Exact Mass: 74.0592
Exact Mass Matches: 74.0592
Found 131 metabolites which its exact mass value is equals to given mass value 74.0592
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
1,3-Diaminopropane
1,3-Diaminopropane, also known as DAP or trimethylenediamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing a primary aliphatic amine group. 1,3-Diaminopropane is a stable, flammable, and highly hygroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled, or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1,3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway. 1,3-Diaminopropane has been detected, but not quantified in, several different foods, such as cassava, shiitakes, oyster mushrooms, muscadine grapes, and cinnamons. This could make 1,3-diaminopropane a potential biomarker for the consumption of these foods. 1,3-Propanediamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=109-76-2 (retrieved 2024-07-09) (CAS RN: 109-76-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
N-Nitrosodimethylamine
N-Nitrosodimethylamine is found in pepper (Capsicum annuum). N-Nitrosodimethylamine is a food contaminant especially in cured meat products. N-Nitrosodimethylamine (NDMA), also known as dimethylnitrosamine (DMN), is a semi-volatile organic chemical that is highly toxic and is a suspected human carcinogen. The US Environmental Protection Agency has determined that the maximum admissible concentration of NDMA in drinking water is 7 ng L 1. The EPA has not yet set a regulatory maximum contaminant level (MCL) for drinking water. At high doses, it is a "potent hepatotoxin that can cause fibrosis of the liver" in rats. The induction of liver tumors in rats after chronic exposure to low doses is well-documented. Its toxic effects on humans are inferred from animal experiments but not well-established experimentally. NDMA is an industrial by-product or waste product of several industrial processes. It first came to attention as a groundwater contaminant in California in 1998 and 1999 at several sites that produced rocket fuel. Manufacturing of unsymmetrical dimethylhydrazine (UDMH), which is a component of rocket fuel that requires NDMA for its synthesis, proved to be the culprit in these cases. Of more general concern, water treatment via chlorination or chloramination of organic nitrogen-containing wastewater can lead to the production of NDMA at potentially harmful levels. Further, NDMA can form or be leached during treatment of water by anion exchange resins. Finally, NDMA is found at low levels in numerous items of human consumption including cured meat, fish, beer, and tobacco smoke, it is, however, unlikely to bioaccumulate CONFIDENCE standard compound; EAWAG_UCHEM_ID 3447 Food contaminant especies in cured meat products
Methyl acetate
Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.
Propionic acid
Propionic acid (PA) is an organic acid. It exists a clear liquid with a pungent and unpleasant smell somewhat resembling body odor. Propionic acid (PA) is widely used as an antifungal agent in food. It is present naturally at low levels in dairy products and occurs ubiquitously, together with other short-chain fatty acids (SCFA), in the gastro-intestinal tract of humans and other mammals as an end-product of the microbial digestion of carbohydrates. The metabolism of propionic acid begins with its conversion to propionyl coenzyme A, the usual first step in the metabolism of carboxylic acids. Since propionic acid has three carbons, propionyl-CoA cannot directly enter either beta oxidation or the citric acid cycles. In most vertebrates, propionyl-CoA is carboxylated to D-methylmalonyl-CoA, which is isomerised to L-methylmalonyl-CoA. Propionic acid has significant physiological activity in animals. Propionic acid is irritant but produces no acute systemic effects and has no demonstrable genotoxic potential (PMID 1628870). The human skin is host of several species of bacteria known as Propionibacteria, which are named after their ability to produce propionic acid. The most notable one is the Cutibacterium acnes (formerly known as Propionibacterium acnes), which lives mainly in the sebaceous glands of the skin and is one of the principal causes of acne. Propionic aciduria is one of the most frequent organic acidurias, a disease that comprise many various disorders. The outcome of patients born with Propionic aciduria is poor intellectual development patterns, with 60\\\% having an IQ less than 75 and requiring special education. Successful liver and/or renal transplantations, in a few patients, have resulted in better quality of life but have not necessarily prevented neurological and various visceral complications. These results emphasize the need for permanent metabolic follow-up whatever the therapeutic strategy (PMID 15868474). Decreased early mortality, less severe symptoms at diagnosis, and more favorable short-term neurodevelopmental outcome were recorded in patients identified through expanded newborn screening. (PMID 16763906)↵ When propionic acid is infused directly into rodents brains, it produces hyperactivity, dystonia, social impairment, perseveration and brain changes (e.g., innate neuroinflammation, glutathione depletion) that may be used as a means to model autism in rats. Propionic acid is a metabolite of Bacteroides, Clostridium, Dialister, Megasphaera, Phascolarctobacterium, Propionibacterium, Propionigenum, Salmonella, Selenomonas and Veillonella (https://www.mdpi.com/2311-5637/3/2/21). Propionic acid, also known as propionate or ethanecarboxylic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Thus, propionic acid is considered to be a fatty acid lipid molecule. Propionic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Propionic acid can be found in a number of food items such as celery stalks, burbot, sapodilla, and dock, which makes propionic acid a potential biomarker for the consumption of these food products. Propionic acid can be found primarily in most biofluids, including feces, saliva, blood, and urine, as well as throughout most human tissues. Propionic acid exists in all living species, ranging from bacteria to humans. In humans, propionic acid is involved in a couple of metabolic pathways, which include propanoate metabolism and vitamin K metabolism. Propionic acid is also involved in few metabolic disorders, which include malonic aciduria, malonyl-coa decarboxylase deficiency, and methylmalonic aciduria due to cobalamin-related disorders. Moreover, propionic acid is found to be associated with propionic acidemia. Propionic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound.
Isobutanol
Isobutanol is an aliphatic alcohol. Isobutanol is a colorless, flammable, organic compound with a characteristic smell. Isobutanol is widely used in industry, as a solvent in chemical reactions, as well as being a useful starting material for organic synthesis. Isobutanol is a flammable liquid that should be stored and used in well-ventilated areas. It is moderately irritating to the skin and greatly irritating to the eyes, mucous membranes and respiratory tract. Exposure to high concentrations of its vapour can cause temporary narcosis. Isobutanol is occasionally found as a volatile component of urine and arises from gut microbial metabolism. Isobutanol is used as one of the markers to measure occupational exposure to a mixture of solvents. Aliphatic alcohols levels increase in both diabetes mellitus and insulin-dependent diabetes patients. (PMID:5556886, 2477620, 9143482, 7627316, 2288731). Isobutanol is a microbial metabolite found in Clostridium, Cupriavidus, Escherichia, Geobacillus, Saccharomyces and Synechococcus (PMID:19946322). Present in fusel oil, wines and spirits and produced by fermentation of carbohydrates. It is used in the manuf. of flavouring essences. 2-Methyl-1-propanol is found in many foods, some of which are white mustard, chinese cabbage, pummelo, and parsley.
1-Butanol
1-butanol, also known as 1-butyl alcohol or 1-hydroxybutane, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-butanol is considered to be a fatty alcohol lipid molecule. 1-butanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). 1-butanol can be found in a number of food items such as sugar apple, kumquat, cherry tomato, and angelica, which makes 1-butanol a potential biomarker for the consumption of these food products. 1-butanol can be found primarily in blood, feces, and saliva, as well as throughout most human tissues. 1-butanol exists in all eukaryotes, ranging from yeast to humans. Moreover, 1-butanol is found to be associated with diabetes mellitus type 2. The largest use of n-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical, manufactured from propylene and usually used close to the point of manufacture. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes . 1-Butanol, which is also known as n-butanol or 1-butanol or butyl alcohol (sometimes also called biobutanol when produced biologically), is an alcohol with a 4 carbon structure and the molecular formula of C4H10O. It is primarily used as a solvent, as an intermediate in chemical synthesis, and as a fuel. There are four isomeric structures for butanol. The straight chain isomer with the alcohol at an internal carbon is sec-butanol or 2-butanol. The branched isomer with the alcohol at a terminal carbon is isobutanol, and the branched isomer with the alcohol at the internal carbon is tert-butanol. 1-Butanol is produced in small amounts by gut microbial fermenetation through the butanoate metabolic pathway. It has been found in Bacillus, Clostridium, Escherichia, Lactobacillus, Pseudomonas, Saccharomyces, Synechococcus and Thermoanaerobacterium.
Lactaldehyde
L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).
3-Hydroxypropanal
3-Hydroxypropanal is a broad-spectrum antimicrobial substance termed reuterin produced by Lactobacillus reuteri. L. reuteri resides in the gastrointestinal tract of healthy humans and animals, and is believed to. function as a symbiont in the enteric ecosystem. Synthesis of such an antimicrobial substance by an enteric resident raises a number of interesting questions and possibilities as to the role these residents may play in the health of the host. (PMID 3245697). In vivo, glycerol is converted in one enzymatic step into 3-Hydroxypropanal. The 3-Hydroxypropanal -producing Lactobacillus reuteri is used as a probiotic in the health care of humans and animals. 3-Hydroxypropanal forms, together with Hydroxypropanal-hydrate and Hydroxypropanal-dimer, a dynamic, multi-component system (Hydroxypropanal system) used in food preservation, as a precursor for many modern chemicals such as acrolein, acrylic acid, and 1,3-propanediol (1,3-PDO), and for polymer production. 3-Hydroxypropanal can be obtained both through traditional chemistry and bacterial fermentation. To date, 3-HPA has been produced from petrochemical resources as an intermediate in 1,3-PDO production. The biotechnological production of 3-Hydroxypropanal from renewable resources is desirable both for use of 3-Hydroxypropanal in foods and for the production of bulk chemicals. The main challenge will be the efficient production and recovery of pure 3-Hydroxypropanal. (PMID 14669058). 3-Hydroxypropanal is a broad-spectrum antimicrobial substance termed reuterin produced by Lactobacillus reuteri. L. reuteri resides in the gastrointestinal tract of healthy humans and animals, and is believed to Reuterin is a broad-spectrum antimicrobial agent active against Gram positive and Gram negative bacteria, as well as yeasts, moulds and protozoa. Reuterin is produced by specific strains of Lactobacillus reuteri during anaerobic metabolism of glycerol. Reuterin also demonstrates potent antimicrobial activity against a broad panel of human and poultry meat campylobacter spp. Isolates[1][2]. Reuterin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2134-29-4 (retrieved 2024-12-12) (CAS RN: 2134-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Hydroxyacetone
Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.
Acetylhydrazine
The acetylhydrazine metabolite was found to be much less cytotoxic than hydrazine in this hepatocyte inflammation model. (PMID: 18295292) In the pathogenesis of isoniazid-induced hepatic injury, cytochrome P450-dependent metabolic activation of the metabolite, acetylhydrazine (AcHz), is the crucial step. (PMID: 8852701) The mechanism of action of acetylphosphabenzide is likely to involve the formation of acetylhydrazine, capable of producing active electrophiles attacking DNA. (PMID: 9589859) D009676 - Noxae > D002273 - Carcinogens
Lithium carbonate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D004791 - Enzyme Inhibitors
1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2E)-enyl ether
1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2e)-enyl ether, also known as ether or ethyl oxide, is a member of the class of compounds known as dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2e)-enyl ether is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2e)-enyl ether can be found in tea, which makes 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2e)-enyl ether a potential biomarker for the consumption of this food product. 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2e)-enyl ether is a non-carcinogenic (not listed by IARC) potentially toxic compound. Inhalation may result in dizziness, giddiness, euphoria, drowsiness, salivation, and CNS depression. Diethyl ether is also a skin and eye irritant (T36) (T3DB). 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2E)-enyl ether, also known as Ethyl ether or Anesthetic ether, is classified as a member of the Dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2E)-enyl ether is considered to be soluble (in water) and basic. 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2E)-enyl ether can be found in Tea. 1-hydroperoxy-8-carboxyoctyl 3,4-epoxynon-(2E)-enyl ether is a non-carcinogenic (not listed by IARC) potentially toxic compound D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AA - Ethers D012997 - Solvents Same as: D01772
Tetramethylammonium
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants
2-Methylpropan-2-ol
tert-Butanol, or 2-methyl-2-propanol (colourless liquid or white solid, depending on the ambient temperature), is the simplest tertiary alcohol. It is one of the four isomers of butanol. tert-Butanol is a clear liquid with a camphor-like odor. It is very soluble in water and miscible with ethanol and diethyl ether. It is unique among the isomers of butanol because it tends to be a solid at room temperature, with a melting point slightly above 25 °C. 2-Methylpropan-2-ol is found in guava and ginger. 2-Methylpropan-2-ol is found in ginger. tert-Butanol, or 2-methyl-2-propanol (colourless liquid or white solid, depending on the ambient temperature), is the simplest tertiary alcohol. It is one of the four isomers of butanol. tert-Butanol is a clear liquid with a camphor-like odor. It is very soluble in water and miscible with ethanol and diethyl ether. It is unique among the isomers of butanol because it tends to be a solid at room temperature, with a melting point slightly above 25C. (Wikipedia
D-Lactaldehyde
D- and L-lactaldehyde are also good substrates for aldose reductase. The aldose reductase-catalyzed reduction of methylglyoxal produces 95\\% acetol, 5\\% D-lactaldehyde. (PMID: 1537826). D-lactaldehyde is an intermediate in the pyruvate metabolic pathway. Pyruvaldehyde is irreversibly produced from D-lactaldehyde via the enzyme glyoxylate reductase (NADP+, Swiss-Prot: Q5T945). D- and L-lactaldehyde are also good substrates for aldose reductase. The aldose reductase-catalyzed reduction of methylglyoxal produces 95\\% acetol, 5\\% D-lactaldehyde. (PMID: 1537826)
lactaldehyde
A member of the class of propanals obtained by the reduction of the carboxylic group of lactic acid (2-hydroxypropanoic acid).
2-Butanol
2-Butanol, or sec-butanol, is a chemical compound with formula C4H10O. This secondary alcohol is a flammable, colorless liquid that is soluble in 12 parts water and completely miscible with polar organic solvent such as ethers and other alcohols. Diluent in colour additive mixtures for marking food
2-Propene-1-thiol
Component of onion flavour (Allium cepa) and other Allium subspecies Flavouring ingredient. Potential nutriceutical. 2-Propene-1-thiol is found in many foods, some of which are onion-family vegetables, soft-necked garlic, garden onion, and chives. 2-Propene-1-thiol is found in chives. 2-Propene-1-thiol is a component of onion flavour (Allium cepa) and other Allium species 2-Propene-1-thiol is a flavouring ingredient. Potential nutriceutica
1-Propene-1-thiol
1-Propene-1-thiol is found in onion-family vegetables. 1-Propene-1-thiol is a volatile flavour-component of Allium species. Volatile flavour-component of Allium subspecies 1-Propene-1-thiol is found in onion-family vegetables.
Ethyl formate
Ethyl formate, also known as areginal or ethyl methanoate, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Ethyl formate is an alcohol, bitter, and cognac tasting compound. Ethyl formate has been detected, but not quantified, in several different foods, such as citrus, pineapples, apples, fruits, and pomes. This could make ethyl formate a potential biomarker for the consumption of these foods. It occurs naturally in the body of ants and in the stingers of bees. Ethyl formate has the characteristic smell of rum and is also partially responsible for the flavor of raspberries. The U.S. National Institute for Occupational Safety and Health (NIOSH) also considers a time-weighted average of 100 ppm over an eight-hour period as the recommended exposure limit. Ethyl formate is an ester formed when ethanol (an alcohol) reacts with formic acid (a carboxylic acid). According to the U.S Occupational Safety and Health Administration (OSHA), ethyl formate can irritate eyes, skin, mucous membranes, and the respiratory system of humans and other animals; it is also a central nervous system depressant. Ethyl formate has been identified in dust clouds in an area of the Milky Way galaxy called Sagittarius B2 and it is among 50 molecular species identified using the 30 metre IRAM radiotelescope. In industry, it is used as a solvent for cellulose nitrate, cellulose acetate, oils, and greases. Found in various foods, e.g. cooked apple, orange juice, pineapple, other fruits, raw cabbage, coffee, black tea, wheat bread, white clover, sorghum. It is used as a flavouring agent.
1,2 Diaminopropane
1,2 diaminopropane, also known as 1,2-Propanediamine or 1-Methylethylenediamine, is classified as a member of the monoalkylamines. Monoalkylamines are organic compounds containing an primary aliphatic amine group. 1,2 diaminopropane is considered to be a soluble (in water) and a very strong basic compound. 1,2 diaminopropane can be found in blood and urine. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
3-amino-propanal
3-amino-propanal is also known as 3-Ammoniopropanal(1+). 3-amino-propanal is considered to be soluble (in water) and relatively neutral
glycinamide
glycinamide, also known as AMINOMETHYLAMIDE or 2-amino-Acetamide, is classified as a member of the Carboximidic acids. Carboximidic acids are organic acids with the general formula RC(=N)-OH (R=H, organic group). glycinamide is considered to be soluble (in water) and relatively neutral
Aminoguanidine
C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors
1,2-Epithiopropane
1,2-epithiopropane, also known as methylthiirane, is a member of the class of compounds known as thiiranes. Thiiranes are heterocyclic compounds containing a saturated three-member ring with two carbon atoms and one sulfur atom. 1,2-epithiopropane can be found in soft-necked garlic, which makes 1,2-epithiopropane a potential biomarker for the consumption of this food product.
aminoguanidine
C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors
1,3-diaminopropane
1,3-diaminopropane, also known as trimethylenediamine or 1,3-propanediamine, is a member of the class of compounds known as monoalkylamines. Monoalkylamines are organic compounds containing an primary aliphatic amine group. 1,3-diaminopropane is soluble (in water) and a very strong basic compound (based on its pKa). 1,3-diaminopropane can be found in a number of food items such as apricot, redcurrant, french plantain, and agar, which makes 1,3-diaminopropane a potential biomarker for the consumption of these food products. 1,3-diaminopropane can be found primarily in blood, feces, and urine. 1,3-diaminopropane exists in all eukaryotes, ranging from yeast to humans. In humans, 1,3-diaminopropane is involved in the beta-alanine metabolism. 1,3-diaminopropane is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. Moreover, 1,3-diaminopropane is found to be associated with perillyl alcohol administration for cancer treatment and leukemia.
propionic acid
A short-chain saturated fatty acid comprising ethane attached to the carbon of a carboxy group.
Butan-1-ol
A primary alcohol that is butane in which a hydrogen of one of the methyl groups is substituted by a hydroxy group. It it produced in small amounts in humans by the gut microbes.
ETHYL FORMATE
A formate ester resulting from the formal condensation of formic acid with ethanol.
(R)-(-)-2-Butanol
(R)-(-)-2-Butanol is released by the females of the white grub beetle, Dasylepida ishigakiensis, to attract males. (R)-(-)-2-Butanol is an intermediate of pharmaceutical synthesis by coupling[1][2]. (R)-(-)-2-Butanol is released by the females of the white grub beetle, Dasylepida ishigakiensis, to attract males. (R)-(-)-2-Butanol is an intermediate of pharmaceutical synthesis by coupling[1][2].
2-Methylpropanaminium
A primary aliphatic ammonium ion that is the conjugate acid of 2-methylpropanamine.
DIETHYL ETHER
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AA - Ethers D012997 - Solvents
(R)-(−)-sec-Butyl alcohol
(R)-(-)-2-Butanol is released by the females of the white grub beetle, Dasylepida ishigakiensis, to attract males. (R)-(-)-2-Butanol is an intermediate of pharmaceutical synthesis by coupling[1][2]. (R)-(-)-2-Butanol is released by the females of the white grub beetle, Dasylepida ishigakiensis, to attract males. (R)-(-)-2-Butanol is an intermediate of pharmaceutical synthesis by coupling[1][2].
ether
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AA - Ethers D012997 - Solvents Same as: D01772
Ammonioacetone
An ammonium ion that is the conjugate acid of aminoacetone, arising from protonation of the primary amino group; major species at pH 7.3.
Methylguanidinium
A guanidinium ion that is the conjugate acid of methylguanidine; major species at pH 7.3.
Trimethylenediamine
An alkane-alpha,omega-diamine comprising a propane skeleton with amino substituents at positions 1 and 3.
tert-Butanol
A tertiary alcohol alcohol that is isobutane substituted by a hydroxy group at position 2.
3-Hydroxypropanal
Reuterin is a broad-spectrum antimicrobial agent active against Gram positive and Gram negative bacteria, as well as yeasts, moulds and protozoa. Reuterin is produced by specific strains of Lactobacillus reuteri during anaerobic metabolism of glycerol. Reuterin also demonstrates potent antimicrobial activity against a broad panel of human and poultry meat campylobacter spp. Isolates[1][2].
3-ammoniopropanal
An organic cation that is the conjugate acid of 3-aminopropanal, formed by protonation of the amino group; major species at pH 7.3.
Isobutanol
An alkyl alcohol that is propan-1-ol substituted by a methyl group at position 2.
acetohydrazide
A carbohydrazide that is hydrazine in which one of the hydrogens is replaced by an acetyl group.