NCBI Taxonomy: 2689243

Wisterieae (ncbi_taxid: 2689243)

found 142 associated metabolites at tribe taxonomy rank level.

Ancestor: indigoferoid/millettioid clade

Child Taxonomies: Wisteria, Nanhaia, Kanburia, Serawaia, Padbruggea, Sigmoidala, Adinobotrys, Wisteriopsis, Austrocallerya, Whitfordiodendron

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0684702)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Genistein

Genistein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O5 (270.052821)


Genistein is a 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, a phytoestrogen, a plant metabolite, a geroprotector and a human urinary metabolite. It is a conjugate acid of a genistein(1-). An isoflavonoid derived from soy products. It inhibits protein-tyrosine kinase and topoisomerase-II (DNA topoisomerases, type II) activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 phase arrest in human and murine cell lines. Additionally, genistein has antihelmintic activity. It has been determined to be the active ingredient in Felmingia vestita, which is a plant traditionally used against worms. It has shown to be effective in the treatment of common liver fluke, pork trematode and poultry cestode. Further, genistein is a phytoestrogen which has selective estrogen receptor modulator properties. It has been investigated in clinical trials as an alternative to classical hormone therapy to help prevent cardiovascular disease in postmenopausal women. Natural sources of genistein include tofu, fava beans, soybeans, kudzu, and lupin. Genistein is a natural product found in Pterocarpus indicus, Ficus septica, and other organisms with data available. Genistein is a soy-derived isoflavone and phytoestrogen with antineoplastic activity. Genistein binds to and inhibits protein-tyrosine kinase, thereby disrupting signal transduction and inducing cell differentiation. This agent also inhibits topoisomerase-II, leading to DNA fragmentation and apoptosis, and induces G2/M cell cycle arrest. Genistein exhibits antioxidant, antiangiogenic, and immunosuppressive activities. (NCI04) Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential f... Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease. (PMID:17979711). Genistein is a biomarker for the consumption of soy beans and other soy products. Genistein is a phenolic compound belonging to the isoflavonoid group. Isoflavonoids are found mainly in soybean. Genistein and daidzein (an other isoflavonoid) represent the major phytochemicals found in this plant. Health benefits (e.g. reduced risk for certain cancers and diseases of old age) associated to soya products consumption have been observed in East Asian populations and several epidemiological studies. This association has been linked to the action of isoflavonoids. With a chemical structure similar to the hormone 17-b-estradiol, soy isoflavones are able to interact with the estrogen receptor. They also possess numerous biological activities. (PMID: 15540649). Genistein is a biomarker for the consumption of soy beans and other soy products. A 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 ORIGINAL_ACQUISITION_NO 5097; CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3265 IPB_RECORD: 441; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 4238 CONFIDENCE standard compound; INTERNAL_ID 8827 CONFIDENCE standard compound; INTERNAL_ID 2419 CONFIDENCE standard compound; INTERNAL_ID 4162 CONFIDENCE standard compound; INTERNAL_ID 176 Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Formononetin

7-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one

C16H12O4 (268.0735552)


Formononetin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. It has a role as a phytoestrogen and a plant metabolite. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to a daidzein. It is a conjugate acid of a formononetin(1-). Formononetin is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). Formononetin is a natural product found in Pterocarpus indicus, Ardisia paniculata, and other organisms with data available. See also: Astragalus propinquus root (part of); Trifolium pratense flower (part of). Formononetin are abundant in vegetables. It is a phyto-oestrogen that is a polyphenolic non-steroidal plant compound with oestrogen-like biological activity (PMID: 16108819). It can be the source of considerable estrogenic activity (http://www.herbalchem.net/Intermediate.htm). Widespread isoflavone found in soy beans (Glycine max), red clover (Trifolium pratense and chick peas (Cicer arietinum). Potential nutriceutical A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8803; ORIGINAL_PRECURSOR_SCAN_NO 8802 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8826; ORIGINAL_PRECURSOR_SCAN_NO 8825 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4484; ORIGINAL_PRECURSOR_SCAN_NO 4480 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4471 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8863; ORIGINAL_PRECURSOR_SCAN_NO 8861 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8847; ORIGINAL_PRECURSOR_SCAN_NO 8844 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8852; ORIGINAL_PRECURSOR_SCAN_NO 8851 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8821 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4566 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4507; ORIGINAL_PRECURSOR_SCAN_NO 4504 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2291; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2291 IPB_RECORD: 481; CONFIDENCE confident structure Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Soyasapogenol B

(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,9-diol

C30H50O3 (458.37597500000004)


Soyasapogenol b-1, also known as 24-hydroxysophoradiol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Soyasapogenol b-1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Soyasapogenol b-1 can be synthesized from oleanane. Soyasapogenol b-1 is also a parent compound for other transformation products, including but not limited to, soyasapogenol B 3-O-beta-glucuronide, soyasaponin III, and soyasaponin I. Soyasapogenol b-1 can be found in soy bean, which makes soyasapogenol b-1 a potential biomarker for the consumption of this food product. Soyasapogenol B is a pentacyclic triterpenoid that is oleanane containing a double bond between positions 12 and 13 and substituted by hydroxy groups at the 3beta, 22beta and 24-positions. It derives from a hydride of an oleanane. Soyasapogenol B is a natural product found in Astragalus mongholicus, Melilotus messanensis, and other organisms with data available. See also: Trifolium pratense flower (part of); Medicago sativa whole (part of). Soyasapogenol B, also known as 24-hydroxysophoradiol, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Soyasapogenol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Soyasapogenol B is found in alfalfa. Soyasapogenol B is a constituent of soya bean saponin, Medicago, Astragalus, and Trifolium species. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].

   

Soyasaponin I

(2S,3S,4S,5R,6R)-6-{[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-5-{[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H78O18 (942.5187888)


Soyasaponin I is a triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a sialyltransferase inhibitor. It is a pentacyclic triterpenoid, a triterpenoid saponin, a trisaccharide derivative and a carbohydrate acid derivative. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin I(1-). Soyasaponin I is a natural product found in Crotalaria albida, Hedysarum polybotrys, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. Azukisaponin V is found in pulses. Azukisaponin V is isolated from seeds of azuki bean (Vigna angularis). soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].

   

Soyasaponin II

(2S,3S,4S,5R,6R)-6-{[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-5-{[(2S,3R,4S,5S)-4,5-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C47H76O17 (912.5082246)


Soyasaponin II is a triterpenoid saponin. Soyasaponin II is a natural product found in Hedysarum polybotrys, Wisteria brachybotrys, and other organisms with data available. Soyasaponin II is found in pulses. Soyasaponin II is a constituent of soya bean Glycine max

   

Afzelechin

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H14O5 (274.0841194)


Afzelechin is a tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively. It has a role as a plant metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a tetrahydroxyflavan and a catechin. It derives from a hydride of a (2S)-flavan. Afzelechin is a natural product found in Cassipourea gummiflua, Bergenia ligulata, and other organisms with data available. A tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively.

   

Glycitein

7-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one

C16H12O5 (284.0684702)


Glycitein is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. It has a role as a plant metabolite, a phytoestrogen and a fungal metabolite. It is a methoxyisoflavone and a 7-hydroxyisoflavone. It is functionally related to an isoflavone. Glycitein is a natural product found in Psidium guajava, Ammopiptanthus mongolicus, and other organisms with data available. Glycitein is a soy isoflavone. It is a minor component in most soy products. Its role of reducing low-density lipoprotein cholesterol is not clear. Glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones (PMID: 12011578; 16248547). Glycitein is a biomarker for the consumption of soy beans and other soy products. Isoflavone present in soya foods (inc. tofu, miso); potential nutriceutical [DFC]. Glycitein is a biomarker for the consumption of soy beans and other soy products. Glycitein is found in many foods, some of which are miso, soy bean, soy milk, and soy sauce. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.

   

Daidzein

7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O4 (254.057906)


Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-). Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available. Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI) Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189). See also: Trifolium pratense flower (part of). Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products. Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315 IPB_RECORD: 1801; CONFIDENCE confident structure IPB_RECORD: 421; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 8828 CONFIDENCE standard compound; INTERNAL_ID 2874 CONFIDENCE standard compound; INTERNAL_ID 4239 CONFIDENCE standard compound; INTERNAL_ID 4163 CONFIDENCE standard compound; INTERNAL_ID 181 Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Ononin

3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O9 (430.1263762)


Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1048536)


   

Irisolidone

5,7-Dihydroxy-6,4-dimethoxyisoflavone

C17H14O6 (314.0790344)


Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].

   

Sativan

3-(2,4-dimethoxyphenyl)-3,4-dihydro-2H-1-benzopyran-7-ol

C17H18O4 (286.1205028)


Sativan, also known as sativin or (-)-sativan, is a member of the class of compounds known as 4-o-methylated isoflavonoids. 4-o-methylated isoflavonoids are isoflavonoids with methoxy groups attached to the C4 atom of the isoflavonoid backbone. Isoflavonoids are natural products derived from 3-phenylchromen-4-one. Sativan is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sativan can be found in pulses, which makes sativan a potential biomarker for the consumption of this food product. Sativan is found in pulses. Phytoalexin of Medicago species, Trifolium species and Trigonella specie

   

(-)-Epiafzelechin

(2R,3R)-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O5 (274.0841194)


(-)-Epiafzelechin is found in fruits. (-)-Epiafzelechin is a constituent of Actinidia chinensis (kiwi fruit) and Juniperus communis (juniper) Constituent of Actinidia chinensis (kiwi fruit) and Juniperus communis (juniper). (-)-Epiafzelechin is found in kiwi, tea, and fruits.

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

   

Isomucronulatol

2H-1-Benzopyran-7-ol, 3,4-dihydro-3-(2-hydroxy-3,4-dimethoxyphenyl)-

C17H18O5 (302.1154178)


Isomucronulatol is an ether and a member of flavonoids. Isomucronulatol is a natural product found in Gliricidia sepium, Wisteria brachybotrys, and other organisms with data available. Isolated from Glycyrrhiza glabra (licorice). Isomucronulatol is found in many foods, some of which are tea, yellow wax bean, green bean, and common bean. Isomucronulatol is found in common bean. Isomucronulatol is isolated from Glycyrrhiza glabra (licorice). Isomucronulatol is a flavonoid isolated from the roots of A. membranaceus. Isomucronulatol exhibits inhibitory effects on LPS-stimulated production IL-12 p40 in vitro and has potential anti-inflammatory effect[1]. Isomucronulatol is a flavonoid isolated from the roots of A. membranaceus. Isomucronulatol exhibits inhibitory effects on LPS-stimulated production IL-12 p40 in vitro and has potential anti-inflammatory effect[1].

   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416312)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Biorobin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.158463)


Isolated from Medicago subspecies, Trigonella subspecies and other plant subspecies Kaempferol 3-robinobioside is found in herbs and spices and pulses. Biorobin is found in herbs and spices. Biorobin is isolated from Medicago species, Trigonella species and other plant species.

   

Wistin

6-methoxy-3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C23H24O10 (460.13694039999996)


Present in alfalfa (Medicago sativa). Afrormosin 7-glucoside is found in alfalfa and pulses. Wistin is found in alfalfa. Wistin is present in alfalfa (Medicago sativa

   

Paeonoside

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-4H-chromen-4-one

C27H30O16 (610.153378)


Isolated from Paeonia albiflora and other plant subspecies [CCD]. Astragalin 7-glucoside is found in many foods, some of which are hedge mustard, broccoli, broad bean, and fenugreek. Paeonoside is found in broad bean. Paeonoside is isolated from Paeonia albiflora and other plant species [CCD].

   
   

Allivicin

5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4H-chromen-4-one

C27H30O16 (610.153378)


Isolated from caucas (Allium victorialis) and Prunus subspecies Astragalin 4-glucoside is found in many foods, some of which are fruits, sour cherry, onion-family vegetables, and sweet cherry. Allivicin is found in fruits. Allivicin is isolated from caucas (Allium victorialis) and Prunus species.

   

Afzelechin

2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O5 (274.0841194)


Afzelechin is a flavan-3-ol, a type of flavonoid. It exists as at least 2 major epimers (afzelechin and epi-afzelechin). It is produced through the transformation of cis-3,4lecuopelargonidin through the action of (2R,3S)-catechin:NADP+ 4-oxidoreductase. Afzelechin can be found in many plants native to Asia such as: Astilbe rivularis (also known as waterside astilbe), Bergenia ligulate (also known as Paashaanbhed in Ayurveda traditional Indian medicine), and Wisteria floribunda (Japanese wisteria). Afzelechin also occurs in barley and rye as a member of the proanthocyanidins found in these crop plants. Afzelechin exhibits moderate inhibitory effects on tumor necrosis factor alpha (TNF-α) induced nuclear factor kappa-B (NF-kB) activation in HepG2 cells (PMID: 21985227). Afzelechin is only found in individuals who have consumed barley/rye or taken certain herbal medicines containing this compound.

   

Kaempferol 7-O-glucoside

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.100557)


   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Epipinoresinol

4-[4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Taraxerone

4,4,6a,8a,11,11,12b,14b-Octamethyl-1,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-octadecahydro-3(2H)-picenone

C30H48O (424.37049579999996)


   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Kaempferol 7-glucoside

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 7-glucoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 7-glucoside can be found in a number of food items such as flaxseed, ginkgo nuts, white cabbage, and saffron, which makes kaempferol 7-glucoside a potential biomarker for the consumption of these food products.

   

Dulcisflavan

(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,6,7,8-pentol

C15H14O8 (322.0688644)


   

Irisolidone

5,7-Dihydroxy-6-methoxy-3-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O6 (314.0790344)


Irisolidone is a member of 4-methoxyisoflavones. Irisolidone is a natural product found in Dalbergia sissoo, Wisteria brachybotrys, and other organisms with data available. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].

   

Ononin

3-(4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O9 (430.1263762)


Ononin is a 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of 4-methoxyisoflavones and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a formononetin. Ononin is a natural product found in Cicer chorassanicum, Thermopsis lanceolata, and other organisms with data available. See also: Astragalus propinquus root (part of). A 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Pendulone

5-(7-hydroxy-3,4-dihydro-2H-chromen-3-yl)-2,3-dimethoxycyclohexa-2,5-diene-1,4-dione

C17H16O6 (316.0946836)


Pendulone is an isoflavonoid. Pendulone is a natural product found in Astragalus mongholicus, Wisteria brachybotrys, and other organisms with data available.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

8-O-Methylretusin

5-Hydroxy-3,7,3,4-tetramethoxy-8-O-methylflavone

C17H14O5 (298.0841194)


   

5-O-Methylbiochanin A

7-Hydroxy-5,4-dimethoxyisoflavone

C17H14O5 (298.0841194)


   

Kakkatin

6,4-Dihydroxy-7-methoxyisoflavone

C16H12O5 (284.0684702)


   

Odoratin

7-Hydroxy-3- (3-hydroxy-4-methoxyphenyl) -6-methoxy-4H-1-benzopyran-4-one

C17H14O6 (314.0790344)


   

afzelechin

[ 2R,3S, (+) ] -3,4-Dihydro-2- (4-hydroxyphenyl) -2H-1-benzopyran-3,5,7-triol

C15H14O5 (274.0841194)


Afzelechin is a flavan-3ol, a type of flavonoids. It can be found in Bergenia ligulata (aka Paashaanbhed in Ayurveda traditional Indian medicine).; Afzelechin-(4alpha?8)-afzelechin (molecular formula : C30H26O10, molar mass : 546.52 g/mol, exact mass : 546.152597, CAS number : 101339-37-1, Pubchem CID : 12395) is a B type proanthocyanidin. Ent-epiafzelechin-3-O-p-hydroxybenzoate-(4??8,2??O?7)-epiafzelechin) is an A-type proanthocyanidin found in apricots (Prunus armeniaca).

   

Daidzein

7-Hydroxy-3- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O4 (254.057906)


Annotation level-1 Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.

   

Isomucronulatol

NCGC00384753-01_C17H18O5_3-(2-Hydroxy-3,4-dimethoxyphenyl)-7-chromanol

C17H18O5 (302.1154178)


Isomucronulatol is a flavonoid isolated from the roots of A. membranaceus. Isomucronulatol exhibits inhibitory effects on LPS-stimulated production IL-12 p40 in vitro and has potential anti-inflammatory effect[1]. Isomucronulatol is a flavonoid isolated from the roots of A. membranaceus. Isomucronulatol exhibits inhibitory effects on LPS-stimulated production IL-12 p40 in vitro and has potential anti-inflammatory effect[1].

   

ononin

3-(4-methoxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O9 (430.1263762)


Origin: Plant; Formula(Parent): C22H22O9; Bottle Name:Ononin; PRIME Parent Name:Formononetin-7-O-glucoside; PRIME in-house No.:S0305, Pyrans Annotation level-1 Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.

   

gallocatechol

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-

C15H14O7 (306.0739494)


(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Soyasapogenol B

Soyasapogenol B

C30H50O3 (458.37597500000004)


Constituent of soya bean saponin, Medicago, Astragalus, Trifolium subspecies Soyasapogenol B is found in many foods, some of which are peanut, soy bean, tea, and pulses. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].

   
   

SOYASAPONIN I

SOYASAPONIN I

C48H78O18 (942.5187888)


Constituent of soya bean Glycine max. Soyasaponin I is found in many foods, some of which are common pea, chickpea, pulses, and lentils. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

6-methoxy-4H-chromen-7-ol

6-methoxy-4H-chromen-7-ol

C10H10O3 (178.062991)


   

3-(4-methoxyphenyl)-4-oxo-4h-chromen-7-yl acetate

3-(4-methoxyphenyl)-4-oxo-4h-chromen-7-yl acetate

C18H14O5 (310.0841194)


   
   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

Soyasaponin II

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-5-[(2S,3R,4S,5S)-4,5-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydro

C47H76O17 (912.5082246)


   

5-hydroxy-3-(4-hydroxyphenyl)chromen-4-one

5-hydroxy-3-(4-hydroxyphenyl)chromen-4-one

C15H10O4 (254.057906)


   

Glycitein

4H-1-Benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O5 (284.0684702)


A natural product found in Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.

   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1627596)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1048536)


The S-enantiomer of vestitol. Vestitol is a member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent, a plant metabolite and a phytoalexin. It is an aromatic ether, a member of hydroxyisoflavans and a methoxyisoflavan. Vestitol is a natural product found in Lotus japonicus, Medicago rugosa, and other organisms with data available. A member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity.

   

Genistein

Sophoricol

C15H10O5 (270.052821)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2181; CONFIDENCE confident structure Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Formononetin

Formononetin (Biochanin B)

C16H12O4 (268.0735552)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

kaempferol 7-O-glucoside

kaempferol 7-O-β-D-glucopyranoside

C21H20O11 (448.100557)


   
   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0684702)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

3,4-Dimethoxybenzaldehyde

3,4-Dimethoxybenzaldehyde

C9H10O3 (166.062991)


   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

Allivicin

5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4H-chromen-4-one

C27H30O16 (610.153378)


   

2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O5 (274.0841194)


   

(-)-Sativan

(-)-Sativan

C17H18O4 (286.1205028)


A methoxyisoflavan that is (R)-isoflavan substituted by methoxy groups at positions 2 and 4 and a hydroxy group at position 7.

   

5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

C27H30O16 (610.153378)


   

6-{[11-({[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

6-{[11-({[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C59H96O28 (1252.6087816)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C54H88O23 (1104.5716098)


   

3-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

3-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C26H28O15 (580.1428138)


   

2-{[3,5-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3,5-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O10 (436.13694039999996)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

5-hydroxy-3-(4-hydroxyphenyl)-8-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-3-(4-hydroxyphenyl)-8-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C22H22O11 (462.11620619999997)


   

6-methoxy-3-(4-methoxyphenyl)-7-methylchromen-4-one

6-methoxy-3-(4-methoxyphenyl)-7-methylchromen-4-one

C18H16O4 (296.1048536)


   

5,6-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one

5,6-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one

C15H10O5 (270.052821)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

(2r,6br,12ar)-10-hydroxy-2,9-bis(hydroxymethyl)-2,4a,6a,6b,9,12a-hexamethyl-3,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-4-one

(2r,6br,12ar)-10-hydroxy-2,9-bis(hydroxymethyl)-2,4a,6a,6b,9,12a-hexamethyl-3,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-4-one

C30H48O4 (472.3552408)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C53H84O23 (1088.5403114)


   

n-(3-aminopropoxy)guanidine

n-(3-aminopropoxy)guanidine

C4H12N4O (132.1011062)


   

(1r,3ar,5as,5br,7as,9s,11ar,11bs,13as,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3ar,5as,5br,7as,9s,11ar,11bs,13as,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C48H78O18 (942.5187888)


   

5-[(3s)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]-2,3-dimethoxycyclohexa-2,5-diene-1,4-dione

5-[(3s)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]-2,3-dimethoxycyclohexa-2,5-diene-1,4-dione

C17H16O6 (316.0946836)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H78O18 (942.5187888)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O10 (436.13694039999996)


   

6-methoxy-3-(4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

6-methoxy-3-(4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C23H24O10 (460.13694039999996)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,5-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,5-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O10 (436.13694039999996)


   

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C54H88O24 (1120.5665248)


   

6-methoxy-3-(4-methoxyphenyl)-4-oxochromen-7-yl acetate

6-methoxy-3-(4-methoxyphenyl)-4-oxochromen-7-yl acetate

C19H16O6 (340.0946836)


   

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C54H88O23 (1104.5716098)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C54H88O24 (1120.5665248)


   

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})chromen-4-one

C27H30O16 (610.153378)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C53H86O22 (1074.5610456)


   

7,8-dihydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one

7,8-dihydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one

C16H12O6 (300.06338519999997)


   

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

(2s,3s,4s,5r,6r)-6-{[(4s,6ar,8ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(4s,6ar,8ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C47H76O17 (912.5082246)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4,11-bis(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4,11-bis(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C47H74O18 (926.4874904000001)


   

2-(3,4-dihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,6,7,8-pentol

2-(3,4-dihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,6,7,8-pentol

C15H14O8 (322.0688644)


   

3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C26H28O15 (580.1428138)


   

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}oxane-2-carboxylic acid

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}oxane-2-carboxylic acid

C53H84O23 (1088.5403114)


   

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C47H76O17 (912.5082246)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C48H76O20 (972.4929695999999)


   

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C53H86O22 (1074.5610456)


   

(1r,3ar,5as,5br,7as,9s,11ar,11bs,13as,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5as,5br,7as,9s,11ar,11bs,13as,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9br,11as)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9br,11as)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

6-hydroxy-3-(4-hydroxyphenyl)-5-methoxychromen-4-one

6-hydroxy-3-(4-hydroxyphenyl)-5-methoxychromen-4-one

C16H12O5 (284.0684702)


   

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C53H86O23 (1090.5559606000002)


   

5-hydroxy-3-(4-hydroxyphenyl)-8-methoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-3-(4-hydroxyphenyl)-8-methoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C22H22O11 (462.11620619999997)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C47H74O17 (910.4925754000001)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-9-oxo-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C48H76O20 (972.4929695999999)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-11-({[(2r,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-11-({[(2r,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C59H96O28 (1252.6087816)


   

3-(4-methoxyphenyl)-7-methylchromen-4-one

3-(4-methoxyphenyl)-7-methylchromen-4-one

C17H14O3 (266.0942894)


   

(2r,3r,4r,5s,6s)-6-{[(3r,4r,6as,6br,8as,12ar,14bs)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2r,3s,4r,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2r,3r,4r,5s,6s)-6-{[(3r,4r,6as,6br,8as,12ar,14bs)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-2,3,4a,5,6,7,8,10,12,12a,14,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2r,3s,4r,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H76O18 (940.5031395999999)


   

5-hydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one

5-hydroxy-3-(4-hydroxyphenyl)-6-methoxychromen-4-one

C16H12O5 (284.0684702)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C47H76O17 (912.5082246)


   

(3s,4as,6as,6bs,8ar,11s,12r,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4as,6as,6bs,8ar,11s,12r,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

6-{[9-(acetyloxy)-11-carboxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-({5,6-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxane-2-carboxylic acid

6-{[9-(acetyloxy)-11-carboxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-({5,6-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxane-2-carboxylic acid

C49H76O20 (984.4929695999999)


   

6,7-dimethoxy-4h-chromene

6,7-dimethoxy-4h-chromene

C11H12O3 (192.0786402)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8ar,9r,11r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C53H86O23 (1090.5559606000002)