CoA 3:0 (BioDeep_00000630385)
Main id: BioDeep_00000004145
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C24H40N7O17P3S (823.1414)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C24H40N7O17P3S/c1-4-15(33)52-8-7-26-14(32)5-6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-16-20(25)28-11-29-21(16)31/h11-13,17-19,23,34-35H,4-10H2,1-3H3,(H,26,32)(H,27,36)(H,40,41)(H,42,43)(H2,25,28,29)(H2,37,38,39)/t13-,17-,18-,19+,23-/m1/s1
描述信息
同义名列表
5 个代谢物同义名
3-phosphoadenosine 5-(3-{(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[(3-oxo-3-{[2-(propanoylsulfanyl)ethyl]amino}propyl)amino]butyl} dihydrogen diphosphate); Propionyl-coenzyme A;S-Propionyl-coenzym-A;S-Propionylcoenzyme A;S-propanoyl-CoA;S-propanoyl-coenzyme A;propanoyl-coenzyme A; Propionyl-CoA; CoA 3:0; Propanoyl-CoA
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:15539
- KEGG: C00100
- PubChem: 92753
- DrugBank: DB02912
- LipidMAPS: LMFA07050364
- CAS: 125527-27-7
- CAS: 317-66-8
- PubChem: 3400
- PDB-CCD: 1VU
- 3DMET: B04632
- NIKKAJI: J1.695.704F
- KNApSAcK: 15539
分类词条
相关代谢途径
Reactome(14)
- Metabolism
- Amino acid and derivative metabolism
- Metabolism of lipids
- Metabolism of steroids
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Branched-chain amino acid catabolism
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 1950 - Streptomyces peucetius: 10.1128/JB.181.15.4690-4695.1999
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jiaqi Sun, Jun Ding, Qingsong Shen, Xiyang Wang, Min Wang, Yongping Huang, Xuechun Zhang, Huan Zhu, Feng Zhang, Dongde Wu, Min Peng, Zhonglin Zhang, Yufeng Yuan, Wenhua Li, Zhi-Gang She, Xiao-Jing Zhang, Hongliang Li, Peng Zhang, Zan Huang. Decreased propionyl-CoA metabolism facilitates metabolic reprogramming and promotes hepatocellular carcinoma.
Journal of hepatology.
2023 Mar; 78(3):627-642. doi:
10.1016/j.jhep.2022.11.017
. [PMID: 36462680] - Zhenhua Su, Zhenjian Zhang, Jian Yu, Congcong Yuan, Yanbing Shen, Jianxin Wang, Liqiu Su, Min Wang. Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum.
Microbial cell factories.
2022 Oct; 21(1):218. doi:
10.1186/s12934-022-01942-x
. [PMID: 36266684] - Gregory H Babunovic, Michael A DeJesus, Barbara Bosch, Michael R Chase, Thibault Barbier, Amy K Dickey, Bryan D Bryson, Jeremy M Rock, Sarah M Fortune. CRISPR Interference Reveals That All-Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A.
mBio.
2022 02; 13(1):e0368321. doi:
10.1128/mbio.03683-21
. [PMID: 35038923] - Wentao He, You Wang, Erik J Xie, Michael A Barry, Guo-Fang Zhang. Metabolic perturbations mediated by propionyl-CoA accumulation in organs of mouse model of propionic acidemia.
Molecular genetics and metabolism.
2021 11; 134(3):257-266. doi:
10.1016/j.ymgme.2021.09.009
. [PMID: 34635437] - Ram Prasad Bhusal, Wanting Jiao, Brooke X C Kwai, Jóhannes Reynisson, Annabelle J Collins, Jonathan Sperry, Ghader Bashiri, Ivanhoe K H Leung. Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2.
Nature communications.
2019 10; 10(1):4639. doi:
10.1038/s41467-019-12614-7
. [PMID: 31604954] - Agnese Serafini, Lendl Tan, Stuart Horswell, Steven Howell, Daniel J Greenwood, Deborah M Hunt, Minh-Duy Phan, Mark Schembri, Mercedes Monteleone, Christine R Montague, Warwick Britton, Acely Garza-Garcia, Ambrosius P Snijders, Brian VanderVen, Maximiliano G Gutierrez, Nicholas P West, Luiz Pedro S de Carvalho. Mycobacterium tuberculosis requires glyoxylate shunt and reverse methylcitrate cycle for lactate and pyruvate metabolism.
Molecular microbiology.
2019 10; 112(4):1284-1307. doi:
10.1111/mmi.14362
. [PMID: 31389636] - Jing Hou, Heping Zheng, Wen-Shyong Tzou, David R Cooper, Maksymilian Chruszcz, Mahendra D Chordia, Keehwan Kwon, Marek Grabowski, Wladek Minor. Differences in substrate specificity of V. cholerae FabH enzymes suggest new approaches for the development of novel antibiotics and biofuels.
The FEBS journal.
2018 08; 285(15):2900-2921. doi:
10.1111/febs.14588
. [PMID: 29917313] - Masaki Kajimoto, Dolena R Ledee, Aaron K Olson, Nancy G Isern, Christine Des Rosiers, Michael A Portman. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model.
American journal of physiology. Heart and circulatory physiology.
2015 Oct; 309(7):H1157-65. doi:
10.1152/ajpheart.00298.2015
. [PMID: 26232235] - Zhicheng Jin, Jessica M Berthiaume, Qingling Li, Fabrice Henry, Zhong Huang, Sushabhan Sadhukhan, Peng Gao, Gregory P Tochtrop, Michelle A Puchowicz, Guo-Fang Zhang. Catabolism of (2E)-4-hydroxy-2-nonenal via ω- and ω-1-oxidation stimulated by ketogenic diet.
The Journal of biological chemistry.
2014 Nov; 289(46):32327-32338. doi:
10.1074/jbc.m114.602458
. [PMID: 25274632] - Laura Strittmatter, Yang Li, Nathan J Nakatsuka, Sarah E Calvo, Zenon Grabarek, Vamsi K Mootha. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity.
Human molecular genetics.
2014 May; 23(9):2313-23. doi:
10.1093/hmg/ddt624
. [PMID: 24334609] - Stanislav Obruca, Ondrej Snajdar, Zdenek Svoboda, Ivana Marova. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil.
World journal of microbiology & biotechnology.
2013 Dec; 29(12):2417-28. doi:
10.1007/s11274-013-1410-5
. [PMID: 23801326] - Wonsik Lee, Brian C VanderVen, Ruth J Fahey, David G Russell. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.
The Journal of biological chemistry.
2013 Mar; 288(10):6788-800. doi:
10.1074/jbc.m112.445056
. [PMID: 23306194] - Lan Gao, William Chiou, Hua Tang, Xueheng Cheng, Heidi S Camp, David J Burns. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2007 Jun; 853(1-2):303-13. doi:
10.1016/j.jchromb.2007.03.029
. [PMID: 17442642] - Yong-Qiang Zhang, Matthias Brock, Nancy P Keller. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.
Genetics.
2004 Oct; 168(2):785-94. doi:
10.1534/genetics.104.027540
. [PMID: 15514053] - Stefan Kölker, Marina Schwab, Friederike Hörster, Sven Sauer, Angela Hinz, Nicole I Wolf, Ertan Mayatepek, Georg F Hoffmann, Jan A M Smeitink, Jürgen G Okun. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain.
The Journal of biological chemistry.
2003 Nov; 278(48):47388-93. doi:
10.1074/jbc.m308861200
. [PMID: 12972416] - S Slater, T A Mitsky, K L Houmiel, M Hao, S E Reiser, N B Taylor, M Tran, H E Valentin, D J Rodriguez, D A Stone, S R Padgette, G Kishore, K J Gruys. Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production.
Nature biotechnology.
1999 Oct; 17(10):1011-6. doi:
10.1038/13711
. [PMID: 10504704] - S C Hunter, J B Ohlrogge. Regulation of spinach chloroplast acetyl-CoA carboxylase.
Archives of biochemistry and biophysics.
1998 Nov; 359(2):170-8. doi:
10.1006/abbi.1998.0900
. [PMID: 9808758] - A C Eschenlauer, S K Stoup, F Srienc, D A Somers. Production of heteropolymeric polyhydroxyalkanoate in Escherichia coli from a single carbon source.
International journal of biological macromolecules.
1996 Aug; 19(2):121-30. doi:
10.1016/0141-8130(96)01114-2
. [PMID: 8842775] - D G Kennedy, S Kennedy, P B Young. Effects of low concentrations of dietary cobalt on rumen succinate concentration in sheep.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1996; 66(1):86-92. doi:
NULL
. [PMID: 8698552] - J Leclerc, C Des Rosiers, J A Montgomery, J Brunet, L Ste-Marie, M W Reider, C A Fernandez, L Powers, F David, H Brunengraber. Metabolism of R-beta-hydroxypentanoate and of beta-ketopentanoate in conscious dogs.
The American journal of physiology.
1995 Mar; 268(3 Pt 1):E446-52. doi:
10.1152/ajpendo.1995.268.3.e446
. [PMID: 7900792] - Y Y Liu, Y Shigematsu, A Nakai, Y Kikawa, M Saito, T Fukui, K Hayakawa, J Oizumi, M Sudo. The effects of biotin deficiency on organic acid metabolism: increase in propionyl coenzyme A-related organic acids in biotin-deficient rats.
Metabolism: clinical and experimental.
1993 Nov; 42(11):1392-7. doi:
10.1016/0026-0495(93)90188-t
. [PMID: 8231832] - S E Davies, R A Iles, T E Stacey, C de Sousa, R A Chalmers. Carnitine therapy and metabolism in the disorders of propionyl-CoA metabolism studied using 1H-NMR spectroscopy.
Clinica chimica acta; international journal of clinical chemistry.
1991 Dec; 204(1-3):263-77. doi:
10.1016/0009-8981(91)90237-7
. [PMID: 1819469] - U Wendel, R Baumgartner, S B van der Meer, L J Spaapen. Accumulation of odd-numbered long-chain fatty acids in fetuses and neonates with inherited disorders of propionate metabolism.
Pediatric research.
1991 Apr; 29(4 Pt 1):403-5. doi:
10.1203/00006450-199104000-00015
. [PMID: 1852536] - S Krahenbuhl, E P Brass. Inhibition of hepatic propionyl-CoA synthetase activity by organic acids. Reversal of propionate inhibition of pyruvate metabolism.
Biochemical pharmacology.
1991 Mar; 41(6-7):1015-23. doi:
10.1016/0006-2952(91)90209-n
. [PMID: 2009071] - N Siliprandi, F Di Lisa, R Menabò. Propionyl-L-carnitine: biochemical significance and possible role in cardiac metabolism.
Cardiovascular drugs and therapy.
1991 Feb; 5 Suppl 1(?):11-5. doi:
10.1007/bf00128238
. [PMID: 2031869] - T Suormala, H Wick, J P Bonjour, E R Baumgartner. Rapid differential diagnosis of carboxylase deficiencies and evaluation for biotin-responsiveness in a single blood sample.
Clinica chimica acta; international journal of clinical chemistry.
1985 Jan; 145(2):151-62. doi:
10.1016/0009-8981(85)90282-7
. [PMID: 3918814] - C R Roe, D S Millington, D A Maltby, T P Bohan, C L Hoppel. L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia.
The Journal of clinical investigation.
1984 Jun; 73(6):1785-8. doi:
10.1172/jci111387
. [PMID: 6725560] - R J Pollitt. The occurrence of substituted 3-methyl-3-hydroxyglutaric acids in urine in propionic acidaemia and in beta-ketothiolase deficiency.
Biomedical mass spectrometry.
1983 Apr; 10(4):253-7. doi:
10.1002/bms.1200100403
. [PMID: 6133567] - N Gregersen. The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl-CoA and isovaleryl-Co-A.
Biochemical medicine.
1981 Aug; 26(1):20-7. doi:
10.1016/0006-2944(81)90026-0
. [PMID: 7295301] - R M SMITH, W S OSBORNE-WHITE. METABOLISM OF PROPIONATE BY SHEEP LIVER. OXIDATION OF PROPIONATE BY HOMOGENATES.
The Biochemical journal.
1965 May; 95(?):411-22. doi:
10.1042/bj0950411
. [PMID: 14340092] - M FLAVIN, H CASTRO-MENDOZA, S OCHOA. Metabolism of propionic acid in animal tissues. II. Propionyl coenzyme a carboxylation system.
The Journal of biological chemistry.
1957 Dec; 229(2):981-96. doi:
"
. [PMID: 13502358]