Exact Mass: 260.0637732
Exact Mass Matches: 260.0637732
Found 500 metabolites which its exact mass value is equals to given mass value 260.0637732
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Khellin
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
Glucose 6-phosphate
Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003
α-D-Glucose-1-phosphate
Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase. *Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map KEIO_ID G020 Corona-virus KEIO_ID G115 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Sorbose 1-phosphate
Sorbose 1-phosphate is formed when extracellular sorbose is taken into the cell. The enzyme responsible for this is PTS-Sor-EIIA [EC:2.7.1.69]. Sorbose 1-phosphate has been found to be a metabolite of Klebsiella and Lactobacillus (PMID: 6361004; PMID: 12177329). Sorbose 1-phosphate is formed when extracellular sorbose is taken into the cell. The enzyme responsible for this is PTS-Sor-EIIA [EC:2.7.1.69]. [HMDB]
β-D-Fructose 6-phosphate
Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001
Fructose 1-phosphate
Fructose 1-phosphate, also known as D-fructose-1-p, belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. Metabolism of fructose thus essentially results in intermediates of glycolysis. The final product of glycolysis (pyruvate) may then undergo gluconeogenesis, enter the TCA cycle or be stored as fatty acids. Fructose 1-phosphate exists in all living organisms, ranging from bacteria to humans. Within humans, fructose 1-phosphate participates in a number of enzymatic reactions. In particular, fructose 1-phosphate can be biosynthesized from D-fructose through the action of the enzyme ketohexokinase. In addition, fructose 1-phosphate can be converted into dihydroxyacetone phosphate and glyceraldehyde; which is catalyzed by the enzyme fructose-bisphosphate aldolase a. Because fructokinase has a high Vmax fructose entering cells is quickly phosphorylated to fructose 1-phosphate. In humans, fructose 1-phosphate is involved in fructose intolerance, hereditary. Hypoglycemia results from inhibition of glycogenolysis and gluconeogenesis. It is generated mainly by hepatic fructokinase but is also generated in smaller amounts in the small intestinal mucosa and proximal epithelium of the renal tubule. Aldolase B converts it into glyceraldehyde and dihydroxyacetone phosphate (DHAP). Symptoms of hereditary fructose intolerance are apathy, drowsiness, sweatiness and tremulousness. Fructose 1-phosphate is an intermediate metabolite in the Fructose and mannose metabolism pathway. [HMDB] KEIO_ID F009
Norathyriol
A polyphenol metabolite detected in biological fluids [PhenolExplorer]
myo-Inositol 1-phosphate
myo-Inositol 1-phosphate, also known as I1P or ins(1)p, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. myo-Inositol 1-phosphate is a metabolite of inositol phosphate metabolism and the phosphatidylinositol signalling system. Inositol phosphatases (EC:3.1.3.25) play a crucial role in the phosphatidylinositol signalling pathway. Expression is substantially higher in the subcortical regions of the brain, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder (OMIM: 605922). Myo-inositol 1-phosphate is a metabolite of the Inositol phosphate metabolism and the Phosphatidylinositol signaling system. Inositol phosphatases [EC:3.1.3.25] play a crucial role in the phosphatidylinositol signaling pathway; in brain, the expression is substantially higher in the subcortical regions, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder. (OMIM 605922) [HMDB]
Beta-D-Fructose 2-phosphate
beta-D-Fructose 2-phosphate is involved in the fructose eand mannose system. beta-D-Fructose 2-phosphate is produced from beta-D-Fructose 2,6-bisphosphate by the enzyme fructose-2,6-bisphosphate 6-phosphatase [EC 3.1.3.54]. [HMDB] beta-D-Fructose 2-phosphate is involved in the fructose eand mannose system. beta-D-Fructose 2-phosphate is produced from beta-D-Fructose 2,6-bisphosphate by the enzyme fructose-2,6-bisphosphate 6-phosphatase [EC 3.1.3.54].
Suprofen
Suprofen is only found in individuals that have used or taken this drug. It is an ibuprofen-type anti-inflammatory analgesic and antipyretic. It inhibits prostaglandin synthesis and has been proposed as an anti-arthritic. [PubChem]Suprofen binds to the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isoenzymes, preventing the synthesis of prostaglandins and reducing the inflammatory response. Cyclooxygenase catalyses the formation of prostaglandins and thromboxane from arachidonic acid (itself derived from the cellular phospholipid bilayer by phospholipase A2). Prostaglandins act (among other things) as messenger molecules in the process of inflammation. The overall result is a reduction in pain and inflammation in the eyes and the prevention of pupil constriction during surgery. Normally trauma to the anterior segment of the eye (especially the iris) increases endogenous prostaglandin synthesis which leads to constriction of the iris sphincter. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Norswertianin
Norswertianin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Norswertianin is a natural product found in Swertia japonica, Swertia ciliata, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8.
BENZNIDAZOLE
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CA - Nitroimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D009153 - Mutagens
Tiazofurin
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2087 - Inosine Monophosphate Dehydrogenase Inhibitor L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Khellin
Khellin is a furanochrome in which the basic tricyclic skeleton is substituted at positions 4 and 9 with methoxy groups and at position 7 with a methyl group. A major constituent of the plant Ammi visnaga it is a herbal folk medicine used for various illnesses, its main effect being as a vasodilator. It has a role as a vasodilator agent, a bronchodilator agent, an anti-asthmatic agent and a cardiovascular drug. It is an organic heterotricyclic compound, an oxacycle and a furanochromone. It is functionally related to a 5H-furo[3,2-g]chromen-5-one. Khellin is a natural product found in Ammi visnaga, Annona muricata, and other organisms with data available. A vasodilator that also has bronchodilatory action. It has been employed in the treatment of angina pectoris, in the treatment of asthma, and in conjunction with ultraviolet light A, has been tried in the treatment of vitiligo. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1024) See also: Visnaga daucoides fruit (part of). D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
Tiaprofenic acid
Tiaprofenic acid is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug of the arylpropionic acid (profen) class, used to treat pain, especially arthritic pain.Tiaprofenic acid belongs to a group of medicines called non-steroidal anti-inflammatory drugs (NSAIDs). It works by blocking the production of a chemical (prostaglandin) which the body produces in response to injury or certain diseases. This prostaglandin would otherwise go on to cause swelling, pain and inflammation. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
5-[2-(3,5-Dihydroxyphenyl)ethenyl]benzene-1,2,3-triol
2-Methoxystypandrone
2-Methoxystypandrone is found in green vegetables. 2-Methoxystypandrone is isolated from roots of Polygonum cuspidatum (Japanese knotweed). Isolated from roots of Polygonum cuspidatum (Japanese knotweed). 2-Methoxystypandrone is found in green vegetables.
Orientalone
Orientalone is found in fruits. Orientalone is a constituent of Prunus cerasoides (wild Himalayan cherry). Constituent of Prunus cerasoides (wild Himalayan cherry). Orientalone is found in fruits.
Pratenol A
Pratenol A is found in herbs and spices. Pratenol A is a constituent of Trifolium pratense (red clover). Constituent of Trifolium pratense (red clover). Pratenol A is found in tea and herbs and spices.
3-Furanmethanol glucoside
3-Furanmethanol glucoside is found in pulses. 3-Furanmethanol glucoside is isolated from seeds of Vigna angularis (azuki bean). Isolated from seeds of Vigna angularis (azuki bean). 3-Furanmethanol glucoside is found in pulses.
5-[2-(3,4-Dihydroxyphenyl)ethenyl]benzene-1,2,3-triol
Urolithin D
Urolithin D is a biomarker of nut consumption in urine. Urolithin D is competitive and reversible antagonist of EphA receptors. Urolithin D exhibits intra-classes selectivity[1].
1,2,3,4-Tetrahydro-b-carboline-1,3-dicarboxylic acid
1,2,3,4-Tetrahydro-b-carboline-1,3-dicarboxylic acid is found in alcoholic beverages. 1,2,3,4-Tetrahydro-b-carboline-1,3-dicarboxylic acid is present in fruit syrups, beer, wines, vinegar and most fermented sauce
4'-Hydroxyflurbiprofen
C15H13FO3 (260.08486800000003)
4-Hydroxyflurbiprofen is a metabolite of flurbiprofen. Flurbiprofen is a member of the phenylalkanoic acid derivative family of non-steroidal anti-inflammatory drugs (NSAIDs) used to treat the inflammation and pain of arthritis. It is known by the following tradenames: Urbifen marketed by General Pharmaceuticals, Ansaid, marketed by Pfizer, Flurwood by W. Woodward and Froben, by Abbott. Flurbiprofen is also used as an active ingredient in some kinds of throat lozenges. (Wikipedia)
2'-Fluorothymidine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors 2'-Fluorothymidine (2'-Fluoro-2'-deoxythymidine), a bioisostere of both thymidine (TdR) and methyluridine, is a putative highly selective substrate for thymidine kinase type 2 (TK2)[1].
3-Thiacytidine
4-Thiouridine
Uridine, 2'-deoxy-2'-fluoro-2'-methyl-, (2'R)-
Benznidazole
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CA - Nitroimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D009153 - Mutagens
Dezinamide
C11H11F3N2O2 (260.07725819999996)
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
Fluorothymidine
Pyrano(2,3-c)pyrazol-6(2H)-one, 3,4-dimethyl-2-(2-thienylmethyl)-
Motapizone
C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor
N-Hydroxysuccinimidyl-4-azidobenzoate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels
2-Amino-9-(4-amino-2-oxopyrimidin-1-yl)-1H-purin-6-one
Kitagine
Constituent of Canavalia ensiformis (jack bean) seeds. Kitagine is found in pulses.
Bellidin
Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.
Furafylline
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor
N-(2,3-dihydro-1,4-benzodioxin-6-yl)-5-methyl-1,2-oxazole-3-carboxamide
1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-sulfanylidenepyrimidin-4-one
(+-)(?)-13-Acetoxy-12-chlor-trideca-2t,10t-dien-4,6,8-triin|(+-)-13-Acetoxy-12-chlor-trideca-2t,10t-dien-4,6,8-triin|(+-)-13-acetoxy-12-chloro-trideca-2t,10t-diene-4,6,8-triyne|(-)-13-Acetoxy-12-chlor-trideca-2t,10t-dien-4,6,8-triin|(-)-13-acetoxy-12-chloro-trideca-2t,10t-diene-4,6,8-triyne|1-acetoxy-2-chloro-trideca-3E,11E-diene-5,7,9-triyne|trans,trans-1-Acetoxy-2-chlor-tridecadien-(3,11)-triin-(5,7,9)
(1Z,3Z,9Z)-1-Chlorohexadeca-5,7-diyne-1,3,9-trien-15-one
7-acetyl-2-hydroxy-8-methoxy-6-methyl-1 ,4-naphthoquinone
9-Hydroxyeriobofuran
9-Hydroxyeriobofuran is a natural product found in Pyracantha coccinea and Berberis koreana with data available.
1-(4-Hydroxyphenyl)-2-hydroxy-2-(3,5-dihydroxyphenyl)ethanone
3,4-dihydroxy-5-methoxy-3-methylnaphtho[2,3-c]furan-1(3H)-one|eleucanarol
2-methylene-3-methoxy-2,5-dihydrofuran-4-O-beta-D-glucopyranoside
3,6-dihydroxy-7-methoxycarbonyl-octahydrocyclopenta[c]pyran-4-carboxylic acid
4,8-Dihydroxy-2,7-dimethoxy-6-methylnaphthalene-1-carboxylic acid 1,8-lactone
1-(2,3,5-trihydroxyphenyl)-2-(4-hydroxyphenyl)ethane-1,2-(E)-epoxide|tricuspidatin A
(Z)-2-(1H-indol-3-ylmethylidene)-1,2-dihydro-3H-indol-3-one
2,9-dihydroxy-7-methoxy-4-methylnaphtho[1,2-b]furan-3(2h)-one
Methanone, (2,5-dihydroxy-4-methoxyphenyl)(2-hydroxyphenyl)-
1,3,6,7-Tetrahydroxyxanthon|2,4,6,7-tetrahydroxyxanthone
6-Hydroxy-5,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one
5,8-dihydroxy-1-hydroxymethylnaphtho[2,3-c]furan-4,9-dione
1-Hydroxy-3,6-bis[2-(methylthio)ethyl]-2(1H)-pyrazinone
5,8-dihydroxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione
Norathyriol
Norathyriol is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C. It has a role as an antineoplastic agent, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a member of xanthones and a polyphenol. Norathyriol is a natural product found in Hypericum aucheri, Hypericum elegans, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C.
4-Methyl-6-(3,4-dihydroxystyryl)-2-pyrone
1,3,5,6-Tetrahydroxyxantone
1,3,5,6-Tetrahydroxyxanthone is a natural product found in Hypericum scabrum, Hypericum androsaemum, and other organisms with data available.
suprofen
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
2-(5,6-dihydroxy-3-methoxycarbonylcyclohex-3-en-1-yl)oxypropanoic acid
4,9-dimethoxy-7-methylfuro[3,2-g]chromen-5-one
4-thiouridine
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels D009676 - Noxae > D000963 - Antimetabolites 4-Thiouridine is a ribonucleoside analog, it is widely used in RNA analysis and (m)RNA labeling. 4-Thiouridine inhibits rRNA synthesis and causes a nucleolar stress response[1].
tiaprofenic acid
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
4,9-dimethoxy-7-methylfuro[3,2-g]chromen-5-one [IIN-based: Match]
4,9-dimethoxy-7-methylfuro[3,2-g]chromen-5-one [IIN-based on: CCMSLIB00000849010]
Urolithin D
Urolithin D is competitive and reversible antagonist of EphA receptors. Urolithin D exhibits intra-classes selectivity[1].
1,2,3,4-Tetrahydro-b-carboline-1,3-dicarboxylic acid
3-Furancarboxamide,2-methyl-N-(4-methyl-2-nitrophenyl)-(9CI)
N-[2-Nitro-4-(trifluoromethyl)phenyl]pyrrolidine
C11H11F3N2O2 (260.07725819999996)
1-(4-ethoxyphenyl)-4,4,4-trifluorobutane-1,3-dione
ethyl 3-oxo-3-(2,4,5-trifluoro-3-methylphenyl)propanoate
7-METHOXY-4,5-DIHYDRONAPHTHO[1,2-B]THIOPHENE-2-CARBOXYLIC ACID
[3-(4-FLUORO-BENZYLOXY)-PHENYL]-ACETIC ACID
C15H13FO3 (260.08486800000003)
Uridine, 2-deoxy-5-mercapto-
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
2-Trifluoromethyl-5,6,7,8-tetrahydro-[1,6]naphthyridine-3-carboxylic acid methyl ester
C11H11F3N2O2 (260.07725819999996)
6-methyl-4-oxo-3-phenylmethoxypyran-2-carboxylic acid
3-[(3-FLUOROBENZYL)OXY]-4-METHOXYBENZALDEHYDE
C15H13FO3 (260.08486800000003)
4-[(3-fluorophenyl)methoxy]-3-methoxybenzaldehyde
C15H13FO3 (260.08486800000003)
2-Amino-4-(3,4-dimethoxyphenyl)thiophene-3-carbonitrile
1-(2-chloroethyl)-4-prop-2-enylpiperazine,dihydrochloride
C9H19Cl3N2 (260.06137440000003)
1-(2-AMINOETHYL)-2-METHYL-5-NITROIMIDAZOLE DIHYDROCHLORIDE MONOHYDRATE
2-(3-FLUORO-BENZYLOXY)-3-METHOXY-BENZALDEHYDE
C15H13FO3 (260.08486800000003)
3-CHLORO-3,5-DIMETHYL-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
2-CHLORO-2,4-DIMETHYL-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
METHYL 6-FLUORO-4-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLATE
C15H13FO3 (260.08486800000003)
METHYL 5-FLUORO-2-METHOXY-[1,1-BIPHENYL]-4-CARBOXYLATE
C15H13FO3 (260.08486800000003)
2-[[(4-cyano-1-phenylpyrazol-3-yl)amino]methylidene]propanedinitrile
2-[(2-FLUOROBENZYL)OXY]-3-METHOXYBENZALDEHYDE
C15H13FO3 (260.08486800000003)
2-[(4-FLUOROBENZYL)OXY]-3-METHOXYBENZALDEHYDE
C15H13FO3 (260.08486800000003)
2-METHYL-4-OXO-4-(4-TRIFLUOROMETHYLPHENYL)BUTYRIC ACID
(4-AMINO-1-METHYL-PYRROL-2-YL)-MORPHOLIN-4-YL-METHANONE
(S)-N-(1-hydroxypropan-2-yl)-2-nitrobenzenesulfonamide
ETHYL 7-AMINO[1,2,4]TRIAZOLO[1,5-A]PYRIMIDINE-6-CARBOXYLATE
Clevudine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Clevudine (L-FMAU), a nucleoside analog of the unnatural L-configuration, has potent anti-HBV activity with long half-life, low toxicity. Clevudine is a non-competitive inhibitor that is not incorporated into the viral DNA but rather binds to the polymerase. Clevudine is active against cowpox virus respiratory infection in mice[1][2][3].
PSI-6206
PSI-6206 (RO 2433) is the deaminated derivative of PSI-6130, which is a potent and selective inhibitor of HCV NS5B polymerase. PSI-6206 low potently inhibits HCV replicon with EC90 of >100 μM.
(s)-3-amino-4-(4-nitrophenyl)butanoic acid hydrochloride
Methyl 6-acetamido-4-hydroxyquinoline-2-carboxylate
4-(Trifluoromethyl)benzamidine hydrochloride dihydrate
3-Chloro-6-[(7-methyl-2,3-dihydro-1H-inden-4-yl)oxy]pyridazine
3-(4-METHOXYPHENOXY)-PROPYL METHANESULF&
C11H16O5S (260.07184060000003)
4-[(2-FLUOROBENZYL)OXY]-N-HYDROXYBENZENECARBOXIMIDAMIDE
methyl 3-amino-5-[(4-fluorophenyl)methyl]pyridine-2-carboxylate
3-oxo-3-(3-trifluoromethylphenyl)propionic acid ethyl ester
1,3-Propanediol,2,2-dimethyl-, 1,3-dimethanesulfonate
[4-formyl-3-(4-methoxyphenyl)-1H-pyrazol-1-yl]acetic acid
5,6-dihydroxy-2-p-tolyl-pyrimidine-4-carboxylic acid methyl ester
2-methyl-1,3,4,4a,5,9b-hexahydropyrido[4,3-b]indole,dihydrochloride
2-fluoro-5-methoxy-4-phenylmethoxybenzaldehyde
C15H13FO3 (260.08486800000003)
2-CHLORO-6-(BETA-D-2-DEOXYRIBOFURANOSYL)-3,5-DIAMINOPYRAZINE
3-oxo-3-(2-trifluoromethylphenyl)propionic acid ethyl ester
2-(5-phenyl-2h-[1,2,4]triazol-3-yl)-ethylamine dihydrochloride
3-(4-FLUORO-BENZYLOXY)-4-METHOXY-BENZALDEHYDE
C15H13FO3 (260.08486800000003)
4-Chloro-7-isopropoxy-6-methyl-3-quinolinecarbonitrile
4-CHLORO-1-(4-METHOXYPHENYL)-1H-PYRAZOLO[3,4-D]PYRIMIDINE
2-(4-FLUOROPHENYL)-6-(TRIFLUOROMETHYL)-4,5-DIHYDROPYRIDAZIN-3(2H)-ONE
4-[4-amino-2-(trifluoromethyl)phenyl]morpholin-3-one
C11H11F3N2O2 (260.07725819999996)
(4-METHYLSULFANYL-PHENYL)-PHOSPHONIC ACID DIETHYL ESTER
1,3,5-Tri-O-acetyl-2-deoxy-D-erythro-pentofuranose
1-chloro-8-methoxy-4,5-dimethylpyrido[4,3-b]indole
1-(4-Chloro-benzenesulfonyl)-piperazine
C10H13ClN2O2S (260.03862280000004)
N-(PIPERIDIN-3-YL)-2-(THIOPHEN-3-YL)ACETAMIDE HYDROCHLORIDE
N-(PIPERIDIN-4-YL)-2-(THIOPHEN-3-YL)ACETAMIDE HYDROCHLORIDE
N-(PIPERIDIN-3-YLMETHYL)THIOPHENE-3-CARBOXAMIDE HYDROCHLORIDE
N-(PIPERIDIN-4-YLMETHYL)THIOPHENE-3-CARBOXAMIDE HYDROCHLORIDE
1,3,5-tri-O-Acetyl-2-deoxy-alpha-D-erythro-pentofuranose
2-CHLORO-5-(PIPERIDINE-1-SULFONYL)-PYRIDINE
C10H13ClN2O2S (260.03862280000004)
4-[(4-fluorobenzyl)oxy]-3-methoxybenzenecarbaldehyde
C15H13FO3 (260.08486800000003)
2-(3-((3-Fluorobenzyl)oxy)phenyl)acetic acid
C15H13FO3 (260.08486800000003)
2-(4-Fluorophenyl)-1-(2-hydroxy-4-methoxyphenyl)ethanone
C15H13FO3 (260.08486800000003)
3-(4-methylsulfanylphenyl)-1-thiophen-2-ylprop-2-en-1-one
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-ethanol 10-oxide
2-beta-Carboxyethylamino-4-aminobenzenesulfonicacid
4-(4-Nitrophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine
ETHYL 5-AMINO-6-OXO-1-PHENYL-1,6-DIHYDRO-1,2,4-TRIAZINE-3-CARBOXYLATE
2,2,2-trifluoro-1-(4-methylsulfonylpiperazin-1-yl)ethanone
(6E)-6-[(4-fluorophenyl)methylidene]-7H-[1,3]thiazolo[3,2-a]pyrimidin-5-one
6-[(4-fluorophenyl)methyl]-[1,3]thiazolo[3,2-a]pyrimidin-5-one
2-METHYL-4-OXO-4-(3-TRIFLUOROMETHYLPHENYL)BUTYRIC ACID
1-(4-Chlorophenoxy)-3,3-dimethyl-1-chloro-2-butanone
(r)-3-amino-4-(4-nitrophenyl)butanoic acid hydrochloride
(2S,4S,5R)-5-(ACETOXYMETHYL)TETRAHYDROFURAN-2,4-DIYL DIACETATE
1-Ethyl-3-methylimidazolium trifluoromethanesulfonate
Poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile)
(3-Fluorooxetan-3-yl)methyl 4-methylbenzenesulfonate
(3-Methyl-piperazin-1-yl)-(3-methyl-thiophen-2-yl)-methanone hydrochloride
Thiophene-2-carboxylic acid Methyl-piperidin-4-yl-aMide hydrochloride
3-Methyl-thiophene-2-carboxylic acid piperidin-3-ylamide hydrochloride
3-(4-FLUORO-PHENOXYMETHYL)-4-METHOXY-BENZALDEHYDE
C15H13FO3 (260.08486800000003)
4-Nitro-D-phenylalanine methyl ester monohydrochloride
5-Methoxy-2-nitro-4-(trifluoroMethyl)phenylacetonitrile
4-[(2-fluorophenyl)methoxy]-3-methoxybenzaldehyde
C15H13FO3 (260.08486800000003)
2-Propen-1-one,3-(2-chlorophenyl)-1-(4-fluorophenyl)-
5-(2-Formyl-phenoxymethyl)-furan-2-carboxylic acid methyl ester
ethyl 4-(pyridin-4-ylcarbamoyl)-1H-imidazole-5-carboxylate
(5-nitro-1-benzofuran-2-yl)-pyrrolidin-1-ylmethanone
5-Hydroxyuridine
5-Hydroxyuridine (OHUrd) is a purine nucleoside analogue. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
1H-Pyrrole-2-carboxamide,N-(2-aminophenyl)-1-methyl-4-nitro-(9CI)
2,3,4,6,7,11B-HEXAHYDRO-1H-PYRAZINO[2,1-A]ISOQUINOLINE DIHYDROCHLORIDE
4-CHLORO-6-(3,4-DIHYDRO-1(2H)-QUINOLINYL)-5-PYRIMIDINAMINE
2-BENZYL-5,6-DIHYDROXY-PYRIMIDINE-4-CARBOXYLIC ACID METHYL ESTER
(3,4-DIMETHOXYPHENYL)(4-FLUOROPHENYL)METHANONE
C15H13FO3 (260.08486800000003)
rel-(1S,4S)-2-benzyl-2,5-diazabicyclo[2.2.1]heptane;dihydrochloride
Perzinfotel
C9H13N2O5P (260.05620580000004)
C26170 - Protective Agent > C1509 - Neuroprotective Agent Perzinfotel (EAA-090) is a potent, selective, and competitive NMDA receptor antagonist with neuroprotective effects. Perzinfotel (EAA-090) shows high affinity (IC50=30 nM) for the glutamate site[1][2].
5-Methyl-2-fluoroarauracil F-18
C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate
3,6-Dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione
D001697 - Biomedical and Dental Materials
1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-sulfanylidenepyrimidin-2-one
Pyrano(2,3-c)pyrazol-6(2H)-one, 3,4-dimethyl-2-(2-thienylmethyl)-
4-(2-aminoethyl)-N,N-bis(2-chloroethyl)aniline
D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds
6-[(Phenylmethylthio)methyl]imidazo[2,1-b]thiazole
Dezinamide
C11H11F3N2O2 (260.07725819999996)
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
Eskel
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
α-D-Glucose 1-phosphate
Alpha-d-glucose-1-phosphate, also known as D-glucose 1-phosphoric acid or alpha-D-glucopyranosyl phosphate, is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Alpha-d-glucose-1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Alpha-d-glucose-1-phosphate can be found in a number of food items such as guava, purple mangosteen, cocoa bean, and fig, which makes alpha-d-glucose-1-phosphate a potential biomarker for the consumption of these food products. Alpha-d-glucose-1-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
Uridine, 2'-deoxy-2'-fluoro-2'-methyl-, (2'R)-
2-Amino-2-deoxyglucitol 6-phosphate
C6H15NO8P- (260.05352600000003)
2-Amino-2-deoxy-mannitol-6-phosphate
C6H15NO8P- (260.05352600000003)
3-carboxy-9-(methylsulfanyl)-2-oxononanoate
C11H16O5S-2 (260.07184060000003)
2-Hydroxy-6-(2-carboxyphenyl)-6-oxo-2,4-hexadienoate
1-[2-Fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione
3-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-imino-1,3-thiazin-2-one
2-[2-Oxo-2-[(2-oxoazepan-3-yl)amino]ethyl]sulanylacetic acid
4,5-dihydroindolo[3,2-c]pyrrolo[3,2,1-ij]quinolin-7(12H)-one
(4Z)-2-(1,3-benzodioxol-5-yl)-4-[(dimethylamino)methylidene]-1,3-oxazol-5(4H)-one
7-Ethyl-8-methylthieno[2,3-b:4,5-b]dipyridine-2,4-diol
5,6-Dihydroxy-2-deoxyuridine
A pyrimidine 2-deoxyribonucleoside having 5,6-dihydroxyuracil as the nucleobase.
N-methyl-5-nitro-N-(phenylmethyl)-2-furancarboxamide
2-methyl-N-[(2-thienylcarbonyl)oxy]benzenecarboximidamide
(2R,4S)-2-[(1R)-1-formamido-2-oxopropyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid
2-[(2E)-2-(1-thiophen-2-ylethylidene)hydrazinyl]benzoic acid
6-[(Z)-2-hydroxy-3-oxobut-1-enyl]-7-methoxychromen-2-one
6-[(E)-4-hydroxy-3-oxobut-1-enyl]-7-methoxychromen-2-one
[3-(4-Methoxyphenyl)oxiran-2-yl]methyl hydrogen sulate
2-Hydroxy-3-methyl-1,4-naphthoquinone, TMS derivative
2-(5,6-Dihydroxy-3-methoxycarbonylcyclohex-3-en-1-yl)oxypropanoic acid
2,4-Dimethyl-4,4A-dihydro-1H-(1,3,5)triazino(1,2-A)quinazoline-1,3,6(2H,5H)-trione
3,8-Dioxa-4,7-dioxocyclooctane-1,2-dicarboxylic acid dimethyl ester
2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,3-dicarboxylic acid
1,2,3,4-Tetrahydro-beta-carboline-1,3-dicarboxylic acid
HIF-IN-1
HIF-IN-1 (Compound 3c) is a hypoxia-inducible factor (HIF)-1 inhibitor. HIF-IN-1 suppresses HIF-1α protein accumulation without affecting the levels of HIF-1α mRNA. HIF-IN-1 shows no obvious cytotoxicity[1].
Nifenalol (hydrochloride)
C11H17ClN2O3 (260.09276420000003)
Nifenalol hydrochloride is a β-adrenergic receptor antagonist. Nifenalol hydrochloride induces the Early Afterdepolarization (EAD) effect. EAD is a phenomenon in cardiac electrophysiology that usually occurs during an action potential in ventricular muscle cells and can lead to arrhythmia. The EAD effect of Nifenalol hydrochloride can be blocked by Tetrodotoxin. Nifenalol hydrochloride is used in the study of conditions such as irregular heartbeat or high blood pressure[1].
SUVN-911
SUVN-911 is a potent, selective, brain penetrated and orally bioavailable neuronal nicotinic acetylcholine α4β2 receptor antagonist, with a Ki of 1.5 nM. SUVN-911 has antidepressant activity[1].
(2e)-2-methyl-4-[(2-oxochromen-7-yl)oxy]but-2-enoic acid
(7z,13z,15z)-16-chlorohexadeca-7,13,15-trien-9,11-diyn-2-one
(3as,4s,5s,6ar)-4-(4-carboxybutyl)-2-hydroxy-3h,3ah,4h,6h,6ah-thieno[3,4-d]imidazol-5-ium-5-olate
4-[(2-amino-4,5-dimethylphenyl)imino]-2,6-dihydroxypyrimidin-5-one
(7z)-3,8-dihydroxy-7-(hydroxymethylidene)-6-[(1z)-2-hydroxyprop-1-en-1-yl]naphthalen-1-one
6,10,12-trihydroxy-8-methyl-3-oxatricyclo[7.3.1.0⁵,¹³]trideca-1(13),5,7,9,11-pentaene-2,4-dione
5-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]benzene-1,2,3-triol
1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-hydroxypyrimidine-2,4-dione
(2s)-2-(3-hydroxyprop-1-en-2-yl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
(3r)-3,4-dihydroxy-5-methoxy-3-methylnaphtho[2,3-c]furan-1-one
(3as,4s,6ar)-4-(4-carboxybutyl)-2-hydroxy-3h,3ah,4h,6h,6ah-thieno[3,4-d]imidazol-5-ium-5-olate
(2e)-4-(7-hydroxy-2-oxochromen-6-yl)-2-methylbut-2-enoic acid
(2s)-2-(3,5-dihydroxyphenyl)-2-hydroxy-1-(4-hydroxyphenyl)ethanone
5-hydroxy-4-(7-hydroxy-2h-chromen-3-yl)-5-methylfuran-2-one
5,8-dihydroxy-1-(hydroxymethyl)naphtho[2,3-c]furan-4,9-dione
(5s)-3-(hydroxymethyl)-4,5-dimethyl-5h,6h,7h-naphtho[2,3-b]thiophen-8-one
5-[(1z)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2,3-triol
7,9,10a-trihydroxy-3-methyl-1h-benzo[g]isochromen-10-one
(2r)-2-hydroxy-3-[(2z)-5-oxofuran-2-ylidene]propyl benzoate
2-methyl-3-(methylsulfanyl)-3h-pyrazino[1,2-a]indole-1,4-dione
(7z,13e,15z)-16-chlorohexadeca-7,13,15-trien-9,11-diyn-2-one
methyl (4r,4ar,5r,6s,7s,7as)-5,6,7-trihydroxy-7-methyl-1-oxo-hexahydrocyclopenta[c]pyran-4-carboxylate
1',5'-dihydroxy-4-methyl-1',3'-dihydrospiro[furan-2,2'-naphthalene]-4',5-dione
(1's,2r)-1',5'-dihydroxy-4-methyl-1',3'-dihydrospiro[furan-2,2'-naphthalene]-4',5-dione
(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[(5-methylidene-2h-furan-3-yl)oxy]oxane-3,4,5-triol
4-(7-hydroxy-2-oxochromen-6-yl)-2-methylbut-2-enoic acid
methyl 7-hydroxy-9-oxo-1h,2h,3h-cyclopenta[b]chromene-3-carboxylate
(2s)-2-hydroxy-3-[(2z)-5-oxofuran-2-ylidene]propyl benzoate
1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-hydroxypyrimidine-2,4-dione
6-[(3-hydroxyphenyl)methoxy]-4h,6h-furo[3,2-c]pyran-2-one
(2s,3e,11e)-2-chlorotrideca-3,11-dien-5,7,9-triyn-1-yl acetate
2,4,12-trihydroxy-8-methyl-3-oxatricyclo[7.3.1.0⁵,¹³]trideca-1,4,7,9(13),11-pentaene-6,10-dione
1-[(2r,3s,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-sulfanylpyrimidin-2-one
4-(4-carboxybutyl)-2-hydroxy-3h,3ah,4h,6h,6ah-thieno[3,4-d]imidazol-5-ium-5-olate
methyl 5,6,7-trihydroxy-7-methyl-1-oxo-hexahydrocyclopenta[c]pyran-4-carboxylate
8,9-dihydroxy-3-methylpyrano[4,3-c]isochromene-1,6-dione
4-[2-(3-chloro-1h-pyrrol-2-yl)-1,3-oxazol-5-yl]phenol
5,6-dimethoxy-8-oxatricyclo[7.4.0.0²,⁷]trideca-1(9),2(7),3,5,10,12-hexaene-4,11-diol
10-hydroxy-2-(prop-1-en-2-yl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
{4-[(1e)-3-hydroxyprop-1-en-1-yl]-2-methoxyphenyl}oxidanesulfonic acid
(6r)-6-[(3-hydroxyphenyl)methoxy]-4h,6h-furo[3,2-c]pyran-2-one
1-hydroxy-3-(5-oxofuran-2-ylidene)propan-2-yl benzoate
5-[(1e)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2,3-triol
1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-sulfanylpyrimidin-2-one
2-hydroxy-3-[(2z)-5-oxofuran-2-ylidene]propyl benzoate
(2e)-3-[(1s,3s,4r)-3-bromo-4-hydroxy-4-methylcyclohexyl]but-2-enal
5-hydroxy-8,8-dimethyl-7h-pyrano[3,2-g]chromene-2,6-dione
5-chloro-4,6-dihydroxy-3-(3-hydroxy-3-methylbut-1-en-1-yl)-6-methylcyclohex-2-en-1-one
C12H17ClO4 (260.08153120000003)
2-methyl-4-[(2-oxochromen-7-yl)oxy]but-2-enoic acid
(2r)-2-hydroxy-3-[(2e)-5-oxofuran-2-ylidene]propyl benzoate
6-hydroxy-8-methoxy-3-methyl-2h,3h-cyclopenta[c]isochromene-1,5-dione
[(2r,3r,5r,6s)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphonic acid
2-chlorotrideca-3,11-dien-5,7,9-triyn-1-yl acetate
[4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenyl]oxidanesulfonic acid
(1r)-1-[(1s,4r,5s,8r)-4-hydroxy-1-(sulfanylmethyl)-6,7-dioxabicyclo[3.2.1]oct-2-en-8-yl]ethyl acetate
C11H16O5S (260.07184060000003)
(2s)-10-hydroxy-2-(prop-1-en-2-yl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
methyl 1,5,6,7-tetrahydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
2-(3-hydroxyprop-1-en-2-yl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
[(2s,3r,4s,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxyphosphonic acid
(1's,2s)-1',5'-dihydroxy-4-methyl-1',3'-dihydrospiro[furan-2,2'-naphthalene]-4',5-dione
11-methyl-6h-pyrido[4,3-b]carbazole-5-carbaldehyde
(1s,2r,5s,8r)-8-[(1r)-1-hydroxyethyl]-5-(sulfanylmethyl)-6,7-dioxabicyclo[3.2.1]oct-3-en-2-yl acetate
C11H16O5S (260.07184060000003)
4,6-dimethoxy-8-oxatricyclo[7.4.0.0²,⁷]trideca-1(9),2(7),3,5,10,12-hexaene-5,11-diol
methyl (3r)-7-hydroxy-9-oxo-1h,2h,3h-cyclopenta[b]chromene-3-carboxylate
8-hydroxy-9-methoxy-2-methyl-5h-pyrano[3,2-c]chromen-4-one
[(2r,3s,4r,5r)-3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxyphosphonic acid
10,12-dimethoxy-8-oxatricyclo[7.4.0.0²,⁷]trideca-1(9),2(7),3,5,10,12-hexaene-3,11-diol
3,8-dihydroxy-7-(hydroxymethylidene)-6-(2-hydroxyprop-1-en-1-yl)naphthalen-1-one
2-hydroxy-5-[(1e)-2-(4-hydroxy-6-oxopyran-2-yl)ethenyl]cyclohexa-2,5-diene-1,4-dione
(2s)-1-hydroxy-3-[(2z)-5-oxofuran-2-ylidene]propan-2-yl benzoate
(5r)-5-hydroxy-4-(7-hydroxy-2h-chromen-3-yl)-5-methylfuran-2-one
methyl (3s)-7-hydroxy-9-oxo-1h,2h,3h-cyclopenta[b]chromene-3-carboxylate
(3r)-6-hydroxy-8-methoxy-3-methyl-2h,3h-cyclopenta[c]isochromene-1,5-dione
(11r,14r,15s)-14-hydroxy-14-methyl-4,12,16-trioxatetracyclo[8.6.0.0³,⁸.0¹¹,¹⁵]hexadeca-1(10),2,6,8-tetraen-5-one
3-acetyl-5-hydroxy-7-methoxy-2-methylnaphthalene-1,4-dione
(10as)-7,9,10a-trihydroxy-3-methyl-1h-benzo[g]isochromen-10-one
2-hydroxy-5-[2-(4-hydroxy-6-oxopyran-2-yl)ethenyl]cyclohexa-2,5-diene-1,4-dione
3-hydroxy-5-(3-hydroxy-5-methylphenoxy)benzoic acid
(2r,3r,4s,5s,6r)-2-(furan-3-ylmethoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(4r,5s,6s)-5-chloro-4,6-dihydroxy-3-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-6-methylcyclohex-2-en-1-one
C12H17ClO4 (260.08153120000003)