-CoA

Tetradecanoyl-CoA

C35H62N7O17P3S (977.3136)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of myristic acid.

   

Hydrogen cation

Hydrogen cation

H+ (1.0078)


   

3-Oxohexanoyl-CoA

3-Oxohexanoyl-CoA

C27H44N7O18P3S (879.1676)


An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-oxohexanoic acid.

   

trans-tetradec-2-enoyl-CoA

trans-tetradec-2-enoyl-CoA

C35H60N7O17P3S (975.2979)


   

(S)-3-hydroxypalmitoyl-CoA

(S)-3-hydroxypalmitoyl-CoA

C37H66N7O18P3S (1021.3398)


A long-chain (3S)-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxypalmitic acid.

   

(S)-3-Hydroxytetradecanoyl-CoA

(S)-3-Hydroxytetradecanoyl-CoA

C35H62N7O18P3S (993.3085)


A long-chain (3S)-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxytetradecanoic acid.

   

3-Oxooctanoyl-CoA

3-Oxooctanoyl-CoA

C29H48N7O18P3S (907.1989)


An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-oxooctanoic acid.

   

(S)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

C25H40N7O19P3S (867.1312)


The (S)-enantiomer of methylmalonyl-CoA.

   

(S)-3-hydroxybutanoyl-CoA

(S)-3-hydroxybutanoyl-CoA

C25H42N7O18P3S (853.152)


   

(S)-3-Hydroxydecanoyl-CoA

(S)-3-Hydroxydecanoyl-CoA

C31H54N7O18P3S (937.2459)


A 3-hydroxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-hydroxydecanoic acid.

   

trans-oct-2-enoyl-CoA

trans-oct-2-enoyl-CoA

C29H48N7O17P3S (891.204)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-oct-2-enoic acid.

   

trans-dec-2-enoyl-CoA

trans-dec-2-enoyl-CoA

C31H52N7O17P3S (919.2353)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-dec-2-enoic acid.

   

(S)-3-hydroxylauroyl-CoA

(S)-3-hydroxylauroyl-CoA

C33H58N7O18P3S (965.2772)


A hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxydodecanoic acid.

   

(S)-3-hydroxyoctanoyl-CoA

(S)-3-hydroxyoctanoyl-CoA

C29H50N7O18P3S (909.2146)


A hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxyoctanoic acid.

   

(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA

(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA

C33H54N7O17P3S (945.251)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2-trans,6-cis)-dodeca-2,6-dienoic acid.

   

cis,cis-Dodeca-3,6-dienoyl-CoA

cis,cis-Dodeca-3,6-dienoyl-CoA

C33H54N7O17P3S (945.251)


   

CoA 22:0

Behenyl-coenzyme A;Docosanoyl-CoA;behenoyl-coenzyme A;behenyl CoA;docosanoyl-coenzyme A

C43H78N7O17P3S (1089.4388)


A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of docosanoic (behenic) acid.