Silychristin (BioDeep_00001867502)

Main id: BioDeep_00000000419

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

化学式: C25H22O10 (482.1213)
中文名称: 水飞蓟亭, 水飞蓟汀
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(O)C=C(O)C2C(=O)[C@@H]([C@@H](C3=CC4[C@@H](CO)[C@H](C5=CC=C(O)C(OC)=C5)OC=4C(O)=C3)OC=2C=1)O
InChI: InChI=1S/C25H22O10/c1-33-18-6-10(2-3-15(18)28)23-14(9-26)13-4-11(5-17(30)25(13)35-23)24-22(32)21(31)20-16(29)7-12(27)8-19(20)34-24/h2-8,14,22-24,26-30,32H,9H2,1H3/t14-,22+,23+,24-/m1/s1

描述信息

A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase.
Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone.
Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available.
C26170 - Protective Agent > C2081 - Hepatoprotective Agent
Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].
Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

同义名列表

17 个代谢物同义名

Silychristin; (2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one; (2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydrochromen-4-one; (2R,3R)-3,5,7-trihydroxy-2-((2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydrobenzofuran-5-yl)chroman-4-one; 2-(2,3-Dihydro-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranyl)-3,5,7-trihydroxy-4-chromanone; Silychristin, analytical standard; Silicristina [INN-Spanish]; Silicristine [INN-French]; Silicristinum [INN-Latin]; SILICRISTIN [MART.]; Silicristin [INN]; Silicristinum; Silymarin II; Silicristina; Silicristine; Silicristin; Silychristin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

37 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, CASP3, CDK2, CDKN1A, CHEK2, CYP3A4, EGFR, NFE2L2, PPARG
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 ABCA1, CYP3A4, EGFR, HMOX1
Nucleus 9 ALB, CASP3, CDK2, CDKN1A, CHEK2, EGFR, HMOX1, NFE2L2, PPARG
cytosol 7 ALB, CASP3, CDK2, CDKN1A, HMOX1, NFE2L2, PPARG
nuclear body 1 CDKN1A
phagocytic vesicle 1 ABCA1
centrosome 3 ALB, CDK2, NFE2L2
nucleoplasm 7 CASP3, CDK2, CDKN1A, CHEK2, HMOX1, NFE2L2, PPARG
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 8 ABCA1, EGFR, ITGAM, P2RY12, SELP, SLC16A10, SLC16A2, TNF
Cytoplasmic side 1 HMOX1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 4 ABCA1, P2RY12, SLC16A10, SLC16A2
cell junction 2 EGFR, SLC16A10
cell surface 4 EGFR, ITGAM, P2RY12, TNF
glutamatergic synapse 2 CASP3, EGFR
Golgi apparatus 4 ABCA1, ALB, CHEK2, NFE2L2
Golgi membrane 2 EGFR, INS
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 1 NFE2L2
endosome 3 ABCA1, CDK2, EGFR
plasma membrane 9 ABCA1, EGFR, ITGAM, NFE2L2, P2RY12, SELP, SLC16A10, SLC16A2, TNF
Membrane 8 ABCA1, CYP3A4, EGFR, HMOX1, ITGAM, P2RY12, SLC16A10, SLC16A2
apical plasma membrane 2 EGFR, SLC16A2
basolateral plasma membrane 3 ABCA1, EGFR, SLC16A10
extracellular exosome 4 ALB, AMY2A, ITGAM, SELP
endoplasmic reticulum 2 ALB, HMOX1
extracellular space 8 ALB, AMY2A, EGFR, HMOX1, INS, ITGAM, SELP, TNF
perinuclear region of cytoplasm 5 ABCA1, CDKN1A, EGFR, HMOX1, PPARG
protein-containing complex 3 ALB, CDKN1A, EGFR
intracellular membrane-bounded organelle 4 ABCA1, CYP3A4, PPARG, SLC16A10
Microsome membrane 1 CYP3A4
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 EGFR, ITGAM, SELP
Secreted 3 ALB, INS, SELP
extracellular region 5 ALB, AMY2A, INS, SELP, TNF
mitochondrial outer membrane 1 HMOX1
anchoring junction 1 ALB
transcription regulator complex 1 CDK2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CDK2
nuclear membrane 1 EGFR
external side of plasma membrane 4 ABCA1, ITGAM, SELP, TNF
nucleolus 1 CDKN1A
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 SLC16A2
Membrane raft 4 ABCA1, EGFR, ITGAM, TNF
focal adhesion 1 EGFR
intracellular vesicle 2 ABCA1, EGFR
PML body 1 CHEK2
receptor complex 2 EGFR, PPARG
ciliary basal body 1 ALB
chromatin 2 NFE2L2, PPARG
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
centriole 1 ALB
spindle pole 1 ALB
chromosome, telomeric region 1 CDK2
blood microparticle 1 ALB
Basolateral cell membrane 1 SLC16A10
nuclear envelope 1 CDK2
endosome lumen 1 INS
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
platelet dense granule membrane 1 SELP
plasma membrane raft 1 ITGAM
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 ALB, INS
male germ cell nucleus 1 CDK2
platelet alpha granule lumen 1 ALB
endocytic vesicle 1 ABCA1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
clathrin-coated endocytic vesicle membrane 1 EGFR
Cajal body 1 CDK2
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
condensed chromosome 1 CDK2
Nucleus, Cajal body 1 CDK2
platelet alpha granule membrane 1 SELP
X chromosome 1 CDK2
Y chromosome 1 CDK2
integrin complex 1 ITGAM
cyclin-dependent protein kinase holoenzyme complex 2 CDK2, CDKN1A
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
platelet dense granule lumen 1 SELP
integrin alphaM-beta2 complex 1 ITGAM
PCNA-p21 complex 1 CDKN1A
cell body membrane 1 P2RY12
cell projection membrane 1 P2RY12
cyclin A2-CDK2 complex 1 CDK2
cyclin A1-CDK2 complex 1 CDK2
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Eisuke Kato, Natsuka Kushibiki, Hiroshi Satoh, Jun Kawabata. Silychristin derivatives conjugated with coniferylalcohols from silymarin and their pancreatic α-amylase inhibitory activity. Natural product research. 2020 Mar; 34(6):759-765. doi: 10.1080/14786419.2018.1499639. [PMID: 30445852]
  • Jiří Vrba, Barbora Papoušková, Kateřina Lněničková, Pavel Kosina, Vladimír Křen, Jitka Ulrichová. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. Journal of pharmaceutical and biomedical analysis. 2020 Jan; 178(?):112972. doi: 10.1016/j.jpba.2019.112972. [PMID: 31727359]
  • Sameh F AbouZid, Hayam S Ahmed, Abd-El Mageed A Abd El Mageed, Abeer S Moawad, Asmaa I Owis, Shao-Nong Chen, Amandine Nachtergael, James B McAlpine, J Brent Friesen, Guido F Pauli. Linear regression analysis of silychristin A, silybin A and silybin B contents in Silybum marianum. Natural product research. 2020 Jan; 34(2):305-310. doi: 10.1080/14786419.2018.1527838. [PMID: 30488719]
  • Ji Yeong Kim, Jeong Yoon Kim, Janar Jenis, Zuo Peng Li, Yeong Jun Ban, Aizhamal Baiseitova, Ki Hun Park. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle). Bioorganic & medicinal chemistry. 2019 06; 27(12):2499-2507. doi: 10.1016/j.bmc.2019.03.013. [PMID: 30871862]
  • Gabriela Hrčková, Terézia Mačák Kubašková, Oldřich Benada, Olga Kofroňová, Lenka Tumová, David Biedermann. Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions. Molecules (Basel, Switzerland). 2018 Nov; 23(11):. doi: 10.3390/molecules23112999. [PMID: 30453549]
  • Michal Bijak, Rafal Szelenberger, Angela Dziedzic, Joanna Saluk-Bijak. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets. Molecules (Basel, Switzerland). 2018 Feb; 23(2):. doi: 10.3390/molecules23020374. [PMID: 29439388]
  • Michal Bijak, Ewelina Synowiec, Przemyslaw Sitarek, Tomasz Sliwiński, Joanna Saluk-Bijak. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients. 2017 Dec; 9(12):. doi: 10.3390/nu9121356. [PMID: 29240674]
  • Michal Bijak, Joanna Saluk-Bijak. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC complementary and alternative medicine. 2017 Aug; 17(1):396. doi: 10.1186/s12906-017-1897-7. [PMID: 28797264]
  • Lenka Roubalová, Albena T Dinkova-Kostova, David Biedermann, Vladimír Křen, Jitka Ulrichová, Jiří Vrba. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia. 2017 Jun; 119(?):115-120. doi: 10.1016/j.fitote.2017.04.012. [PMID: 28450126]
  • Sameh F AbouZid, Hayam S Ahmed, Abeer S Moawad, Asmaa I Owis, Shao-Nong Chen, Amandine Nachtergael, James B McAlpine, J Brent Friesen, Guido F Pauli. Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fitoterapia. 2017 Jun; 119(?):175-184. doi: 10.1016/j.fitote.2017.04.002. [PMID: 28392269]
  • Jakub Fibigr, Dalibor Šatínský, Petr Solich. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. Journal of pharmaceutical and biomedical analysis. 2017 Feb; 134(?):203-213. doi: 10.1016/j.jpba.2016.11.042. [PMID: 27915198]
  • David Biedermann, Martin Buchta, Veronika Holečková, David Sedlák, Kateřina Valentová, Josef Cvačka, Lucie Bednárová, Alena Křenková, Marek Kuzma, Ctibor Škuta, Žaneta Peikerová, Petr Bartůněk, Vladimír Křen. Silychristin: Skeletal Alterations and Biological Activities. Journal of natural products. 2016 Dec; 79(12):3086-3092. doi: 10.1021/acs.jnatprod.6b00750. [PMID: 28006905]
  • Jörg Johannes, Roopa Jayarama-Naidu, Franziska Meyer, Eva Katrin Wirth, Ulrich Schweizer, Lutz Schomburg, Josef Köhrle, Kostja Renko. Silychristin, a Flavonolignan Derived From the Milk Thistle, Is a Potent Inhibitor of the Thyroid Hormone Transporter MCT8. Endocrinology. 2016 Apr; 157(4):1694-701. doi: 10.1210/en.2015-1933. [PMID: 26910310]
  • Michaela Pyszková, Michal Biler, David Biedermann, Kateřina Valentová, Marek Kuzma, Jiří Vrba, Jitka Ulrichová, Romana Sokolová, Miloš Mojović, Ana Popović-Bijelić, Martin Kubala, Patrick Trouillas, Vladimír Křen, Jan Vacek. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free radical biology & medicine. 2016 Jan; 90(?):114-25. doi: 10.1016/j.freeradbiomed.2015.11.014. [PMID: 26582372]
  • Naila Ben Rahal, Francisco J Barba, Danielle Barth, Isabelle Chevalot. Supercritical CO₂ extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Sep; 83(?):275-82. doi: 10.1016/j.fct.2015.07.006. [PMID: 26172510]
  • Reza Keshavarz Afshar, Mohammad Reza Chaichi, Mahya Ansari Jovini, Emad Jahanzad, Masoud Hashemi. Accumulation of silymarin in milk thistle seeds under drought stress. Planta. 2015 Sep; 242(3):539-43. doi: 10.1007/s00425-015-2265-9. [PMID: 25708739]
  • Hao-Jie Zhu, Bryan J Brinda, Kenneth D Chavin, Hilary J Bernstein, Kennerly S Patrick, John S Markowitz. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: a dose escalation study. Drug metabolism and disposition: the biological fate of chemicals. 2013 Sep; 41(9):1679-85. doi: 10.1124/dmd.113.052423. [PMID: 23835761]
  • Ludovico Abenavoli, Raffaele Capasso, Natasa Milic, Francesco Capasso. Milk thistle in liver diseases: past, present, future. Phytotherapy research : PTR. 2010 Oct; 24(10):1423-32. doi: 10.1002/ptr.3207. [PMID: 20564545]
  • Souichi Nakashima, Hisashi Matsuda, Yoshimi Oda, Seikou Nakamura, Fengming Xu, Masayuki Yoshikawa. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorganic & medicinal chemistry. 2010 Mar; 18(6):2337-2345. doi: 10.1016/j.bmc.2010.01.046. [PMID: 20189399]
  • Masumeh Khalili, Tahereh Hasanloo, Seyyed Kamal Kazemi Tabar, Hassan Rahnama. Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell biology international. 2009 Sep; 33(9):988-94. doi: 10.1016/j.cellbi.2009.06.003. [PMID: 19524695]
  • James I Lee, Mahesh Narayan, Jeffrey S Barrett. Analysis and comparison of active constituents in commercial standardized silymarin extracts by liquid chromatography-electrospray ionization mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2007 Jan; 845(1):95-103. doi: 10.1016/j.jchromb.2006.07.063. [PMID: 16942922]
  • James I Lee, Bih H Hsu, Di Wu, Jeffrey S Barrett. Separation and characterization of silybin, isosilybin, silydianin and silychristin in milk thistle extract by liquid chromatography-electrospray tandem mass spectrometry. Journal of chromatography. A. 2006 May; 1116(1-2):57-68. doi: 10.1016/j.chroma.2006.03.053. [PMID: 16631762]
  • Wendy A Smith, Denis R Lauren, Elaine J Burgess, Nigel B Perry, Richard J Martin. A silychristin isomer and variation of flavonolignan levels in milk thistle (Silybum marianum) fruits. Planta medica. 2005 Sep; 71(9):877-80. doi: 10.1055/s-2005-864187. [PMID: 16206045]
  • Lijun Duan, Danielle Julie Carrier, Edgar C Clausen. Silymarin extraction from milk thistle using hot water. Applied biochemistry and biotechnology. 2004; 113-116(?):559-68. doi: 10.1385/abab:114:1-3:559. [PMID: 15054277]
  • Roman Zuber, Martin Modrianský, Zdenek Dvorák, Petr Rohovský, Jitka Ulrichová, Vilím Simánek, Pavel Anzenbacher. Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytotherapy research : PTR. 2002 Nov; 16(7):632-8. doi: 10.1002/ptr.1000. [PMID: 12410543]
  • J Sonnenbichler, F Scalera, I Sonnenbichler, R Weyhenmeyer. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. The Journal of pharmacology and experimental therapeutics. 1999 Sep; 290(3):1375-83. doi: . [PMID: 10454517]
  • E Bosisio, C Benelli, O Pirola. Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacological research. 1992 Feb; 25(2):147-54. doi: 10.1016/1043-6618(92)91383-r. [PMID: 1635893]