Glycine chenodeoxycholate (BioDeep_00000001652)

 

Secondary id: BioDeep_00000014595, BioDeep_00000229659, BioDeep_00000404224

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids PANOMIX LipidSearch BioNovoGene_Lab2019


代谢物信息卡片


2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

化学式: C26H43NO5 (449.3141)
中文名称: 甘氨鹅脱氧胆酸, 甘氨鹅去氧胆酸, 甘氨鹅脱氧胆酸钠
谱图信息: 最多检出来源 Homo sapiens(blood) 33.89%

Reviewed

Last reviewed on 2024-07-17.

Cite this Page

Glycine chenodeoxycholate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycine_chenodeoxycholate (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001652). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(CCC(=O)NCC(=O)O)C1CCC2C1(CCC3C2C(CC4C3(CCC(C4)O)C)O)C
InChI: InChI=1S/C26H43NO5/c1-15(4-7-22(30)27-14-23(31)32)18-5-6-19-24-20(9-11-26(18,19)3)25(2)10-8-17(28)12-16(25)13-21(24)29/h15-21,24,28-29H,4-14H2,1-3H3,(H,27,30)(H,31,32)/t15-,16+,17-,18-,19+,20+,21-,24+,25+,26-/m1/s1

描述信息

Chenodeoxycholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). This compound usually exists as the sodium salt and acts as a detergent to solubilize fats for absorption and is itself absorbed. It is a cholagogue and choleretic.
Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].

同义名列表

21 个代谢物同义名

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid; 2-[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid; [(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid; N-(3alpha,7alpha-dihydroxy-5beta-cholan-24-oyl)-glycine; Chenodeoxycholic acid glycine conjugic acid; Chenodeoxycholic acid glycine conjugate; Chenodeoxycholate glycine conjugate; Glycine chenodeoxycholic acid; Acid, glycochenodeoxycholic; Glycochenodeoxycholic acid; Chenoglycodeoxycholic acid; Chenodeoxyglycocholic acid; Chenodeoxycholate, glycine; Glycine chenodeoxycholate; Chenodeoxycholylglycine; Chenodeoxyglycocholate; Glycochenodeoxycholate; ST 24:1;O4;G; GCDCA; Glycochenodeoxycholic acid (GCDCA); Glycochenodeoxycholate



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AKT1, ANXA5, BCL2, BIRC5, CASP3, CASP8, FABP6, FAS, GNAT3, MAPK3, MCL1, NFKB1, STAT3
Peripheral membrane protein 2 ANXA5, FABP6
Endoplasmic reticulum membrane 2 BCL2, CYP7A1
Nucleus 12 AKT1, BCL2, BIRC5, CASP3, CASP8, FABP6, JUN, MAPK3, MCL1, NFKB1, NR1H4, STAT3
cytosol 12 AKT1, ANXA5, BCL2, BIRC5, CASP3, CASP8, FABP6, FAS, MAPK3, MCL1, NFKB1, STAT3
nuclear body 1 FAS
nucleoplasm 10 AKT1, BIRC5, CASP3, CASP8, JUN, MAPK3, MCL1, NFKB1, NR1H4, STAT3
RNA polymerase II transcription regulator complex 3 JUN, NR1H4, STAT3
Cell membrane 5 AKT1, FAS, SLC10A1, SLCO1B1, SLCO1B3
Cytoplasmic side 1 FABP6
lamellipodium 2 AKT1, CASP8
Multi-pass membrane protein 3 SLC10A1, SLCO1B1, SLCO1B3
cell cortex 1 AKT1
cell surface 1 FAS
glutamatergic synapse 3 AKT1, CASP3, MAPK3
Golgi apparatus 2 FAS, MAPK3
Golgi membrane 1 INS
neuronal cell body 1 CASP3
postsynapse 1 AKT1
sarcolemma 1 ANXA5
acrosomal vesicle 1 GNAT3
plasma membrane 8 AKT1, FAS, GNAT3, MAPK3, SLC10A1, SLCO1B1, SLCO1B3, STAT3
Membrane 9 AKT1, ANXA5, BCL2, FABP6, FAS, MCL1, SLC10A1, SLCO1B1, SLCO1B3
apical plasma membrane 1 GNAT3
basolateral plasma membrane 3 SLC10A1, SLCO1B1, SLCO1B3
caveola 1 MAPK3
extracellular exosome 2 ANXA5, FAS
endoplasmic reticulum 1 BCL2
extracellular space 1 INS
mitochondrion 5 BCL2, CASP8, MAPK3, MCL1, NFKB1
protein-containing complex 5 AKT1, BCL2, BIRC5, CASP8, GNAT3
intracellular membrane-bounded organelle 1 CYP7A1
Microsome membrane 1 CYP7A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 FAS
Secreted 1 INS
extracellular region 3 ANXA5, INS, NFKB1
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 3 BCL2, CYP7A1, MCL1
mitochondrial outer membrane 3 BCL2, CASP8, MCL1
transcription regulator complex 3 JUN, NFKB1, STAT3
photoreceptor inner segment 1 GNAT3
photoreceptor outer segment 1 GNAT3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 2 BCL2, MCL1
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, FAS
microtubule cytoskeleton 2 AKT1, BIRC5
midbody 1 BIRC5
Early endosome 1 MAPK3
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 FAS
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK3
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 2 ANXA5, MAPK3
microtubule 1 BIRC5
spindle 2 AKT1, BIRC5
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
axoneme 1 GNAT3
interphase microtubule organizing center 1 BIRC5
Late endosome 1 MAPK3
receptor complex 1 NR1H4
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
chromatin 4 JUN, NFKB1, NR1H4, STAT3
Chromosome 1 BIRC5
cytoskeleton 2 CASP8, MAPK3
[Isoform 3]: Nucleus 1 NR1H4
centriole 1 BIRC5
nuclear chromosome 2 BIRC5, JUN
Basolateral cell membrane 2 SLCO1B1, SLCO1B3
nuclear envelope 1 MAPK3
endosome lumen 1 INS
Membrane, caveola 1 MAPK3
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
heterotrimeric G-protein complex 1 GNAT3
myosin complex 1 MCL1
Nucleus, nucleoplasm 1 MCL1
Melanosome 1 FAS
euchromatin 2 JUN, NR1H4
cell body 1 CASP8
myelin sheath 1 BCL2
pseudopodium 1 MAPK3
basal plasma membrane 2 SLCO1B1, SLCO1B3
[Isoform 1]: Cytoplasm 1 FABP6
secretory granule lumen 2 INS, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, MAPK3
specific granule lumen 1 NFKB1
kinetochore 1 BIRC5
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
chromosome, centromeric region 1 BIRC5
[Isoform 2]: Cytoplasm 1 FABP6
vesicle membrane 1 ANXA5
chromosome passenger complex 1 BIRC5
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
cytoplasmic microtubule 1 BIRC5
Basal cell membrane 2 SLCO1B1, SLCO1B3
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
CD95 death-inducing signaling complex 2 CASP8, FAS
death-inducing signaling complex 3 CASP3, CASP8, FAS
ripoptosome 1 CASP8
[Isoform 1]: Cell membrane 1 FAS
[Isoform 4]: Nucleus 1 NR1H4
transcription factor AP-1 complex 1 JUN
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
glycogen granule 1 FAS


文献列表

  • Yueying Zhao, Cheng Xi, Donghan Liu, Xiaoqiao Ren, Jiayi Fan, Jakkree Tangthianchaichana, Yang Lu, Huichao Wu. Chemical components with antibacterial properties found in sanchen powder from traditional Tibetan medicine. Journal of ethnopharmacology. 2024 May; 326(?):117981. doi: 10.1016/j.jep.2024.117981. [PMID: 38417599]
  • Shuhui Liu, Zhangshan Gao, Wanqiu He, Yuting Wu, Jiwen Liu, Shuo Zhang, Liping Yan, Shengyong Mao, Xizhi Shi, Wentao Fan, Suquan Song. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free radical biology & medicine. 2022 11; 193(Pt 1):213-226. doi: 10.1016/j.freeradbiomed.2022.10.270. [PMID: 36265794]
  • Ting Gong, Chuangen Li, Shiqiang Li, Xiaojuan Zhang, Zhongming He, Xianhong Jiang, Qiuyue He, Rongjuan Huang, Yong Wang, Xiong Liu. Capsaicin regulates dyslipidemia by altering the composition of bile acids in germ-free mice. Food & function. 2022 Oct; 13(20):10665-10679. doi: 10.1039/d2fo02209e. [PMID: 36172720]
  • Zongmei Wu, Yana Geng, Manon Buist-Homan, Han Moshage. Scopoletin and umbelliferone protect hepatocytes against palmitate- and bile acid-induced cell death by reducing endoplasmic reticulum stress and oxidative stress. Toxicology and applied pharmacology. 2022 02; 436(?):115858. doi: 10.1016/j.taap.2021.115858. [PMID: 34979142]
  • William J He, Jingsha Chen, Alexander C Razavi, Emily A Hu, Morgan E Grams, Bing Yu, Chirag R Parikh, Eric Boerwinkle, Lydia Bazzano, Lu Qi, Tanika N Kelly, Josef Coresh, Casey M Rebholz. Metabolites Associated with Coffee Consumption and Incident Chronic Kidney Disease. Clinical journal of the American Society of Nephrology : CJASN. 2021 11; 16(11):1620-1629. doi: 10.2215/cjn.05520421. [PMID: 34737201]
  • Michelle L Manni, Victoria A Heinrich, Gregory J Buchan, James P O'Brien, Crystal Uvalle, Veronika Cechova, Adolf Koudelka, Dharti Ukani, Mohamad Rawas-Qalaji, Tim D Oury, Renee Hart, Madeline Ellgass, Steven J Mullett, Merritt L Fajt, Sally E Wenzel, Fernando Holguin, Bruce A Freeman, Stacy G Wendell. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Scientific reports. 2021 09; 11(1):17788. doi: 10.1038/s41598-021-96471-9. [PMID: 34493738]
  • Lele Cheng, Tao Chen, Manyun Guo, Peining Liu, Xiangrui Qiao, Yuanyuan Wei, Jianqing She, Bolin Li, Wen Xi, Juan Zhou, Zuyi Yuan, Yue Wu, Junhui Liu. Glycoursodeoxycholic acid ameliorates diet-induced metabolic disorders with inhibiting endoplasmic reticulum stress. Clinical science (London, England : 1979). 2021 07; 135(14):1689-1706. doi: 10.1042/cs20210198. [PMID: 34236076]
  • Cong Liang, Xiao-Hong Zhou, Pi-Min Gong, Hai-Yue Niu, Lin-Zheng Lyu, Yi-Fan Wu, Xue Han, Lan-Wei Zhang. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food & function. 2021 May; 12(10):4315-4324. doi: 10.1039/d1fo00260k. [PMID: 34031676]
  • Mikko Neuvonen, Päivi Hirvensalo, Aleksi Tornio, Brian Rago, Mark West, Sarah Lazzaro, Sumathy Mathialagan, Manthena Varma, Matthew A Cerny, Chester Costales, Ragu Ramanathan, A David Rodrigues, Mikko Niemi. Identification of Glycochenodeoxycholate 3-O-Glucuronide and Glycodeoxycholate 3-O-Glucuronide as Highly Sensitive and Specific OATP1B1 Biomarkers. Clinical pharmacology and therapeutics. 2021 03; 109(3):646-657. doi: 10.1002/cpt.2053. [PMID: 32961594]
  • Weifeng Lan, Zhijian Chen, Yongtai Chen, Miduo Tan, Yuan Chen, Jianwei Chen, Xiaobin Chi, Yongbiao Chen. Glycochenodeoxycholic acid impairs transcription factor E3 -dependent autophagy-lysosome machinery by disrupting reactive oxygen species homeostasis in L02 cells. Toxicology letters. 2020 Oct; 331(?):11-21. doi: 10.1016/j.toxlet.2020.05.017. [PMID: 32439580]
  • Erikka Loftfield, Joseph A Rothwell, Rashmi Sinha, Pekka Keski-Rahkonen, Nivonirina Robinot, Demetrius Albanes, Stephanie J Weinstein, Andriy Derkach, Joshua Sampson, Augustin Scalbert, Neal D Freedman. Prospective Investigation of Serum Metabolites, Coffee Drinking, Liver Cancer Incidence, and Liver Disease Mortality. Journal of the National Cancer Institute. 2020 03; 112(3):286-294. doi: 10.1093/jnci/djz122. [PMID: 31168595]
  • Patrick G K Mayer, Natalia Qvartskhava, Annika Sommerfeld, Boris Görg, Dieter Häussinger. Regulation of Plasma Membrane Localization of the Na⁺-Taurocholate Co-Transporting Polypeptide by Glycochenodeoxycholate and Tauroursodeoxycholate. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2019; 52(6):1427-1445. doi: 10.33594/000000100. [PMID: 31088037]
  • Issey Takehara, Hanano Terashima, Takeshi Nakayama, Takashi Yoshikado, Miwa Yoshida, Kenichi Furihata, Nobuaki Watanabe, Kazuya Maeda, Osamu Ando, Yuichi Sugiyama, Hiroyuki Kusuhara. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. Pharmaceutical research. 2017 Aug; 34(8):1601-1614. doi: 10.1007/s11095-017-2184-5. [PMID: 28550384]
  • Lien Van den Bossche, Pieter Hindryckx, Lindsey Devisscher, Sarah Devriese, Sophie Van Welden, Tom Holvoet, Ramiro Vilchez-Vargas, Marius Vital, Dietmar H Pieper, Julie Vanden Bussche, Lynn Vanhaecke, Tom Van de Wiele, Martine De Vos, Debby Laukens. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Applied and environmental microbiology. 2017 04; 83(7):. doi: 10.1128/aem.02766-16. [PMID: 28115375]
  • Hui Li, Su-Fang Fan, Yan Wang, Shi-Gang Shen, Dian-Xing Sun. Rapid Detection of Small Molecule Metabolites in Serum of Hepatocellular Carcinoma Patients Using Ultrafast Liquid Chromatography-Ion Trap-Time of Flight Tandem Mass Spectrometry. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2017; 33(5):573-578. doi: 10.2116/analsci.33.573. [PMID: 28496060]
  • Shyamchand Mayengbam, James D House, Michel Aliani. Investigation of vitamin B₆ inadequacy, induced by exposure to the anti-B₆ factor 1-amino D-proline, on plasma lipophilic metabolites of rats: a metabolomics approach. European journal of nutrition. 2016 Apr; 55(3):1213-23. doi: 10.1007/s00394-015-0934-x. [PMID: 26009005]
  • Gergő Horváth, Ákos Bencsura, Ágnes Simon, Gregory P Tochtrop, Gregory T DeKoster, Douglas F Covey, David P Cistola, Orsolya Toke. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. The FEBS journal. 2016 Feb; 283(3):541-55. doi: 10.1111/febs.13610. [PMID: 26613247]
  • Benjamin L Woolbright, Kenneth Dorko, Daniel J Antoine, Joanna I Clarke, Parviz Gholami, Feng Li, Sean C Kumer, Timothy M Schmitt, Jameson Forster, Fang Fan, Rosalind E Jenkins, B Kevin Park, Bruno Hagenbuch, Mojtaba Olyaee, Hartmut Jaeschke. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicology and applied pharmacology. 2015 Mar; 283(3):168-77. doi: 10.1016/j.taap.2015.01.015. [PMID: 25636263]
  • Laura James, Ke Yan, Lisa Pence, Pippa Simpson, Sudeepa Bhattacharyya, Pritmohinder Gill, Lynda Letzig, Gregory Kearns, Richard Beger. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity. PloS one. 2015; 10(7):e0131010. doi: 10.1371/journal.pone.0131010. [PMID: 26208104]
  • Annika Sommerfeld, Roland Reinehr, Dieter Häussinger. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015; 36(3):866-83. doi: 10.1159/000430262. [PMID: 26044599]
  • Cynthia R L Webster, Andrea N Johnston, M Sawkat Anwer. Protein kinase Cδ protects against bile acid apoptosis by suppressing proapoptotic JNK and BIM pathways in human and rat hepatocytes. American journal of physiology. Gastrointestinal and liver physiology. 2014 Dec; 307(12):G1207-15. doi: 10.1152/ajpgi.00165.2014. [PMID: 25359536]
  • Amanda J Cross, Steven C Moore, Simina Boca, Wen-Yi Huang, Xiaoqin Xiong, Rachael Stolzenberg-Solomon, Rashmi Sinha, Joshua N Sampson. A prospective study of serum metabolites and colorectal cancer risk. Cancer. 2014 Oct; 120(19):3049-57. doi: 10.1002/cncr.28799. [PMID: 24894841]
  • Carlos A Penno, Stuart A Morgan, Adam J Rose, Stephan Herzig, Gareth G Lavery, Alex Odermatt. 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Molecular metabolism. 2014 Aug; 3(5):554-64. doi: 10.1016/j.molmet.2014.04.008. [PMID: 25061560]
  • Mark Mapstone, Amrita K Cheema, Massimo S Fiandaca, Xiaogang Zhong, Timothy R Mhyre, Linda H MacArthur, William J Hall, Susan G Fisher, Derick R Peterson, James M Haley, Michael D Nazar, Steven A Rich, Dan J Berlau, Carrie B Peltz, Ming T Tan, Claudia H Kawas, Howard J Federoff. Plasma phospholipids identify antecedent memory impairment in older adults. Nature medicine. 2014 Apr; 20(4):415-8. doi: 10.1038/nm.3466. [PMID: 24608097]
  • Elisa Lozano, Laura Sanchez-Vicente, Maria J Monte, Elisa Herraez, Oscar Briz, Jesus M Banales, Jose J G Marin, Rocio I R Macias. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Molecular cancer research : MCR. 2014 Jan; 12(1):91-100. doi: 10.1158/1541-7786.mcr-13-0503. [PMID: 24255171]
  • Shuang Liang, Wei-Wei Su, Yong-Gang Wang, Wei Peng, Yi-Chu Nie, Pei-Bo Li. Effect of quercetin 7-rhamnoside on glycochenodeoxycholic acid-induced L-02 human normal liver cell apoptosis. International journal of molecular medicine. 2013 Aug; 32(2):323-30. doi: 10.3892/ijmm.2013.1414. [PMID: 23756642]
  • Benjamin L Woolbright, Hartmut Jaeschke. Novel insight into mechanisms of cholestatic liver injury. World journal of gastroenterology. 2012 Sep; 18(36):4985-93. doi: 10.3748/wjg.v18.i36.4985. [PMID: 23049206]
  • Laia Tolosa, Sandra Pinto, M Teresa Donato, Agustín Lahoz, José V Castell, J Enrique O'Connor, M José Gómez-Lechón. Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicological sciences : an official journal of the Society of Toxicology. 2012 May; 127(1):187-98. doi: 10.1093/toxsci/kfs083. [PMID: 22331495]
  • Yan Gu, Cheng Lu, Qinglin Zha, Hongwei Kong, Xin Lu, Aiping Lu, Guowang Xu. Plasma metabonomics study of rheumatoid arthritis and its Chinese medicine subtypes by using liquid chromatography and gas chromatography coupled with mass spectrometry. Molecular bioSystems. 2012 Apr; 8(5):1535-43. doi: 10.1039/c2mb25022e. [PMID: 22419152]
  • Gergo Horváth, Péter Király, Gábor Tárkányi, Orsolya Toke. Internal motions and exchange processes in human ileal bile acid binding protein as studied by backbone (15)N nuclear magnetic resonance spectroscopy. Biochemistry. 2012 Mar; 51(9):1848-61. doi: 10.1021/bi201588q. [PMID: 22329738]
  • Serena Zanzoni, Michael Assfalg, Alejandro Giorgetti, Mariapina D'Onofrio, Henriette Molinari. Structural requirements for cooperativity in ileal bile acid-binding proteins. The Journal of biological chemistry. 2011 Nov; 286(45):39307-17. doi: 10.1074/jbc.m111.261099. [PMID: 21917914]
  • Satish C Kalhan, Lining Guo, John Edmison, Srinivasan Dasarathy, Arthur J McCullough, Richard W Hanson, Mike Milburn. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism: clinical and experimental. 2011 Mar; 60(3):404-13. doi: 10.1016/j.metabol.2010.03.006. [PMID: 20423748]
  • Rahul C Deo, Luke Hunter, Gregory D Lewis, Guillaume Pare, Ramachandran S Vasan, Daniel Chasman, Thomas J Wang, Robert E Gerszten, Frederick P Roth. Interpreting metabolomic profiles using unbiased pathway models. PLoS computational biology. 2010 Feb; 6(2):e1000692. doi: 10.1371/journal.pcbi.1000692. [PMID: 20195502]
  • Tzung-Yan Lee, Fang-Yu Chen, Hen-Hong Chang, Han-Chieh Lin. The effect of capillarisin on glycochenodeoxycholic acid-induced apoptosis and heme oxygenase-1 in rat primary hepatocytes. Molecular and cellular biochemistry. 2009 May; 325(1-2):53-9. doi: 10.1007/s11010-008-0019-8. [PMID: 19132499]
  • Maria Vertzoni, Helen Archontaki, Christos Reppas. Determination of intralumenal individual bile acids by HPLC with charged aerosol detection. Journal of lipid research. 2008 Dec; 49(12):2690-5. doi: 10.1194/jlr.d800039-jlr200. [PMID: 18693215]
  • Maria A Brito, Sílvia Lima, Adelaide Fernandes, Ana S Falcão, Rui F M Silva, D Allan Butterfield, Dora Brites. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology. 2008 Mar; 29(2):259-69. doi: 10.1016/j.neuro.2007.11.002. [PMID: 18164405]
  • Eun-Jeon Park, Yu-Zhe Zhao, Youn-Chul Kim, Dong Hwan Sohn. PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting JNK phosphorylation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2007 Oct; 45(10):1891-8. doi: 10.1016/j.fct.2007.04.005. [PMID: 17560000]
  • Jason S Soden, Michael W Devereaux, Joel E Haas, Eric Gumpricht, Rolf Dahl, Jane Gralla, Maret G Traber, Ronald J Sokol. Subcutaneous vitamin E ameliorates liver injury in an in vivo model of steatocholestasis. Hepatology (Baltimore, Md.). 2007 Aug; 46(2):485-95. doi: 10.1002/hep.21690. [PMID: 17659596]
  • Ying H Pan, Brian J Bahnson. Structural basis for bile salt inhibition of pancreatic phospholipase A2. Journal of molecular biology. 2007 Jun; 369(2):439-50. doi: 10.1016/j.jmb.2007.03.034. [PMID: 17434532]
  • Maria J Perez, Elena Velasco, Maria J Monte, Jose M Gonzalez-Buitrago, Jose J G Marin. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver. Toxicology. 2006 Aug; 225(2-3):183-94. doi: 10.1016/j.tox.2006.05.015. [PMID: 16824660]
  • Eun-Jeon Park, So-Yeon Kim, Yu-Zhe Zhao, Dong Hwan Sohn. Honokiol reduces oxidative stress, c-jun-NH2-terminal kinase phosphorylation and protects against glycochenodeoxycholic acid-induced apoptosis in primary cultured rat hepatocytes. Planta medica. 2006 Jun; 72(7):661-4. doi: 10.1055/s-2006-931571. [PMID: 16732532]
  • Orsolya Toke, John D Monsey, Gregory T DeKoster, Gregory P Tochtrop, Changguo Tang, David P Cistola. Determinants of cooperativity and site selectivity in human ileal bile acid binding protein. Biochemistry. 2006 Jan; 45(3):727-37. doi: 10.1021/bi051781p. [PMID: 16411748]
  • Sachiko Mita, Hiroshi Suzuki, Hidetaka Akita, Bruno Stieger, Peter J Meier, Alan F Hofmann, Yuichi Sugiyama. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. American journal of physiology. Gastrointestinal and liver physiology. 2005 Jan; 288(1):G159-67. doi: 10.1152/ajpgi.00360.2003. [PMID: 15297262]
  • P Lepercq, P Relano, C Cayuela, C Juste. Bifidobacterium animalis strain DN-173 010 hydrolyses bile salts in the gastrointestinal tract of pigs. Scandinavian journal of gastroenterology. 2004 Dec; 39(12):1266-71. doi: 10.1080/00365520410003515. [PMID: 15743005]
  • Soichiro Hata, Pijun Wang, Nicole Eftychiou, Meenakshisundaram Ananthanarayanan, Ashok Batta, Gerald Salen, K Sandy Pang, Allan W Wolkoff. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. American journal of physiology. Gastrointestinal and liver physiology. 2003 Nov; 285(5):G829-39. doi: 10.1152/ajpgi.00352.2002. [PMID: 12842829]
  • Susana Solá, Maria A Brito, Dora Brites, José J G Moura, Cecília M P Rodrigues. Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes. Clinical science (London, England : 1979). 2002 Nov; 103(5):475-85. doi: 10.1042/cs1030475. [PMID: 12401120]
  • Dirk Graf, Anna Kordelia Kurz, Roland Reinehr, Richard Fischer, Gerald Kircheis, Dieter Häussinger. Prevention of bile acid-induced apoptosis by betaine in rat liver. Hepatology (Baltimore, Md.). 2002 Oct; 36(4 Pt 1):829-39. doi: 10.1053/jhep.2002.35536. [PMID: 12297830]
  • Timothy Scott Wiedmann, Wei Liang, Lamya Kamel. Solubilization of drugs by physiological mixtures of bile salts. Pharmaceutical research. 2002 Aug; 19(8):1203-8. doi: 10.1023/a:1019858428449. [PMID: 12240947]
  • Yo-ichi Yamashita, Mitsuo Shimada, Eiji Tsujita, Ken Shirabe, Hiroyuki Ijima, Kohji Nakazawa, Ryoichi Sakiyama, Junji Fukuda, Kazumori Funatsu, Keizo Sugimachi. High metabolic function of primary human and porcine hepatocytes in a polyurethane foam/spheroid culture system in plasma from patients with fulminant hepatic failure. Cell transplantation. 2002; 11(4):379-84. doi: 10.3727/000000002783985855. [PMID: 12162378]
  • Y Takikawa, H Miyoshi, C Rust, P Roberts, R Siegel, P K Mandal, R E Millikan, G J Gores. The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology. 2001 Jun; 120(7):1810-7. doi: 10.1053/gast.2001.24835. [PMID: 11375961]
  • H C Walters, A L Craddock, H Fusegawa, M C Willingham, P A Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. American journal of physiology. Gastrointestinal and liver physiology. 2000 Dec; 279(6):G1188-200. doi: 10.1152/ajpgi.2000.279.6.g1188. [PMID: 11093941]
  • T Sodeman, S F Bronk, P J Roberts, H Miyoshi, G J Gores. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. American journal of physiology. Gastrointestinal and liver physiology. 2000 Jun; 278(6):G992-9. doi: 10.1152/ajpgi.2000.278.6.g992. [PMID: 10859230]
  • E Gumpricht, M W Devereaux, R H Dahl, R J Sokol. Glutathione status of isolated rat hepatocytes affects bile acid-induced cellular necrosis but not apoptosis. Toxicology and applied pharmacology. 2000 Apr; 164(1):102-11. doi: 10.1006/taap.2000.8894. [PMID: 10739750]
  • B Stieger, K Fattinger, J Madon, G A Kullak-Ublick, P J Meier. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000 Feb; 118(2):422-30. doi: 10.1016/s0016-5085(00)70224-1. [PMID: 10648470]
  • S Masuda, K Ibaramoto, A Takeuchi, H Saito, Y Hashimoto, K I Inui. Cloning and functional characterization of a new multispecific organic anion transporter, OAT-K2, in rat kidney. Molecular pharmacology. 1999 Apr; 55(4):743-52. doi: NULL. [PMID: 10101033]
  • K Fadden, M J Hill, E Latymer, G Low, R W Owen. Steroid metabolism along the gastrointestinal tract of the cannulated pig. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 1999 Feb; 8(1):35-40. doi: 10.1097/00008469-199902000-00005. [PMID: 10091041]
  • K N Shivaram, B M Winklhofer-Roob, M S Straka, M W Devereaux, G Everson, G W Mierau, R J Sokol. The effect of idebenone, a coenzyme Q analogue, on hydrophobic bile acid toxicity to isolated rat hepatocytes and hepatic mitochondria. Free radical biology & medicine. 1998 Sep; 25(4-5):480-92. doi: 10.1016/s0891-5849(98)00077-x. [PMID: 9741584]
  • M J Lieser, J Park, S Natori, B A Jones, S F Bronk, G J Gores. Cholestasis confers resistance to the rat liver mitochondrial permeability transition. Gastroenterology. 1998 Sep; 115(3):693-701. doi: 10.1016/s0016-5085(98)70149-0. [PMID: 9721167]
  • A L Craddock, M W Love, R W Daniel, L C Kirby, H C Walters, M H Wong, P A Dawson. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. The American journal of physiology. 1998 01; 274(1):G157-69. doi: 10.1152/ajpgi.1998.274.1.g157. [PMID: 9458785]
  • R D Duan, Y Cheng, H D Tauschel, A Nilsson. Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: a potential implication in tumorigenesis. Digestive diseases and sciences. 1998 Jan; 43(1):26-32. doi: 10.1023/a:1018807600683. [PMID: 9508530]
  • B L Lee, A L New, C N Ong. Comparative analysis of conjugated bile acids in human serum using high-performance liquid chromatography and capillary electrophoresis. Journal of chromatography. B, Biomedical sciences and applications. 1997 Dec; 704(1-2):35-42. doi: 10.1016/s0378-4347(97)00443-x. [PMID: 9518169]
  • B A Jones, Y P Rao, R T Stravitz, G J Gores. Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C. The American journal of physiology. 1997 May; 272(5 Pt 1):G1109-15. doi: 10.1152/ajpgi.1997.272.5.g1109. [PMID: 9176220]
  • T Patel, G J Gores. Inhibition of bile-salt-induced hepatocyte apoptosis by the antioxidant lazaroid U83836E. Toxicology and applied pharmacology. 1997 Jan; 142(1):116-22. doi: 10.1006/taap.1996.8031. [PMID: 9007040]
  • B L Strom, R D Soloway, J Rios-Dalenz, H A Rodriguez-Martinez, S L West, J L Kinman, R S Crowther, D Taylor, M Polansky, J A Berlin. Biochemical epidemiology of gallbladder cancer. Hepatology (Baltimore, Md.). 1996 Jun; 23(6):1402-11. doi: 10.1002/hep.510230616. [PMID: 8675157]
  • S A Azer, G W McCaughan, N H Stacey. Daily determination of individual serum bile acids allows early detection of hepatic allograft dysfunction. Hepatology (Baltimore, Md.). 1994 Dec; 20(6):1458-64. doi: 10.1002/hep.1840200613. [PMID: 7982645]
  • M Kishinaka, A Umeda, S Kuroki. High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase. Steroids. 1994 Aug; 59(8):485-9. doi: 10.1016/0039-128x(94)90062-0. [PMID: 7985210]
  • A Roda, E Roda, E Marchi, P Simoni, C Cerrè, A Pistillo, C Polimeni. Improved intestinal absorption of an enteric-coated sodium ursodeoxycholate formulation. Pharmaceutical research. 1994 May; 11(5):642-7. doi: 10.1023/a:1018907825281. [PMID: 8058630]
  • R S Crowther, M Okido. Inhibition of calcium phosphate precipitation by bile salts: a test of the Ca(2+)-buffering hypothesis. Journal of lipid research. 1994 Feb; 35(2):279-90. doi: 10.1016/s0022-2275(20)41217-9. [PMID: 8169532]
  • P R Baker, J C Wilton, C E Jones, D J Stenzel, N Watson, G J Smith. Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells. British journal of cancer. 1992 Apr; 65(4):566-72. doi: 10.1038/bjc.1992.115. [PMID: 1562465]
  • G Hedenborg, A Norman, O Wisén. Excretion of [24-14C] glycochenodeoxycholate-3-sulphate in patients with liver cirrhosis. Scandinavian journal of clinical and laboratory investigation. 1989 Feb; 49(1):15-21. doi: 10.3109/00365518909089073. [PMID: 2727614]
  • C Marteau, H Portugal, S Mathieu, A M Pauli, A Gérolami. Effect of various bile salts on calcium concentration and calcium carbonate saturation of rat bile. Journal of hepatology. 1988 Aug; 7(1):57-62. doi: 10.1016/s0168-8278(88)80506-3. [PMID: 3183351]
  • R Penagini, J J Misiewicz, P G Frost. Effect of jejunal infusion of bile acids on small bowel transit and fasting jejunal motility in man. Gut. 1988 Jun; 29(6):789-94. doi: 10.1136/gut.29.6.789. [PMID: 3384363]
  • P R Wenham, D B Horn, A F Smith. In vitro studies upon the release of gamma-glutamyltransferase from human liver. Clinica chimica acta; international journal of clinical chemistry. 1986 Nov; 160(3):223-33. doi: 10.1016/0009-8981(86)90189-0. [PMID: 2878744]
  • Y G Song, S L Fan, Z J Li. [Clinical value of the determination of primary bile acids in serum and urine in liver diseases]. Zhonghua nei ke za zhi. 1986 Oct; 25(10):604-7, 637. doi: NULL. [PMID: 3568843]
  • H Takikawa, Y Sugiyama, N Kaplowitz. Binding of bile acids by glutathione S-transferases from rat liver. Journal of lipid research. 1986 Sep; 27(9):955-66. doi: ". [PMID: 3783048]
  • H Nittono, K Obinata, N Nakatsu, T Watanabe, S Niijima, H Sasaki, O Arisaka, H Kato, K Yabuta, T Miyano. Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high-performance liquid chromatography. Journal of pediatric gastroenterology and nutrition. 1986 Jan; 5(1):23-9. doi: 10.1097/00005176-198601000-00005. [PMID: 3944741]
  • G I Ekeke. Conjugated bile acid and cholesterol levels in pregnant Africans and Caucasians. Scandinavian journal of gastroenterology. Supplement. 1986; 124(?):129-35. doi: 10.3109/00365528609093794. [PMID: 3508628]
  • E C Orbán, J P Pallos, L T Kocsár. Production and properties of antiserum for radioimmunoassay of serum conjugated chenodeoxycholic acid and its preliminary application. Acta medica Hungarica. 1985; 42(1-2):77-84. doi: NULL. [PMID: 4034340]
  • A Chitranukroh, G Taggart, B H Billing. Enhancement of the urinary excretion of non-sulphated and sulphated radioactive bile acids by sodium acetate in the bile duct obstructed rat. Clinical science (London, England : 1979). 1985 Jan; 68(1):63-70. doi: 10.1042/cs0680063. [PMID: 3964730]
  • J S Dooley, C Bartholomew, J A Summerfield, B H Billing. The biliary excretion of sulphated and non-sulphated bile acids and bilirubin in patients with external bile drainage. Clinical science (London, England : 1979). 1984 Jul; 67(1):61-8. doi: 10.1042/cs0670061. [PMID: 6734078]
  • K Linnet, J R Andersen, P Hesselfeldt. Concentrations of glycine- and taurine-conjugated bile acids in portal and systemic venous serum in man. Scandinavian journal of gastroenterology. 1984 Jun; 19(4):575-8. doi: 10.1080/00365521.1984.12005772. [PMID: 6463582]
  • Y Tazawa, M Yamada, M Nakagawa, Y Konno, K Tada. Unconjugated, glycine-conjugated, taurine-conjugated bile acid nonsulfates and sulfates in urine of young infants with cholestasis. Acta paediatrica Scandinavica. 1984 May; 73(3):392-7. doi: 10.1111/j.1651-2227.1994.tb17754.x. [PMID: 6741539]
  • A Chitranukroh, B H Billing. Changes in the binding of radioactive conjugated bile salts to serum proteins in cholestatic jaundice. Clinical science (London, England : 1979). 1983 Jul; 65(1):77-84. doi: 10.1042/cs0650077. [PMID: 6851421]
  • K Linnet, A Mertz Nielsen. Fasting and postprandial serum concentrations of glycine- and taurine-conjugated bile acids in Crohn's disease. Scandinavian journal of gastroenterology. 1983 May; 18(3):433-8. doi: 10.3109/00365528309181619. [PMID: 6673068]
  • R Aldini, A Roda, D Festi, G Mazzella, A M Morselli, C Sama, E Roda, N Scopinaro, L Barbara. Diagnostic value of serum primary bile acids in detecting bile acid malabsorption. Gut. 1982 Oct; 23(10):829-34. doi: 10.1136/gut.23.10.829. [PMID: 7117902]
  • P R Wenham, D B Horn, A F Smith. The nature of gamma-glutamyltransferase and other hepatocyte plasma membrane enzymes in human bile. Clinica chimica acta; international journal of clinical chemistry. 1982 Sep; 124(3):303-13. doi: 10.1016/0009-8981(82)90424-7. [PMID: 6127177]
  • G J Beckett, P Armstrong, I W Percy-Robb. A comparison of bile salt binding to lymph and plasma albumin in the rat. Biochimica et biophysica acta. 1981 Jun; 664(3):602-10. doi: 10.1016/0005-2760(81)90136-3. [PMID: 7272322]
  • A K Batta, S Shefer, G Salen. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids. Journal of lipid research. 1981 May; 22(4):712-4. doi: ". [PMID: 7276746]
  • H Igimi, M C Carey. Cholesterol gallstone dissolution in bile: dissolution kinetics of crystalline (anhydrate and monohydrate) cholesterol with chenodeoxycholate, ursodeoxycholate, and their glycine and taurine conjugates. Journal of lipid research. 1981 Feb; 22(2):254-70. doi: 10.1016/s0022-2275(20)35369-4. [PMID: 7240957]
  • G Baele, R Beke, F Barbier. In vitro inhibition of platelet aggregation by bile salts. Thrombosis and haemostasis. 1980 Oct; 44(2):62-4. doi: 10.1055/s-0038-1650084. [PMID: 7455992]
  • H Igimi, M C Carey. pH-Solubility relations of chenodeoxycholic and ursodeoxycholic acids: physical-chemical basis for dissimilar solution and membrane phenomena. Journal of lipid research. 1980 Jan; 21(1):72-90. doi: 10.1016/s0022-2275(20)39841-2. [PMID: 7354256]
  • S Barnes, P G Burhol, R Zander, G Haggstrom, R L Settine, B I Hirschowitz. Enzymatic sulfation of glycochenodeoxycholic acid by tissue fractions from adult hamsters. Journal of lipid research. 1979 Nov; 20(8):952-9. doi: . [PMID: 533830]
  • S Barnes, P G Burhol, R Zander, B I Hirschowitz. The effect of bile duct ligation on hepatic bile acid sulfotransferase activity in the hamster. Biochemical medicine. 1979 Oct; 22(2):165-74. doi: 10.1016/0006-2944(79)90003-6. [PMID: 518573]
  • J D Lloyd-Still, L M Demers. Serum glycine-conjugated bile acids in pediatric hepatobiliary disorders. American journal of clinical pathology. 1979 Apr; 71(4):444-51. doi: 10.1093/ajcp/71.4.444. [PMID: 443203]
  • A Roda, E Roda, R Aldini, D Festi, G Mazzella, C Sama, L Barbara. Development, validation, and application of a single-tube radioimmunoassay for cholic and chenodeoxycholic conjugated bile acids in human serum. Clinical chemistry. 1977 Nov; 23(11):2107-13. doi: NULL. [PMID: 912876]