Guaiazulene (BioDeep_00000000462)
Secondary id: BioDeep_00000864781
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C15H18 (198.1408)
中文名称: 愈疮奥, 愈创兰油烃, 愈创奥
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 68.48%
Last reviewed on 2024-11-06.
Cite this Page
Guaiazulene. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/guaiazulene (retrieved
2025-01-07) (BioDeep RN: BioDeep_00000000462). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(C(C)C)=CC2=C(C)C=CC2=C1C
InChI: InChI=1S/C15H18/c1-10(2)13-7-5-11(3)14-8-6-12(4)15(14)9-13/h5-10H,1-4H3
描述信息
Guaiazulene is a sesquiterpene. It derives from a hydride of a guaiane.
Guaiazulene is a natural product found in Mikania cordifolia, Santolina corsica, and other organisms with data available.
obtained from essential oils, e.g. chamomile oil. 7-Isopropyl-1,4-dimethylazulene is found in many foods, some of which are fats and oils, fig, german camomile, and tea.
7-Isopropyl-1,4-dimethylazulene is found in fats and oils. 7-Isopropyl-1,4-dimethylazulene is obtained from essential oils, e.g. chamomile oil.
S - Sensory organs > S01 - Ophthalmologicals
Guaiazulene is present in several essential oils of medicinal and aromatic plants, with antioxidant activity. Guaiazulene has in vitro cytotoxic activity against neuron and N2a neuroblastom (N2a-NB) cells[1][2].
Guaiazulene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=489-84-9 (retrieved 2024-11-06) (CAS RN: 489-84-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
78 个代谢物同义名
InChI=1/C15H18/c1-10(2)13-7-5-11(3)14-8-6-12(4)15(14)9-13/h5-10H,1-4H; 4-05-00-01751 (Beilstein Handbook Reference); GUAIAZULENE (CONSTITUENT OF CHAMOMILE) [DSC]; 7-isopropyl-1,4-dimethyl-azulene;Guaiazulene; 1,4-Dimethyl-7-(1-methylethyl)azulene, 9CI; 1,4-Dimethyl-7-(1-methyl)-azulene (azulon); Azulene, 1,4-dimethyl-7-(1-methylethyl)-; Azulene, 7-isopropyl-1,4-dimethyl- (8CI); 1,4-dimethyl-7-(1-methylethyl)-azulene; Azulene,4-dimethyl-7-(1-methylethyl)-; 1,4-Dimethyl-7-(1-methylethyl)azulene; 1,4-DIMETHYL-7-ISOPROPYLAZULENE [JAN]; 1,4-Dimethyl-7-isopropylazulene (JAN); 1,4-dimethyl-7-(propan-2-yl)azulene; AZULENE, 1,4-DIMETHYL-7-ISOPROPYL-; Azulene, 7-isopropyl-1,4-dimethyl-; 1,4-dimethyl-7-propan-2-ylazulene; 7-isopropyl-1,4-dimethyl-azulene; 1, 4-Dimethyl-7-isopropylazulene; 7-isopropyl- 1,4-dimethylazulene; 3,8-Dimethyl-5-(2-propyl)azulene; 1,4-Dimethyl-7-isopropyl-Azulene; 7-Isopropyl-1,4-dimethylazulene; Azulene,4-dimethyl-7-isopropyl-; 1,4-Dimethyl-7-isopropylazulene; 1,4-Dimethyl-7-isopropylazulen; FWKQNCXZGNBPFD-UHFFFAOYSA-N; 1,3,5,7,9-Guaiapentaene; WLN: L57J B1 F1 IY1&1; GUAIAZULENE [WHO-DD]; GUAIAZULENE [MART.]; Azulene,4-dimethyl-; GUAIAZULENE [INCI]; Guaiazulene, 99\\%; Spectrum4_000762; Spectrum5_001090; hepatoprotectant; Spectrum3_001537; Spectrum2_001089; GUAIAZULENE [MI]; UNII-2OZ1K9JKQC; Tox21_111526_1; S-Kessazulene; S-Guaiazulene; DivK1c_001006; KBio2_001678; Gurjunazulen; Azulen-beris; KBio1_001006; KBio3_002454; Tox21_111526; KBio2_004246; KBio2_006814; Guaiazulene; IDI1_001006; Azunol (TN); guajazulene; Vetivazulen; Kessazulene; guaiazulen; 2OZ1K9JKQC; Guiazulene; Kessazulen; Guajazulen; AZ-8 beris; Eucazulene; Uroazulen; Purazulen; Eucazulen; Silazulon; Cuteazul; Vaumigan; azulon; Azunol; Azulol; AZ-8; Guaiazulene; Guaiazulene
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:5550
- KEGG: C09675
- KEGGdrug: D01037
- PubChem: 3515
- HMDB: HMDB0036648
- Metlin: METLIN53446
- DrugBank: DB13329
- ChEMBL: CHEMBL1408759
- Wikipedia: Guaiazulene
- LipidMAPS: LMPR0103410006
- MeSH: guaiazulene
- ChemIDplus: 0000489849
- KNApSAcK: C00003138
- foodb: FDB015573
- chemspider: 3395
- CAS: 489-84-9
- medchemexpress: HY-N6951
- PMhub: MS000012907
- 3DMET: B03186
- NIKKAJI: J11.635A
- PubChem: 11865
- KNApSAcK: 5550
- LOTUS: LTS0214586
- wikidata: Q3026266
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
21 个相关的物种来源信息
- 89599 - Acalycigorgia:
- 40679 - Alcyonium: 10.1071/CH9830211
- 361056 - Anthogorgia:
- 143780 - Aristolochia elegans: 10.1016/S0031-9422(97)00400-7
- 325095 - Aristolochia littoralis: 10.1016/S0031-9422(97)00400-7
- 401939 - Artemisia thuscula: 10.1080/10412905.1993.9698248
- 58798 - Calicogorgia granulosa: 10.1021/NP960485Y
- 124947 - Cedrela odorata: 10.1016/S0031-9422(00)95206-3
- 714455 - Cinnamomum parthenoxylon: 10.1080/10412905.1995.9698462
- 2743244 - Croton sonderianus: 10.1021/JO00200A028
- 120593 - Halocarpus kirkii: 10.1021/JO01168A011
- 9606 - Homo sapiens: -
- 758917 - Juniperus excelsa: 10.1021/NP50050A053
- 280836 - Mastigophora diclados: 10.1016/S0031-9422(99)00321-0
- 306395 - Micromeria juliana: 10.1080/10412905.1991.9697971
- 1127086 - Mikania cordifolia: 10.1016/S0031-9422(00)80558-0
- 33090 - Plants: -
- 1142017 - Santolina corsica: 10.1016/S0378-8741(97)01528-6
- 765941 - Santolina insularis: 10.1016/S0378-8741(97)01528-6
- 34493 - Tethya: 10.1071/CH9830211
- 19953 - Valeriana officinalis: 10.1135/CCCC19661113
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wasim Akram, Priti Tagde, Sakeel Ahmed, Swamita Arora, Talha Bin Emran, Ahmad O Babalghith, Sherouk Hussein Sweilam, Jesus Simal-Gandara. Guaiazulene and related compounds: A review of current perspective on biomedical applications.
Life sciences.
2023 Mar; 316(?):121389. doi:
10.1016/j.lfs.2023.121389
. [PMID: 36646376] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Asta Judzentiene, Rita Butkiene, Jurga Budiene, Félix Tomi, Joseph Casanova. Composition of seed essential oils of Rhododendron tomentosum.
Natural product communications.
2012 Feb; 7(2):227-30. doi:
. [PMID: 22474965]
- Marziyeh Tolouee, Soheil Alinezhad, Reza Saberi, Ali Eslamifar, Seyed Javad Zad, Kamkar Jaimand, Jaleh Taeb, Mohammad-Bagher Rezaee, Masanobu Kawachi, Masoomeh Shams-Ghahfarokhi, Mehdi Razzaghi-Abyaneh. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem.
International journal of food microbiology.
2010 May; 139(3):127-33. doi:
10.1016/j.ijfoodmicro.2010.03.032
. [PMID: 20385420] - Bruno Marongiu, Alessandra Piras, Silvia Porcedda. Comparative analysis of the oil and supercritical CO(2) extract of Artemisia arborescens L. and Helichrysum splendidum (Thunb.) Less.
Natural product research.
2006 May; 20(5):421-8. doi:
10.1080/14786410500102977
. [PMID: 16644539] - Won Seok Park, Eui Dong Son, Gae Won Nam, Soo Hyun Kim, Min Soo Noh, Byeong Gon Lee, Ih Seop Jang, Se Eun Kim, Jung Joon Lee, Chang Hoon Lee. Torilin from Torilis japonica, as a new inhibitor of testosterone 5 alpha-reductase.
Planta medica.
2003 May; 69(5):459-61. doi:
10.1055/s-2003-39717
. [PMID: 12802730] - Eleni Rekka, Michael Chrysselis, Ioanna Siskou, Angeliki Kourounakis. Synthesis of new azulene derivatives and study of their effect on lipid peroxidation and lipoxygenase activity.
Chemical & pharmaceutical bulletin.
2002 Jul; 50(7):904-7. doi:
10.1248/cpb.50.904
. [PMID: 12130848] - Harris Pratsinis, Serkos A Haroutounian. Synthesis and antioxidant activity of 3-substituted guaiazulene derivatives.
Natural product letters.
2002 Jun; 16(3):201-5. doi:
10.1080/10575630290013585
. [PMID: 12049221] - S Tanchev, B Shentov, Iu Gesheva. [Use of garmastan in the prophylaxis and therapy of sore nipples of the breast].
Akusherstvo i ginekologiia.
2001; 40 Suppl 6(?):20-1. doi:
"
. [PMID: 11803878] - A P Kourounakis, E A Rekka, P N Kourounakis. Antioxidant activity of guaiazulene and protection against paracetamol hepatotoxicity in rats.
The Journal of pharmacy and pharmacology.
1997 Sep; 49(9):938-42. doi:
10.1111/j.2042-7158.1997.tb06140.x
. [PMID: 9306266] - E STANISLAS, G BERGAL. [Biological effects of S-guaiazulene; effect on plants].
Annales pharmaceutiques francaises.
1952 Jul; 10(7-8):535-53. doi:
"
. [PMID: 13008225]