Glycyrrhetinic acid (BioDeep_00000000368)

 

Secondary id: BioDeep_00000034672, BioDeep_00000398553, BioDeep_00000863472

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product


代谢物信息卡片


(2S,4aS,6aS,6bR,8aR,10S,12aS,12bR,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid

化学式: C30H46O4 (470.3396)
中文名称: 18-α-甘草次酸, 甘草次酸(β型), 甘草次酸(α型), 18β-甘草次酸, 甘草次酸
谱图信息: 最多检出来源 Viridiplantae(plant) 16.66%

Reviewed

Last reviewed on 2024-07-09.

Cite this Page

Glycyrrhetinic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycyrrhetinic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000368). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C1(C)C(O)=O)C(C=52)([H])C(CCC2(C(C3([H])C(=O)C5)(C)CCC(C(C)(C)4)([H])C(C)3CCC(O)4)C)(C)CC1
InChI: InChI=1S/C30H46O4/c1-25(2)21-8-11-30(7)23(28(21,5)10-9-22(25)32)20(31)16-18-19-17-27(4,24(33)34)13-12-26(19,3)14-15-29(18,30)6/h16,19,21-23,32H,8-15,17H2,1-7H3,(H,33,34)

描述信息

Glycyrrhetinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by a hydroxy group at position 3, an oxo group at position 11 and a carboxy group at position 30. It has a role as an immunomodulator and a plant metabolite. It is a pentacyclic triterpenoid, a cyclic terpene ketone and a hydroxy monocarboxylic acid. It is a conjugate acid of a glycyrrhetinate. It derives from a hydride of an oleanane.
Enoxolone (glycyrrhetic acid) has been investigated for the basic science of Apparent Mineralocorticoid Excess (AME).
Enoxolone is a natural product found in Glycyrrhiza, Echinopora lamellosa, and other organisms with data available.
Enoxolone is a pentacyclic triterpenoid aglycone metabolite of glycyrrhizin, which is a product of the plant Glycyrrhiza glabra (licorice), with potential expectorant, and gastrokinetic activities. After administration, enoxolone inhibits the metabolism of prostaglandins by both 15-hydroxyprostaglandin dehydrogenase [NAD(+)] and prostaglandin reductase 2. Therefore, this agent potentiates the activity of prostaglandin E2 and F2alpha, which inhibits gastric secretion while stimulating pancreatic secretion and the secretion of intestinal and respiratory mucus, leading to increased intestinal motility and antitussive effects. Additionally, this agent inhibits 11 beta-hydroxysteroid dehydrogenase and other enzymes involved in the conversion of cortisol to cortisone in the kidneys.
An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation.
See also: Glycyrrhizin (is active moiety of); Glycyrrhiza Glabra (part of).
Glycyrrhetinic acid is a pentacyclic triterpenoid derivative of the beta-amyrin type obtained from the hydrolysis of glycyrrhizic acid, which was first obtained from the herb liquorice. It is used in flavouring and it masks the bitter taste of drugs like aloe and quinine. It is effective in the treatment of peptic ulcer and also has expectorant (antitussive) properties (PMID:32106571). In glycyrrhetinic acid the functional group (R) is a hydroxyl group. Research in 2005 demonstrated that with a proper functional group a very effective glycyrrhetinic artificial sweetener can be obtained. When R is an anionic NHCO(CH2)CO2K side chain, the sweetening effect is found to 1200 times that of sugar (human sensory panel data). A shorter or longer spacer reduces the sweetening effect. One explanation is that the taste bud cell receptor has 1.3 nanometers (13 angstroms) available for docking with the sweetener molecule. In addition the sweetener molecule requires three proton donor positions of which two reside at the extremities to be able to interact efficiently with the receptor cavity.
18α-Glycyrrhetinic acid, a diet-derived compound, is an inhibitor of NF-kB and an activator of proteasome, which serves as pro-longevity and anti-aggregation factor in a multicellular organism. 18α-Glycyrrhetinic acid induces apoptosis[1][2].
18α-Glycyrrhetinic acid, a diet-derived compound, is an inhibitor of NF-kB and an activator of proteasome, which serves as pro-longevity and anti-aggregation factor in a multicellular organism. 18α-Glycyrrhetinic acid induces apoptosis[1][2].
18β-Glycyrrhetinic acid is the major bioactive component of Glycyrrhiza uralensis and possesses anti-ulcerative, anti-inflammatory and antiproliferative properties.
18β-Glycyrrhetinic acid is the major bioactive component of Glycyrrhiza uralensis and possesses anti-ulcerative, anti-inflammatory and antiproliferative properties.

同义名列表

106 个代谢物同义名

(2S,4aS,6aS,6bR,8aR,10S,12aS,12bR,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid; (2S,4aS,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picene-2-carboxylic acid;Enoxolone; (2S,4aS,6aS,6bR,10S,12aS)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid; (2S,4AS,6as,6BR,10S,12as)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate; (2S,4aS,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picene-2-carboxylic acid; (2S,4aS,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picene-2-carboxylicacid; (5S,8S,15S,18S,1R,2R,10R,14R,20R)-18-hydroxy-1,2,5,8,15,19,19-heptamethyl-13-o xopentacyclo[12.8.0.0<2,11>.0<5,10>.0<15,20>]docos-11-ene-8-carboxylic acid; (2S,4aS,6aS,6bR,10S,12aS)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-3,4,5,6,7,8,8a,10,11,12,12b,14b-dodecahydro-1H-picene-2-carboxylic acid; Enoxolone; 18beta-Glycyrrhetinic acid; 3?-Hydroxy-11-oxo-18?,20?-olean-12-en-29-oic acid; (3beta,5beta,14beta)-3-Hydroxy-11-Oxoolean-12-En-29-Oic Acid; Olean-12-en-29-oic acid, 3-hydroxy-11-oxo-, (3beta,20beta)-; 3beta-Hydroxy-11-oxo-18beta,20beta-olean-12-en-29-oic acid; Enoxolone, European Pharmacopoeia (EP) Reference Standard; (3beta,20beta)-3-Hydroxy-11-oxo-olean-12-en-29-oic acid; (3beta,20beta)-3-Hydroxy-11-oxoolean-12-en-29-oic acid; 3-Hydroxy-11-oxoolean-12-en-29-Oic acid (acd/name 4.0); 3ss-Hydroxy-11-oxo-18ss,20ss-olean-12-en-29-oic acid; Plantes et médecines brand OF glycyrrhetinic acid; 18beta-Glycyrrhetinic acid, purum, >=97.0\\% (T); (3beta)-3-hydroxy-11-oxoolean-12-en-30-oic acid; Olean-12-en-30-oic acid, 3-beta-hydroxy-11-oxo-; Olean-12-en-30-oic acid, 3beta-hydroxy-11-oxo-; Enoxolone (synonym: 18ss--Glycyrrhetinic acid); (3?)-3-Hydroxy-11-oxoolean-12-en-30-oic acid; 3-beta-Hydroxy-11-oxoolean-12-en-30-oic acid; 4-10-00-03775 (Beilstein Handbook Reference); 3beta-hydroxy-11-oxoolean-12-en-29-oic acid; 3beta-Hydroxy-11-oxoolean-12-en-30-oic acid; 3b-Hydroxy-11-oxo-olean-12-en-30-Oic acid; 3b-Hydroxy-11-oxoolean-12-en-30-Oic acid; Glycyrrhetin ;18beta Glycyrrhetinic acid; 3-Hydroxy-11-oxoolean-12-en-29-Oic acid; 3b-Hydroxy-11-oxo-olean-12-en-30-Oate; 3b-Hydroxy-11-oxoolean-12-en-30-Oate; 3-Hydroxy-11-oxoolean-12-en-29-Oate; Dexo brand OF glycyrrhetinic acid; 18beta-Glycyrrhetinic acid, 97\\%; Enoxolone, Glycyrrhetinic acid; 18 beta-Glycyrrhetintic Acid; 18 beta -Glycyrrhetinic Acid; 18-beta-Glycyrrhetinic acid; GLYCYRRHETINIC ACID [INCI]; 18beta-Glycyrrhetinic acid; Glycyrrhetinic acid [JAN]; 18-beta-Glycyrrhetic acid; Glycyrrhetinic acid (JAN); alpha-Glycyrrhetinic acid; 18beta-Glycyrrhetic acid; beta-Glycyrrhetinic acid; ENOXOLONE [EP MONOGRAPH]; ENOXOLONE (EP MONOGRAPH); 18|A-Glycyrrhetinic acid; Enoxolone (Glycyrrhetin); Enoxolona [INN-Spanish]; 18α-Glycyrrhetinic acid; 18β-Glycyrrhetinic acid; ENOXOLONE [EP IMPURITY]; Enoxolone [INN:BAN:DCF]; 18b-Glycyrrhetinic acid; ENOXOLONE (EP IMPURITY); beta-Glycyrrhetic acid; 18-Glycyrrhetinic acid; 18b-Glycyrrhtinic acid; Enoxolonum [INN-Latin]; a-Glycyrrhetinic acid; 3-Glycyrrhetinic acid; 18b-Glycyrrhetic acid; Acid, Glycyrrhetinic; b-Glycyrrhetic acid; Glycyrrhetinic Acid; Glycyrrhitinic acid; ENOXOLONE [WHO-DD]; GlycyrrhetinicAcid; Acid, Glycyrrhetic; ENOXOLONE (MART.); Glycyrrhetic acid; ENOXOLONE [MART.]; Glycyrrhetinate; Enoxolone (INN); ENOXOLONE [INN]; Hidermart (TN); ENOXOLONE [MI]; Acid, Uralenic; Acid, Rhetinic; Uralenic acid; Rhetinic Acid; Tox21_112726; Glycyrrhetin; Tox21_200799; Tox21_110804; Enoxolonum; Arthrodont; Hidermart; Enoxolone; Enoxolona; Enoloxone; Glyciram; Glycyram; D03AX10; Biosone; Jintan; 12, Po; Po 12; BX-1; CBW; Glycyrrhetinate



数据库引用编号

72 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

9 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(9)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

38 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ABCB1, AKT1, ALB, BCL2L1, CASP3, CASP9, CCND1, CYP3A4, MAPK8, NR3C2, PIK3CA, TLR4, VEGFA
Peripheral membrane protein 1 CYP1B1
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 3 CYP1B1, CYP3A4, NR3C2
Mitochondrion membrane 1 BCL2L1
Nucleus 8 AKT1, ALB, CASP3, CASP9, CCND1, MAPK8, NR3C2, VEGFA
cytosol 10 AKT1, ALB, BCL2L1, CASP3, CASP9, CCND1, GPT, MAPK8, NR3C2, PIK3CA
centrosome 3 ALB, BCL2L1, CCND1
nucleoplasm 5 AKT1, CASP3, CCND1, MAPK8, NR3C2
Cell membrane 4 ABCB1, AKT1, TLR4, TNF
Cytoplasmic side 1 BCL2L1
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 2 ABCB1, ABCC2
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 5 ABCB1, ABCC2, TLR4, TNF, VEGFA
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 2 ALB, VEGFA
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 BCL2L1
plasma membrane 7 ABCB1, ABCC2, AKT1, PIK3CA, REN, TLR4, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 8 ABCB1, ABCC2, AKT1, CYP1B1, CYP3A4, REN, TLR4, VEGFA
apical plasma membrane 2 ABCB1, ABCC2
axon 1 MAPK8
extracellular exosome 3 ABCB1, ALB, GPT
endoplasmic reticulum 3 ALB, BCL2L1, VEGFA
extracellular space 6 ALB, IL10, IL6, REN, TNF, VEGFA
perinuclear region of cytoplasm 2 PIK3CA, TLR4
adherens junction 1 VEGFA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
intercellular canaliculus 1 ABCC2
mitochondrion 3 BCL2L1, CASP9, CYP1B1
protein-containing complex 3 AKT1, ALB, CASP9
intracellular membrane-bounded organelle 2 CYP1B1, CYP3A4
Microsome membrane 2 CYP1B1, CYP3A4
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TLR4
Secreted 5 ALB, IL10, IL6, REN, VEGFA
extracellular region 6 ALB, IL10, IL6, REN, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2L1
Single-pass membrane protein 1 BCL2L1
mitochondrial outer membrane 1 BCL2L1
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
anchoring junction 1 ALB
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2L1, CCND1
Bcl-2 family protein complex 1 BCL2L1
nuclear membrane 2 BCL2L1, CCND1
external side of plasma membrane 2 TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
microtubule cytoskeleton 1 AKT1
Early endosome 1 TLR4
apical part of cell 1 REN
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Apical cell membrane 2 ABCB1, ABCC2
Membrane raft 1 TNF
spindle 1 AKT1
extracellular matrix 1 VEGFA
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 NR3C2, TLR4
ciliary basal body 2 AKT1, ALB
chromatin 1 NR3C2
phagocytic cup 2 TLR4, TNF
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
lipopolysaccharide receptor complex 1 TLR4
endoplasmic reticulum lumen 2 ALB, IL6
transcription repressor complex 1 CCND1
platelet alpha granule lumen 2 ALB, VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
apoptosome 1 CASP9
external side of apical plasma membrane 1 ABCB1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
caspase complex 1 CASP9
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jianan Wei, Junhong Zhang, Fengju Hu, Wenjuan Zhang, Yunshan Wu, Bo Liu, Yue Lu, Li Li, Ling Han, Chuanjian Lu. Anti-psoriasis effect of 18β-glycyrrhetinic acid by breaking CCL20/CCR6 axis through its vital active group targeting GUSB/ATF2 signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155524. doi: 10.1016/j.phymed.2024.155524. [PMID: 38552435]
  • Bin Zou, Shuang Zhang, Fengling Li, Fengyi Weng, Jing Zhao, Jingyi Jin, Dongming Yan, Xiaoqing Xu, Gaofeng Chen, Chenghai Liu, Chengzeng Yao, Yue Li, Furong Qiu. Gancao decoction attenuates hepatic necroptosis via activating caspase 8 in cholestatic liver injury. Journal of ethnopharmacology. 2024 May; 326(?):117909. doi: 10.1016/j.jep.2024.117909. [PMID: 38350503]
  • Ibrahim Bayav, Ekrem Darendelioğlu, Cuneyt Caglayan. 18β-Glycyrrhetinic acid exerts cardioprotective effects against BPA-induced cardiotoxicity through antiapoptotic and antioxidant mechanisms. Journal of biochemical and molecular toxicology. 2024 Feb; 38(2):e23655. doi: 10.1002/jbt.23655. [PMID: 38348715]
  • Jinrong Kong, Qingzhen Xiang, Wanyue Ge, Yunlai Wang, Fan Xu, Gaoxiang Shi. Network pharmacology mechanisms and experimental verification of licorice in the treatment of ulcerative colitis. Journal of ethnopharmacology. 2024 Jan; 324(?):117691. doi: 10.1016/j.jep.2023.117691. [PMID: 38176667]
  • Xiao Mi, Yang Lou, Yutian Wang, Mingran Dong, Hongwei Xue, Shuyang Li, Juan Lu, Xi Chen. Glycyrrhetinic Acid Receptor-Mediated Zeolitic Imidazolate Framework-8 Loaded Doxorubicin as a Nanotherapeutic System for Liver Cancer Treatment. Molecules (Basel, Switzerland). 2023 Dec; 28(24):. doi: 10.3390/molecules28248131. [PMID: 38138618]
  • Bin Zou, Shuang Zhang, Jing Zhao, Guochao Song, Fengyi Weng, Xiaoqing Xu, Fengling Li, Jingyi Jin, Dongming Yan, Kai Huang, Chenghai Liu, Yue Li, Furong Qiu. Glycyrrhetinic acid attenuates endoplasmic reticulum stress-induced hepatocyte apoptosis via CHOP/DR5/Caspase 8 pathway in cholestasis. European journal of pharmacology. 2023 Dec; 961(?):176193. doi: 10.1016/j.ejphar.2023.176193. [PMID: 37981257]
  • Ruchi Sharma, Rajeev K Singla, Subhadip Banerjee, Rohit Sharma. Revisiting Licorice as a functional food in the management of neurological disorders: bench to trend. Neuroscience and biobehavioral reviews. 2023 Nov; ?(?):105452. doi: 10.1016/j.neubiorev.2023.105452. [PMID: 37925093]
  • Xiu-Li Wang, Hui-da Guan, Shu-Xian Qu, Bo-Wen Xue, Geng Li, Xing-Yu Liu, Li-Sha Chen, Heng Gu. [Liver targeting of compound liposomes mediated by glycyrrhetinic acid derivative receptor and its effect on hepatic stellate cells]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Oct; 48(19):5195-5204. doi: 10.19540/j.cnki.cjcmm.20230605.301. [PMID: 38114109]
  • Kangchen Li, Xinguang Liu, Runsu Hou, Hulei Zhao, Peng Zhao, Yange Tian, Jiansheng Li. Uncovering mechanisms of Baojin Chenfei formula treatment for silicosis by inhibiting inflammation and fibrosis based on serum pharmacochemistry and network analysis. Ecotoxicology and environmental safety. 2023 May; 260(?):115082. doi: 10.1016/j.ecoenv.2023.115082. [PMID: 37257350]
  • Xia Li, Yuhua Du, Shicong Huang, Yi Yang, Doudou Lu, Junfei Zhang, Yan Chen, Lei Zhang, Yi Nan, Ling Yuan. Exploring the molecular mechanism of glycyrrhetinic acid in the treatment of gastric cancer based on network pharmacology and experimental validation. Aging. 2023 May; 15(9):3839-3856. doi: 10.18632/aging.204718. [PMID: 37171392]
  • Xuejiao Yuan, Yanfeng Zhou, Jinli Sun, Shanshan Wang, Xingjie Hu, Jiyu Li, Jing Huang, Nan Chen. Preventing acute liver injury via hepatocyte-targeting nano-antioxidants. Cell proliferation. 2023 May; ?(?):e13494. doi: 10.1111/cpr.13494. [PMID: 37139662]
  • Liu Cui, Xi Wang, Zhaoyun Liu, Ziqi Li, Ziwei Bai, Kui Lin, Jian Yang, Yuanlu Cui, Fei Tian. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. International journal of biological macromolecules. 2023 Apr; 240(?):124370. doi: 10.1016/j.ijbiomac.2023.124370. [PMID: 37044320]
  • Mingxing Qiu, Jiong Wang, Jiaojiao Bai, Xiaoxu Li, Cuiqing Tian, Zhi Liu, Chaoran Zheng, Andrew R Clark, Xinwei Cheng, Xiaoyan Liao, Song Wu, Robert J Lee, Xiaoju Zhou. Dual-Ligand-Functionalized Liposomes Based on Glycyrrhetinic Acid and cRGD for Hepatocellular Carcinoma Targeting and Therapy. Molecular pharmaceutics. 2023 Apr; 20(4):1951-1963. doi: 10.1021/acs.molpharmaceut.2c00842. [PMID: 36952242]
  • W Caré, G Grenet, C Schmitt, S Michel, J Langrand, G Le Roux, D Vodovar. [Adverse effects of licorice consumed as food: An update]. La Revue de medecine interne. 2023 Mar; ?(?):. doi: 10.1016/j.revmed.2023.03.004. [PMID: 37005098]
  • Dongju Lin, Jie Liu, Xiaojin Chang, Bufan Yang, Xiaofei Gu, Weiwei Li. Glycyrrhetinic acid ameliorates diosbulbin B-induced hepatotoxicity in mice by modulating metabolic activation of diosbulbin B. Journal of applied toxicology : JAT. 2023 Feb; ?(?):. doi: 10.1002/jat.4450. [PMID: 36807597]
  • Shasha Kong, Pengyue Li, Robert Verpoorte, Mingqian Li, Yuntao Dai. Chemical and pharmacological difference between honey-fried licorice and fried licorice. Journal of ethnopharmacology. 2023 Feb; 302(Pt A):115841. doi: 10.1016/j.jep.2022.115841. [PMID: 36270557]
  • Ulises Zendejas-Hernandez, Nemi Alcántara-Martínez, Diana Tovar Vivar, Fermín Valenzuela, Alejandro Sosa Espinoza, Eduardo Emir Cervera Ceballos. Nebulized glycyrrhizin/enoxolone drug modulates IL-17A in COVID-19 patients: a randomized clinical trial. Frontiers in immunology. 2023; 14(?):1282280. doi: 10.3389/fimmu.2023.1282280. [PMID: 38283346]
  • Hany Khalil, Alaa H Nada, Hoda Mahrous, Amr Hassan, Patricia Rijo, Ibrahim A Ibrahim, Dalia D Mohamed, Fawziah A Al-Salmi, Doaa D Mohamed, Ahmed I Abd Elmaksoud. Amelioration effect of 18β-Glycyrrhetinic acid on methylation inhibitors in hepatocarcinogenesis -induced by diethylnitrosamine. Frontiers in immunology. 2023; 14(?):1206990. doi: 10.3389/fimmu.2023.1206990. [PMID: 38322013]
  • Min He, Siyuan Guo, Yan Yin, Chi Zhang, Xianan Zhang. A novel sterol glycosyltransferase catalyses steroidal sapogenin 3-O glucosylation from Paris polyphylla var. yunnanensis. Molecular biology reports. 2022 Dec; ?(?):. doi: 10.1007/s11033-022-08199-y. [PMID: 36562935]
  • Linjun Zou, Qinglong Li, Yong Hou, Meiying Chen, Xudong Xu, Haifeng Wu, Zhaocui Sun, Guoxu Ma. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food & function. 2022 Dec; 13(24):12487-12509. doi: 10.1039/d2fo02472a. [PMID: 36413139]
  • Ewa Adamek, Ewa Masternak, Dominika Sapińska, Wojciech Baran. Degradation of the Selected Antibiotic in an Aqueous Solution by the Fenton Process: Kinetics, Products and Ecotoxicity. International journal of molecular sciences. 2022 Dec; 23(24):. doi: 10.3390/ijms232415676. [PMID: 36555316]
  • Lihong Sang, Ji Li, Faxing Zhang, Jiajia Jia, Jian Zhang, Pingtian Ding, Ting Sun, Dongkai Wang. Glycyrrhetinic acid modified chlorambucil prodrug for hepatocellular carcinoma treatment based on DNA replication and tumor microenvironment. Colloids and surfaces. B, Biointerfaces. 2022 Dec; 220(?):112864. doi: 10.1016/j.colsurfb.2022.112864. [PMID: 36272286]
  • Yamei Jiang, Chengzhe Cai, Pingbao Zhang, Yongsheng Luo, Jingjing Guo, Jiawei Li, Ruiming Rong, Yi Zhang, Tongyu Zhu. Transcriptional profile changes after treatment of ischemia reperfusion injury-induced kidney fibrosis with 18β-glycyrrhetinic acid. Renal failure. 2022 Dec; 44(1):660-671. doi: 10.1080/0886022x.2022.2061998. [PMID: 35699239]
  • Yanfen Cheng, Xiaoping Wu, Xin Nie, Yihan Wu, Chen Zhang, Simon Ming-Yuen Lee, Kongpeng Lv, George Pak-Heng Leung, Chaomei Fu, Jinming Zhang, Jingjing Li. Natural compound glycyrrhetinic acid protects against doxorubicin-induced cardiotoxicity by activating the Nrf2/HO-1 signaling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Nov; 106(?):154407. doi: 10.1016/j.phymed.2022.154407. [PMID: 36070662]
  • Rui Fan, Yanxiang Gao. Maillard and Hydrolytic Reactions in Subcritical Water Extraction of Bioactive Compounds from Licorice. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206851. [PMID: 36296445]
  • Yilin Xu, Min Wang, Shuangcheng Ning, Zhonglan Yang, Lili Zhou, Xinhua Xia. Development of Glycyrrhetinic Acid and Folate Modified Cantharidin Loaded Solid Lipid Nanoparticles for Targeting Hepatocellular Carcinoma. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206786. [PMID: 36296377]
  • Fei Liu, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui, Wei Chen. Ethanol Extract of Licorice Alleviates HFD-Induced Liver Fat Accumulation in Association with Modulation of Gut Microbiota and Intestinal Metabolites in Obesity Mice. Nutrients. 2022 Oct; 14(19):. doi: 10.3390/nu14194180. [PMID: 36235833]
  • Yi Hu, Li Liu, Zhuxian Wang, Cui Ping Jiang, Zhaoming Zhu, Hui Li, Quanfu Zeng, Yaqi Xue, Yufan Wu, Yuan Wang, Yankui Yi, Hongxia Zhu, Chunyan Shen, Qiang Liu. Network pharmacology, molecular docking and in vivo and in vitro experiments to explore the molecular mechanism of licorice green tea beverage to scavenge oxygen free radicals. Journal of food biochemistry. 2022 10; 46(10):e14315. doi: 10.1111/jfbc.14315. [PMID: 35855584]
  • Huanyu Guan, Pengfei Li, Qian Wang, Fanli Zeng, Jiashuo Wu, Fangqing Zhang, Shanggao Liao, Yue Shi. Deciphering the chemical constituents of Shengjiang Xiexin decoction by ultrahigh-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry and the impact of 20 characteristic components on multidrug resistance-associated protein 2 in the vesicular transport assay. Journal of separation science. 2022 Sep; 45(18):3459-3479. doi: 10.1002/jssc.202200370. [PMID: 35838583]
  • Xiu-Rong Zhang, Tao Lin, Xiu-Li Wang, Xiao-Jie Wang, Heng Gu. [Preparation of salvianolic acid B, tanshinone Ⅱ_A, and glycyrrhetinic acid lipid emulsion and its protective effect against acute liver injury induced by acetaminophen]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Sep; 47(17):4634-4642. doi: 10.19540/j.cnki.cjcmm.20220705.302. [PMID: 36164869]
  • Cai Zhang, Chenxu Li, Qi Shao, Sudan Meng, Xueying Wang, Tao Kong, Yu Li. Antioxidant monoammonium glycyrrhizinate alleviates damage from oxidative stress in perinatal cows. Journal of animal physiology and animal nutrition. 2022 Aug; ?(?):. doi: 10.1111/jpn.13764. [PMID: 35989475]
  • Cong Wang, Jun Yang, Enliang Li, Shuaiwu Luo, Chi Sun, Yuting Liao, Min Li, Jin Ge, Jun Lei, Fan Zhou, Linquan Wu, Wenjun Liao. Metabolic signatures of hepatolithiasis using ultra-high performance liquid chromatography-tandem mass spectrometry. Metabolomics : Official journal of the Metabolomic Society. 2022 08; 18(9):69. doi: 10.1007/s11306-022-01927-2. [PMID: 35976530]
  • Cuneyt Caglayan, Fatih Mehmet Kandemir, Adnan Ayna, Cihan Gür, Sefa Küçükler, Ekrem Darendelioğlu. Neuroprotective effects of 18β-glycyrrhetinic acid against bisphenol A-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metabolic brain disease. 2022 08; 37(6):1931-1940. doi: 10.1007/s11011-022-01027-z. [PMID: 35699857]
  • Huawei Li, Jia You, Xi Yang, Yuanfeng Wei, Lingnan Zheng, Yaqin Zhao, Ying Huang, Zhao Jin, Cheng Yi. Glycyrrhetinic acid: A potential drug for the treatment of COVID-19 cytokine storm. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jul; 102(?):154153. doi: 10.1016/j.phymed.2022.154153. [PMID: 35636166]
  • Zhangting Wang, Jiang Ma, Yisheng He, Kai-Kei Miu, Sheng Yao, Chunping Tang, Yang Ye, Ge Lin. Nrf2-mediated liver protection by 18β-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3β pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jul; 102(?):154162. doi: 10.1016/j.phymed.2022.154162. [PMID: 35598524]
  • Jia-Ling Wang, Hui Liu, Zhi-Cheng Jing, Fang Zhao, Ru Zhou. 18β-Glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling. The Chinese journal of physiology. 2022 Jul; 65(4):187-198. doi: 10.4103/0304-4920.354801. [PMID: 36073567]
  • Liqin Wang, Haiming Deng, Tengyu Wang, Yun Qiao, Jianbing Zhu, Mingfeng Xiong. Investigation into the protective effects of hypaconitine and glycyrrhetinic acid against chronic heart failure of the rats. BMC complementary medicine and therapies. 2022 Jun; 22(1):160. doi: 10.1186/s12906-022-03632-y. [PMID: 35710396]
  • Ling Yuan, Yi Yang, Xia Li, Xin Zhou, Yu-Hua Du, Wen-Jing Liu, Lei Zhang, Lei Yu, Ting-Ting Ma, Jia-Xin Li, Yan Chen, Yi Nan. 18β-glycyrrhetinic acid regulates mitochondrial ribosomal protein L35-associated apoptosis signaling pathways to inhibit proliferation of gastric carcinoma cells. World journal of gastroenterology. 2022 Jun; 28(22):2437-2456. doi: 10.3748/wjg.v28.i22.2437. [PMID: 35979263]
  • Adham M Alkhadrawi, Haijie Xue, Nadeem Ahmad, Muhammad Akram, Ying Wang, Chun Li. Molecular study on the role of vacuolar transporters in glycyrrhetinic acid production in engineered Saccharomyces cerevisiae. Biochimica et biophysica acta. Biomembranes. 2022 06; 1864(6):183890. doi: 10.1016/j.bbamem.2022.183890. [PMID: 35181296]
  • Qing Li, Rui Su, Xin Bao, Kunxia Cao, Yangyang Du, Nanya Wang, Jianfeng Wang, Fan Xing, Fei Yan, Keke Huang, Shouhua Feng. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta biomaterialia. 2022 05; 144(?):109-120. doi: 10.1016/j.actbio.2022.03.030. [PMID: 35314366]
  • K Buvanesvaragurunathan, J Ganesh, S Nagul Kumar, V Porchezhiyan, A Radha, P Azhahianambi, P Pandikumar, S Ignacimuthu. In vitro growth inhibitory effect of selected 18β-glycyrrhetinic acid esters on Theileriaannulata. Experimental parasitology. 2022 May; 236-237(?):108258. doi: 10.1016/j.exppara.2022.108258. [PMID: 35421387]
  • Fang-Ning Chen, Xiu-Li Wang, Rui-Rui Xu, Xiao-Jie Wang, Jing-Hua Ruan. [Preparation of tanshinone Ⅱ_A-glycyrrhetinic acid solid lipid nanoparticles and its inhibitory effect on acne]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 May; 47(9):2449-2456. doi: 10.19540/j.cnki.cjcmm.20210323.303. [PMID: 35531692]
  • YaQi Zhang, Rong Liang, Chunhuan Liu, Cheng Yang. Improved stability and skin penetration through glycethosomes loaded with glycyrrhetinic acid. International journal of cosmetic science. 2022 Apr; 44(2):249-261. doi: 10.1111/ics.12771. [PMID: 35303372]
  • Yuan Feng, Yanwu Li, Di Zhou, Bingxin Li, Gang Chen, Ning Li. Glycyrrhetinic acid reverses antibiotic-induced intestinal epithelial injury through RNA-binding protein human antigen R (HuR). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jan; 94(?):153836. doi: 10.1016/j.phymed.2021.153836. [PMID: 34775357]
  • Mo Jie, Zhao-Qi Zhang, Ning Deng, Qiu-Meng Liu, Chao Wang, Qian-Yun Ge, Peng-Chen Du, Sha-Sha Song, Xue-Wu Zhang, Long-Xin, Hui-Fang Liang, Liang Chu, Lei Zhang, Xiao-Ping Chen, Jin Chen, Han-Hua Dong, Bi-Xiang Zhang. 18[Formula: see text]-Glycyrrhetinic Acid Inhibits TGF-[Formula: see text]-Induced Epithelial-to-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma by Targeting STAT3. The American journal of Chinese medicine. 2022; 50(1):313-332. doi: 10.1142/s0192415x22500124. [PMID: 34963428]
  • Yadong Fan, Wenjin Dong, Ying Wang, Shan Zhu, Rundong Chai, Zhe Xu, Xiaoyu Zhang, Yiqi Yan, Long Yang, Yuhong Bian. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease. Frontiers in immunology. 2022; 13(?):959495. doi: 10.3389/fimmu.2022.959495. [PMID: 35967372]
  • Hidayat Hussain, Iftikhar Ali, Daijie Wang, Faruck L Hakkim, Bernhard Westermann, Ishtiaq Ahmed, Ahmed M Ashour, Amjad Khan, Amjad Hussain, Ivan R Green, Syed Tasadaque Ali Shah. Glycyrrhetinic acid: a promising scaffold for the discovery of anticancer agents. Expert opinion on drug discovery. 2021 12; 16(12):1497-1516. doi: 10.1080/17460441.2021.1956901. [PMID: 34294017]
  • Xiaoyan Wang, Fang Xie, Xiaofeng Zhou, Ting Chen, Ye Xue, Wei Wang. 18β-Glycyrrhetinic acid inhibits the apoptosis of cells infected with rotavirus SA11 via the Fas/FasL pathway. Pharmaceutical biology. 2021 Dec; 59(1):1098-1105. doi: 10.1080/13880209.2021.1961821. [PMID: 34411493]
  • Ling-Chun Chen, Wei-Jie Cheng, Shyr-Yi Lin, Ming-Tse Hung, Ming-Thau Sheu, Hong-Liang Lin, Chien-Ming Hsieh. CPT11 with P-glycoprotein/CYP 3A4 dual-function inhibitor by self-nanoemulsifying nanoemulsion combined with gastroretentive technology to enhance the oral bioavailability and therapeutic efficacy against pancreatic adenocarcinomas. Drug delivery. 2021 Dec; 28(1):2205-2217. doi: 10.1080/10717544.2021.1989087. [PMID: 34662257]
  • Ibtesam S Alanazi, Mohamed Emam, Mabrouk Elsabagh, Saad Alkahtani, Mohamed M Abdel-Daim. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. Environmental science and pollution research international. 2021 Nov; 28(41):58322-58330. doi: 10.1007/s11356-021-14742-4. [PMID: 34117542]
  • David J Morris, Andrew S Brem, Alex Odermatt. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. The Journal of steroid biochemistry and molecular biology. 2021 11; 214(?):105988. doi: 10.1016/j.jsbmb.2021.105988. [PMID: 34464733]
  • Tao Yang, Jing Zhou, Lei Fang, Minmin Wang, Maimaitiyiming Dilinuer, Aikemu Ainiwaer. Protection function of 18β-glycyrrhetinic acid on rats with high-altitude pulmonary hypertension based on 1H NMR metabonomics technology. Analytical biochemistry. 2021 10; 631(?):114342. doi: 10.1016/j.ab.2021.114342. [PMID: 34419454]
  • Ling Zhao, Leyi Liang, Mimi Guo, Ming Li, Xuesong Yu, Ying Wang, Yan Wang. Hepatocellular Carcinoma Targeting and Pharmacodynamics of Paclitaxel Nanoliposomes Modified by Glycyrrhetinic Acid and Ferric Tetroxide. Current topics in medicinal chemistry. 2021 Oct; 21(14):1268-1284. doi: 10.2174/1568026621666210621090005. [PMID: 34620053]
  • Yusen Xiang, Mengge Wang, Hongzhuan Chen, Lili Chen. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Biochemical pharmacology. 2021 10; 192(?):114724. doi: 10.1016/j.bcp.2021.114724. [PMID: 34371003]
  • Yi Wen, Hansen Chen, Lu Zhang, Meiling Wu, Feng Zhang, Dan Yang, Jiangang Shen, Jianping Chen. Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating NADPH oxidases and iNOS, and depriving glutathione in triple-negative breast cancer cells. Free radical biology & medicine. 2021 09; 173(?):41-51. doi: 10.1016/j.freeradbiomed.2021.07.019. [PMID: 34271106]
  • Debora Santonocito, Carmelo Puglia, Cristina Torrisi, Alessandro Giuffrida, Valentina Greco, Francesco Castelli, Maria Grazia Sarpietro. Calorimetric Evaluation of Glycyrrhetic Acid (GA)- and Stearyl Glycyrrhetinate (SG)-Loaded Solid Lipid Nanoparticle Interactions with a Model Biomembrane. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164903. [PMID: 34443491]
  • Teng Guo, Jianying Lu, Yunlong Fan, Yongtai Zhang, Shuo Yin, Xianyi Sha, Nianping Feng. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. International journal of pharmaceutics. 2021 Jul; 604(?):120762. doi: 10.1016/j.ijpharm.2021.120762. [PMID: 34082000]
  • V E Vallejo-Garcia, A Barrio-Rodriguez, M Heras-Benito. [Acute myocardial infarction and severe hypokalaemia due to liquorice consumption during COVID-19 confinement]. Hipertension y riesgo vascular. 2021 Jul; 38(3):e10-e12. doi: 10.1016/j.hipert.2021.02.004. [PMID: 33715981]
  • Luisa Diomede, Marten Beeg, Alessio Gamba, Oscar Fumagalli, Marco Gobbi, Mario Salmona. Can Antiviral Activity of Licorice Help Fight COVID-19 Infection?. Biomolecules. 2021 06; 11(6):. doi: 10.3390/biom11060855. [PMID: 34201172]
  • Wei Zhang, He-Ying Wang, Huai-Xu Wang, Zhen-Yuan Zhu. Synthesis and inhibition of α-glucosidase of methyl glycyrrhetinate glycosides. Natural product research. 2021 Jun; 35(11):1874-1880. doi: 10.1080/14786419.2019.1639181. [PMID: 31305136]
  • Shouyan Wu, Henglei Lu, Wenjie Wang, Luyao Song, Meng Liu, Yuhan Cao, Xinming Qi, Jianhua Sun, Likun Gong. Prevention of D-GalN/LPS-induced ALI by 18β-glycyrrhetinic acid through PXR-mediated inhibition of autophagy degradation. Cell death & disease. 2021 05; 12(5):480. doi: 10.1038/s41419-021-03768-8. [PMID: 33986260]
  • Francesco De Seta, Salvatore Caruso, Giovanni Di Lorenzo, Federico Romano, Mariateresa Mirandola, Rossella E Nappi. Efficacy and safety of a new vaginal gel for the treatment of symptoms associated with vulvovaginal atrophy in postmenopausal women: A double-blind randomized placebo-controlled study. Maturitas. 2021 May; 147(?):34-40. doi: 10.1016/j.maturitas.2021.03.002. [PMID: 33832645]
  • Hongbo Wang, Jiawei Zuo, Liang Zha, Xia Jiang, Caixia Wu, Yong-An Yang, Wenjian Tang, Tianlu Shi. Design and synthesis of novel glycyrrhetin ureas as anti-inflammatory agents for the treatment of acute kidney injury. Bioorganic chemistry. 2021 05; 110(?):104755. doi: 10.1016/j.bioorg.2021.104755. [PMID: 33652342]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Liu Liu, Haobin Li, Kaiwen Hu, Qinglong Xu, Xiaoan Wen, Keguang Cheng, Caiping Chen, Haoliang Yuan, Liang Dai, Hongbin Sun. Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid. European journal of medicinal chemistry. 2021 Jan; 209(?):112932. doi: 10.1016/j.ejmech.2020.112932. [PMID: 33131725]
  • Erh-Ti Lin, Bor-Shyh Lin, Li-Cheng Tsai, Wei-Kung Chen, Yen-Jen Wang, Hsiu-Mei Chiang, Chang-Cheng Chang. Functional recovery in human partial thickness skin wounds after application of multicomponent hydrolipidic film (MAS063DP): A prospective, open-label, comparative clinical trial. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2021 01; 29(1):87-96. doi: 10.1111/wrr.12866. [PMID: 33047411]
  • Michela Maestrini, Marcelo Beltrão Molento, Mario Forzan, Stefania Perrucci. In vitro anthelmintic activity of an aqueous extract of Glycyrrhiza glabra and of glycyrrhetinic acid against gastrointestinal nematodes of small ruminants. Parasite (Paris, France). 2021; 28(?):64. doi: 10.1051/parasite/2021060. [PMID: 34468311]
  • Yuanyuan Wang, Zongmin Yu, Hu Yuan, Hao Chen, Ning Xie, Zhibin Wang, Qingyan Sun, Weidong Zhang. Structure-based design of glycyrrhetinic acid derivatives as potent anti-sepsis agents targeting high-mobility group box-1. Bioorganic chemistry. 2021 01; 106(?):104461. doi: 10.1016/j.bioorg.2020.104461. [PMID: 33223202]
  • Jinfeng Shi, Jingjing Li, Jiaxin Li, Renkai Li, Xiaoping Wu, Fei Gao, Liang Zou, Winston Wing Shum Mak, Chaomei Fu, Jinming Zhang, George Pak-Heng Leung. Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jan; 81(?):153408. doi: 10.1016/j.phymed.2020.153408. [PMID: 33234363]
  • Kai-Xia Zhang, Peng-Ru Wang, Fei Chen, Xi-Jing Qian, Lin Jia, Xiao-Juan Liu, Lin Li, Yong-Sheng Jin. Synthesis and Anti-HCV Activities of 18β-Glycyrrhetinic Acid Derivatives and Their In-Silico ADMET Analysis. Current computer-aided drug design. 2021; 17(6):831-837. doi: 10.2174/1573409916666200827104008. [PMID: 32860363]
  • Minghui Zhou, Shuang Li, Sheng Shi, Shaolong He, Yanni Ma, Wenping Wang. Hepatic targeting of glycyrrhetinic acid via nanomicelles based on stearic acid-modified fenugreek gum. Artificial cells, nanomedicine, and biotechnology. 2020 Dec; 48(1):1105-1113. doi: 10.1080/21691401.2020.1813740. [PMID: 32880189]
  • T M J van Bakel, J M van der Klooster, F Borst, L C Urlings-Strop. [Hypokalemia due to a liquorice-containing thirst-quencher]. Nederlands tijdschrift voor geneeskunde. 2020 11; 164(?):. doi: . [PMID: 33331713]
  • Andrey V Markov, Aleksandra V Sen'kova, Valeriya O Babich, Kirill V Odarenko, Vadim A Talyshev, Oksana V Salomatina, Nariman F Salakhutdinov, Marina A Zenkova, Evgeniya B Logashenko. Dual Effect of Soloxolone Methyl on LPS-Induced Inflammation In Vitro and In Vivo. International journal of molecular sciences. 2020 Oct; 21(21):. doi: 10.3390/ijms21217876. [PMID: 33114200]
  • Hong Ding, Wenjun Deng, Lingling Ding, Xiaoqun Ye, Shanye Yin, Weishan Huang. Glycyrrhetinic acid and its derivatives as potential alternative medicine to relieve symptoms in nonhospitalized COVID-19 patients. Journal of medical virology. 2020 10; 92(10):2200-2204. doi: 10.1002/jmv.26064. [PMID: 32458502]
  • Min Huang, Ping Gong, Yuetong Wang, Xiaorui Xie, Zhuangshi Ma, Qihao Xu, Dan Liu, Yongkui Jing, Linxiang Zhao. Synthesis and antitumor effects of novel 18β-glycyrrhetinic acid derivatives featuring an exocyclic α,β-unsaturated carbonyl moiety in ring A. Bioorganic chemistry. 2020 10; 103(?):104187. doi: 10.1016/j.bioorg.2020.104187. [PMID: 32890994]
  • Elazer R Edelman, Neel M Butala, Laura L Avery, Andrew L Lundquist, Anand S Dighe. Case 30-2020: A 54-Year-Old Man with Sudden Cardiac Arrest. The New England journal of medicine. 2020 Sep; 383(13):1263-1275. doi: 10.1056/nejmcpc2002420. [PMID: 32966726]
  • Yanan Gao, Liang Zhang, Xudong Feng, Xiaofei Liu, Fang Guo, Bo Lv, Chun Li. Galactosylation of Monosaccharide Derivatives of Glycyrrhetinic Acid by UDP-Glycosyltransferase GmSGT2 from Glycine max. Journal of agricultural and food chemistry. 2020 Aug; 68(32):8580-8588. doi: 10.1021/acs.jafc.0c03842. [PMID: 32689796]
  • Meng Yang, Minyi Zhang, Qingli Liu, Tingting Xu, Tongling Huang, Dongsheng Yao, Chi-Wai Wong, Jinsong Liu, Min Guan. 18β-Glycyrrhetinic acid acts through hepatocyte nuclear factor 4 alpha to modulate lipid and carbohydrate metabolism. Pharmacological research. 2020 07; 157(?):104840. doi: 10.1016/j.phrs.2020.104840. [PMID: 32353589]
  • Qing-Hong Du, Chu-Jun Zhang, Wei-Hong Li, Yan Mu, Ya Xu, Scott Lowe, Lin Han, Xue Yu, Shu-Yan Wang, Yu Li, Jian Li. Gan Shen Fu Fang ameliorates liver fibrosis in vitro and in vivo by inhibiting the inflammatory response and extracellular signal-regulated kinase phosphorylation. World journal of gastroenterology. 2020 Jun; 26(21):2810-2820. doi: 10.3748/wjg.v26.i21.2810. [PMID: 32550756]
  • Chenxiao Shan, Qi Yuan, Xiaobing Cui, Chuan Chai, Sheng Yu, Hongmei Wen, Xi Huang. Simultaneous quantitation of glycyrrhetic acid and puerarin in plasma using ultra flow liquid chromatography tandem mass spectrometry and application in a pharmacokinetics study in healthy and alcoholic liver injury rats. Biomedical chromatography : BMC. 2020 Jun; 34(6):e4818. doi: 10.1002/bmc.4818. [PMID: 32110832]
  • Jiaying Song, Huizhen Dai, Huan Zhang, Yanchao Liu, Wenjing Zhang. Influence of glycyrrhetinic acid on the pharmacokinetics of warfarin in rats. Xenobiotica; the fate of foreign compounds in biological systems. 2020 May; 50(5):602-605. doi: 10.1080/00498254.2019.1671637. [PMID: 31542982]
  • Xiaoli Cheng, Linwei Qiu, Fen Wang. 18α-Glycyrrhetinic acid (GA) ameliorates fructose-induced nephropathy in mice by suppressing oxidative stress, dyslipidemia and inflammation. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 May; 125(?):109702. doi: 10.1016/j.biopha.2019.109702. [PMID: 32106383]
  • Hesham Eed Desouky, Guang-Zhen Jiang, Ding-Dong Zhang, Kenneth Prudence Abasubong, Xiangyang Yuan, Xiang-Fei Li, Wen-Bin Liu. Influences of glycyrrhetinic acid (GA) dietary supplementation on growth, feed utilization, and expression of lipid metabolism genes in channel catfish (Ictalurus punctatus) fed a high-fat diet. Fish physiology and biochemistry. 2020 Apr; 46(2):653-663. doi: 10.1007/s10695-019-00740-4. [PMID: 31897860]
  • Hao Wang, Hu Shan, Haitao Lü. Preparative separation of liquiritigenin and glycyrrhetic acid from Glycyrrhiza uralensis Fisch using hydrolytic extraction combined with high-speed countercurrent chromatography. Biomedical chromatography : BMC. 2020 Apr; 34(4):e4788. doi: 10.1002/bmc.4788. [PMID: 31899545]
  • Seon Yu Lee, Ji Hyun Jeong, Bo Na Kim, So Jung Park, Yang-Chun Park, Guk Yeo Lee. LC-MS/MS analysis of puerarin and 18β-glycyrrhetinic acid in human plasma after oral administration of Samso-eum and its application to pharmacokinetic study. Biomedical chromatography : BMC. 2020 Apr; 34(4):e4774. doi: 10.1002/bmc.4774. [PMID: 31813157]
  • Atsushi Tsuge, Shinsuke Hisaka, Hiroaki Hayashi, Mitsuhiko Nose. Effect of hot water extract of a glycyrrhizin-deficient strain of Glycyrrhiza uralensis on contact hypersensitivity in mice. Journal of natural medicines. 2020 Mar; 74(2):415-420. doi: 10.1007/s11418-019-01386-5. [PMID: 31916003]
  • Jingjing Li, Fan Tang, Renkai Li, Zhejie Chen, Simon Ming-Yuen Lee, Chaomei Fu, Jinming Zhang, George Pak-Heng Leung. Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo. The Journal of nutritional biochemistry. 2020 03; 77(?):108268. doi: 10.1016/j.jnutbio.2019.108268. [PMID: 31830590]
  • Shao-Hua Xu, Hai-Lan Chen, Yong Fan, Wei Xu, Jian Zhang. Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect. Bioorganic & medicinal chemistry letters. 2020 02; 30(4):126947. doi: 10.1016/j.bmcl.2019.126947. [PMID: 31924497]
  • Xiaofeng Shen, Ling Li, Qihan Ma, Hua Chen, Jiangping Wang, Lei Lv, Yuwei Li. Pharmacokinetic study of eight bioactive components following oral administration of Zhiqiao Gancao decoction and observation of its clinical efficacy. Biomedical chromatography : BMC. 2020 Feb; 34(2):e4706. doi: 10.1002/bmc.4706. [PMID: 31629372]
  • Junko Ishizaki, Chihiro Nakano, Kana Kitagawa, Yukio Suga, Yoshimichi Sai. A Previously Unknown Drug-Drug Interaction Is Suspected in Delayed Elimination of Plasma Methotrexate in High-Dose Methotrexate Therapy. The Annals of pharmacotherapy. 2020 01; 54(1):29-35. doi: 10.1177/1060028019870445. [PMID: 31416331]
  • Haiming Chen, Huazhen Liu, Bin Tang, Yuchao Chen, Ling Han, Jingjie Yu, Yuhong Yan, Chuanjian Lu. The Protective Effects of 18β-Glycyrrhetinic Acid on Imiquimod-Induced Psoriasis in Mice via Suppression of mTOR/STAT3 Signaling. Journal of immunology research. 2020; 2020(?):1980456. doi: 10.1155/2020/1980456. [PMID: 32908937]
  • Amr Hefnawy, Islam H Khalil, Kholoud Arafa, Marwan Emara, Ibrahim M El-Sherbiny. Dual-Ligand Functionalized Core-Shell Chitosan-Based Nanocarrier for Hepatocellular Carcinoma-Targeted Drug Delivery. International journal of nanomedicine. 2020; 15(?):821-837. doi: 10.2147/ijn.s240359. [PMID: 32103939]
  • Yu-Jin Kwon, Da-Hye Son, Tae-Ha Chung, Yong-Jae Lee. A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. Journal of medicinal food. 2020 Jan; 23(1):12-20. doi: 10.1089/jmf.2019.4459. [PMID: 31874059]
  • Sixi Huang, Di Ren, Xinrong Wu, Ming Li, Xuesong Yu, Xiaoling Nie, Ying Wang, Yan Wang. Glycyrrhetinic Acid and TAT Peptide Modified Dual-functional Liposomes for Treatment of Hepatocellular Cancer. Current topics in medicinal chemistry. 2020; 20(27):2493-2505. doi: 10.2174/1568026620666200722110244. [PMID: 32703132]
  • Meng Xiang, Xiang Zhou, Ting-Rong Luo, Pei-Yi Wang, Li-Wei Liu, Zhong Li, Zhi-Bing Wu, Song Yang. Design, Synthesis, Antibacterial Evaluation, and Induced Apoptotic Behaviors of Epimeric and Chiral 18β-Glycyrrhetinic Acid Ester Derivatives with an Isopropanolamine Bridge against Phytopathogens. Journal of agricultural and food chemistry. 2019 Dec; 67(48):13212-13220. doi: 10.1021/acs.jafc.9b06147. [PMID: 31702905]
  • Ting Zhou, Xin Tang, Wei Zhang, Jianfang Feng, Wei Wu. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug delivery. 2019 Dec; 26(1):673-679. doi: 10.1080/10717544.2019.1636422. [PMID: 31266376]
  • Peng Zhang, Zhi Chang, Jiamei Yang, Jun Feng, Yang Yu, Yanmin Pei, Jialing Wang, Fang Zhao, Zhou Ru. Vasorelaxation effect of 18β-glycyrrhetinic acid on the thoracic aorta of rats: proposed mechanism. Die Pharmazie. 2019 12; 74(12):751-754. doi: 10.1691/ph.2019.9724. [PMID: 31907117]
  • Xujie Jiang, Ge Kuang, Xia Gong, Rong Jiang, Tianjun Xie, Hongtao Tie, Shengwang Wu, Ting Wang, Jingyuan Wan, Bin Wang. Glycyrrhetinic acid pretreatment attenuates liver ischemia/reperfusion injury via inhibiting TLR4 signaling cascade in mice. International immunopharmacology. 2019 Nov; 76(?):105870. doi: 10.1016/j.intimp.2019.105870. [PMID: 31493667]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]