Fenhexamid (BioDeep_00000397807)

Main id: BioDeep_00000001574

 

Industrial Pollutants


代谢物信息卡片


Fenhexamid

化学式: C14H17Cl2NO2 (301.0636)
中文名称: 甲醇中环酰菌胺溶液, 环酰菌胺
谱图信息: 最多检出来源 Mus musculus(not specific) 6.01%

分子结构信息

SMILES: CC1(CCCCC1)C(=O)NC2=C(C(=C(C=C2)O)Cl)Cl
InChI: InChI=1S/C14H17Cl2NO2/c1-14(7-3-2-4-8-14)13(19)17-9-5-6-10(18)12(16)11(9)15/h5-6,18H,2-4,7-8H2,1H3,(H,17,19)

描述信息

CONFIDENCE standard compound; EAWAG_UCHEM_ID 3057

同义名列表

5 个代谢物同义名

Fenhexamid; KBR2738; FNX; Fenhexamid; Fenhexamid



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 AR, BCL2, BIRC5, CAPN1, CASP9, CAT, CCND1, CCNE1, CDH1, CDH2, MARVELD1, PIK3CA, PIK3R6, RGN, VEGFA, VIM
Peripheral membrane protein 2 PIK3R6, SDHB
Endoplasmic reticulum membrane 1 BCL2
Nucleus 11 AR, BCL2, BIRC5, CASP9, CCND1, CCNE1, CDH1, MARVELD1, PCNA, RGN, VEGFA
cytosol 12 AR, BCL2, BIRC5, CAPN1, CASP9, CAT, CCND1, CCNE1, CDH1, PIK3CA, PIK3R6, VIM
mitochondrial membrane 1 SDHB
nuclear body 1 PCNA
phagocytic vesicle 1 VIM
trans-Golgi network 1 CDH1
centrosome 3 CCND1, CCNE1, PCNA
nucleoplasm 7 AR, BIRC5, CCND1, CCNE1, CDH1, PCNA, SDHB
Cell membrane 6 CAPN1, CDH1, CDH2, MARVELD1, PIK3R6, VIM
lamellipodium 3 CDH1, CDH2, PIK3CA
Multi-pass membrane protein 1 MARVELD1
cell junction 2 CDH1, CDH2
cell surface 2 CDH2, VEGFA
glutamatergic synapse 1 CDH1
Golgi apparatus 2 CDH1, VEGFA
mitochondrial inner membrane 1 SDHB
postsynapse 1 CDH1
sarcolemma 1 CDH2
Lysosome 1 CAPN1
endosome 1 CDH1
plasma membrane 9 AR, CAPN1, CDH1, CDH2, MARVELD1, PIK3CA, PIK3R6, SDHB, VIM
Membrane 9 AR, BCL2, CAPN1, CAT, CDH1, CDH2, MARVELD1, PIK3R6, VEGFA
apical plasma membrane 1 CDH2
axon 1 VIM
basolateral plasma membrane 1 CDH2
extracellular exosome 5 CAPN1, CAT, CDH1, PCNA, VIM
endoplasmic reticulum 2 BCL2, VEGFA
extracellular space 1 VEGFA
perinuclear region of cytoplasm 2 CDH1, PIK3CA
adherens junction 3 CDH1, CDH2, VEGFA
apicolateral plasma membrane 1 CDH2
bicellular tight junction 1 CCND1
intercalated disc 2 CDH2, PIK3CA
mitochondrion 5 BCL2, CAPN1, CASP9, CAT, SDHB
protein-containing complex 5 AR, BCL2, BIRC5, CASP9, CAT
intracellular membrane-bounded organelle 1 CAT
postsynaptic density 1 CDH2
Single-pass type I membrane protein 2 CDH1, CDH2
Secreted 1 VEGFA
extracellular region 4 CAPN1, CAT, CDH1, VEGFA
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 2 CAT, SDHB
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 BCL2, CCND1, CDH1
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 CDH1
microtubule cytoskeleton 1 BIRC5
midbody 1 BIRC5
apical part of cell 1 CDH2
cell-cell junction 1 CDH2
presynaptic active zone membrane 1 CDH2
Cell membrane, sarcolemma 1 CDH2
Mitochondrion inner membrane 1 SDHB
Matrix side 1 SDHB
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 MARVELD1, VIM
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 4 CAPN1, CAT, CDH2, VIM
microtubule 1 BIRC5
spindle 1 BIRC5
Cell junction, adherens junction 2 CDH1, CDH2
flotillin complex 1 CDH1
extracellular matrix 1 VEGFA
Peroxisome 2 CAT, VIM
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 CDH2
secretory granule 1 VEGFA
fascia adherens 1 CDH2
intermediate filament 1 VIM
lateral plasma membrane 1 CDH1
nuclear speck 1 AR
interphase microtubule organizing center 1 BIRC5
neuron projection 2 CDH2, VIM
chromatin 2 AR, PCNA
cell leading edge 1 VIM
Chromosome 1 BIRC5
cytoskeleton 2 MARVELD1, VIM
centriole 1 BIRC5
Golgi apparatus, trans-Golgi network 1 CDH1
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
nuclear chromosome 1 BIRC5
Cornified envelope 1 CAPN1
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
microtubule organizing center 1 VIM
replication fork 1 PCNA
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
plasma membrane raft 1 CDH2
ficolin-1-rich granule lumen 2 CAPN1, CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 CDH2
nuclear matrix 1 VIM
transcription repressor complex 1 CCND1
male germ cell nucleus 1 PCNA
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 2 PIK3CA, PIK3R6
phosphatidylinositol 3-kinase complex, class IA 2 PIK3CA, PIK3R6
kinetochore 1 BIRC5
anaphase-promoting complex 1 CDH1
respiratory chain complex II (succinate dehydrogenase) 1 SDHB
Nucleus matrix 1 VIM
apoptosome 1 CASP9
chromosome, centromeric region 1 BIRC5
nuclear lamina 1 PCNA
chromosome passenger complex 1 BIRC5
[Isoform 2]: Nucleus 1 CDH1
cytoplasmic microtubule 1 BIRC5
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
postsynaptic specialization membrane 1 CDH2
apical junction complex 1 CDH1
Cell junction, desmosome 2 CDH1, CDH2
desmosome 2 CDH1, CDH2
catenin complex 2 CDH1, CDH2
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, PCNA
cyclin E1-CDK2 complex 1 CCNE1
catalase complex 1 CAT
calpain complex 1 CAPN1
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 2 PIK3CA, PIK3R6
caspase complex 1 CASP9


文献列表

  • Da-Woon Jung, Da-Hyun Jeong, Hee-Seok Lee. Stimulation of estrogen receptor-alpha by hydroxyanilide fungicide, fenhexamid promotes lipid accumulation in 3 T3-L1 adipocyte. Pesticide biochemistry and physiology. 2024 Feb; 199(?):105757. doi: 10.1016/j.pestbp.2023.105757. [PMID: 38458660]
  • Stephen Boushell, Mengjun Hu. Post-Infection Application of Fenhexamid at Lower Doses in Conjunction with Captan Slowed Fungicide Resistance Selection in Botrytis cinerea on Detached Grape Berries. Phytopathology. 2023 Aug; ?(?):. doi: 10.1094/phyto-04-23-0141-r. [PMID: 37606323]
  • Leonie Hillebrands, Marc Lamshoeft, Andreas Lagojda, Andreas Stork, Oliver Kayser. In vitro metabolism of tebuconazole, flurtamone, fenhexamid, metalaxyl-M and spirodiclofen in Cannabis sativa L. (hemp) callus cultures. Pest management science. 2021 Dec; 77(12):5356-5366. doi: 10.1002/ps.6575. [PMID: 34309997]
  • S A Alzohairy, J Gillett, S Saito, R N Naegele, C L Xiao, T D Miles. Fungicide Resistance Profiles of Botrytis cinerea Isolates From Michigan Vineyards and Development of a TaqMan Assay for Detection of Fenhexamid Resistance. Plant disease. 2021 Feb; 105(2):285-294. doi: 10.1094/pdis-05-20-1087-re. [PMID: 32762329]
  • Zivile Luksiene, Neringa Rasiukeviciute, Bernadeta Zudyte, Nobertas Uselis. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. Journal of photochemistry and photobiology. B, Biology. 2020 Jan; 203(?):111656. doi: 10.1016/j.jphotobiol.2019.111656. [PMID: 31676121]
  • A Amiri, A I Zuniga, N A Peres. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields. Plant disease. 2018 11; 102(11):2142-2148. doi: 10.1094/pdis-11-17-1810-re. [PMID: 30169135]
  • Jie-Hua Shi, Yan-Yue Lou, Kai-Li Zhou, Dong-Qi Pan. Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid: A biophysical prospect. Journal of photochemistry and photobiology. B, Biology. 2018 Mar; 180(?):125-133. doi: 10.1016/j.jphotobiol.2018.01.025. [PMID: 29413695]
  • Kim Christopher Cohrs, Joachim Burbank, Julia Schumacher. A new transformant selection system for the gray mold fungus Botrytis cinerea based on the expression of fenhexamid-insensitive ERG27 variants. Fungal genetics and biology : FG & B. 2017 03; 100(?):42-51. doi: 10.1016/j.fgb.2017.02.001. [PMID: 28188884]
  • Facundo Rivera-Becerril, Diederik van Tuinen, Odile Chatagnier, Nadine Rouard, Jérémie Béguet, Catherine Kuszala, Guy Soulas, Vivienne Gianinazzi-Pearson, Fabrice Martin-Laurent. Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. The Science of the total environment. 2017 Jan; 577(?):84-93. doi: 10.1016/j.scitotenv.2016.10.098. [PMID: 27817923]
  • Dafang Yin, Sisi Wu, Na Liu, Yanni Yin, Zhonghua Ma. The natural fenhexamid-resistant grey mould populations from strawberry in Zhejiang Province are dominated by Botrytis cinerea group S. Pest management science. 2016 Aug; 72(8):1540-8. doi: 10.1002/ps.4183. [PMID: 26537826]
  • Danièle Debieu, Jocelyne Bach, Emeline Montesinos, Sabine Fillinger, Pierre Leroux. Role of sterol 3-ketoreductase sensitivity in susceptibility to the fungicide fenhexamid in Botrytis cinerea and other phytopathogenic fungi. Pest management science. 2013 May; 69(5):642-51. doi: 10.1002/ps.3418. [PMID: 23139232]
  • Jieru Fan, Martin Urban, Josie E Parker, Helen C Brewer, Steven L Kelly, Kim E Hammond-Kosack, Bart A Fraaije, Xili Liu, Hans J Cools. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. The New phytologist. 2013 May; 198(3):821-835. doi: 10.1111/nph.12193. [PMID: 23442154]
  • Pierre Leroux, Michel Gredt, Florent Remuson, Annie Micoud, Anne-Sophie Walker. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest management science. 2013 Jan; 69(1):15-26. doi: 10.1002/ps.3408. [PMID: 23073993]
  • Thomas Veloukas, George S Karaoglanidis. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest management science. 2012 Jun; 68(6):858-64. doi: 10.1002/ps.3241. [PMID: 22262495]
  • Éva Fekete, Erzsébet Fekete, László Irinyi, Levente Karaffa, Mariann Árnyasi, Mojtaba Asadollahi, Erzsébet Sándor. Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary. Microbiological research. 2012 May; 167(5):283-91. doi: 10.1016/j.micres.2011.10.006. [PMID: 22130648]
  • Alexis Billard, Sabine Fillinger, Pierre Leroux, Hélène Lachaise, Roland Beffa, Danièle Debieu. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest management science. 2012 May; 68(5):684-91. doi: 10.1002/ps.2312. [PMID: 22045588]
  • A Billard, V Laval, S Fillinger, P Leroux, H Lachaise, R Beffa, D Debieu. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA. Applied and environmental microbiology. 2012 Feb; 78(4):1063-8. doi: 10.1128/aem.06957-11. [PMID: 22156413]
  • Domenico Zocco, Ingrid M Van Aarle, Elodie Oger, Luisa Lanfranco, Stéphane Declerck. Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza. 2011 Jul; 21(5):363-374. doi: 10.1007/s00572-010-0344-0. [PMID: 21085999]
  • Estelle Campagnac, Anissa Lounès-Hadj Sahraoui, Djouher Debiane, Joël Fontaine, Frédéric Laruelle, Guillaume Garçon, Anthony Verdin, Roger Durand, Pirouz Shirali, Anne Grandmougin-Ferjani. Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza. 2010 Mar; 20(3):167-78. doi: 10.1007/s00572-009-0267-9. [PMID: 19756779]
  • Matthias Kretschmer, Michaela Leroch, Andreas Mosbach, Anne-Sophie Walker, Sabine Fillinger, Dennis Mernke, Henk-Jan Schoonbeek, Jean-Marc Pradier, Pierre Leroux, Maarten A De Waard, Matthias Hahn. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS pathogens. 2009 Dec; 5(12):e1000696. doi: 10.1371/journal.ppat.1000696. [PMID: 20019793]
  • Josep V Mercader, Antonio Abad-Fuentes. Monoclonal antibody generation and direct competitive enzyme-linked immunosorbent assay evaluation for the analysis of the fungicide fenhexamid in must and wine. Journal of agricultural and food chemistry. 2009 Jun; 57(12):5129-35. doi: 10.1021/jf900867u. [PMID: 19530708]
  • Anne-Noëlle Petit, Geneviève Wojnarowiez, Marie-Laure Panon, Fabienne Baillieul, Christophe Clément, Florence Fontaine, Nathalie Vaillant-Gaveau. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms. Planta. 2009 Feb; 229(3):497-506. doi: 10.1007/s00425-008-0849-3. [PMID: 19002490]
  • Estelle Campagnac, Joël Fontaine, Anissa Lounès-Hadj Sahraoui, Frédéric Laruelle, Roger Durand, Anne Grandmougin-Ferjani. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry. 2008 Dec; 69(17):2912-9. doi: 10.1016/j.phytochem.2008.09.009. [PMID: 19007946]
  • Sabine Fillinger, Pierre Leroux, Christiane Auclair, Christian Barreau, Charbel Al Hajj, Danièle Debieu. Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrobial agents and chemotherapy. 2008 Nov; 52(11):3933-40. doi: 10.1128/aac.00615-08. [PMID: 18779358]
  • Domenico Zocco, Joel Fontaine, Evgenia Lozanova, Laurent Renard, Céline Bivort, Roger Durand, Anne Grandmougin-Ferjani, Stéphane Declerck. Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycological research. 2008 May; 112(Pt 5):592-601. doi: 10.1016/j.mycres.2007.11.010. [PMID: 18396024]
  • D T Likas, N G Tsiropoulos, G E Miliadis. Rapid gas chromatographic method for the determination of famoxadone, trifloxystrobin and fenhexamid residues in tomato, grape and wine samples. Journal of chromatography. A. 2007 May; 1150(1-2):208-14. doi: 10.1016/j.chroma.2006.08.041. [PMID: 16950327]
  • N Bellí, S Marín, V Sanchis, A J Ramos. Impact of fungicides on Aspergillus carbonarius growth and ochratoxin A production on synthetic grape-like medium and on grapes. Food additives and contaminants. 2006 Oct; 23(10):1021-9. doi: 10.1080/02652030600778702. [PMID: 16982524]
  • Claudia Metz, E C Oerke, H W Dehne. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen). 2002; 67(2):353-9. doi: ". [PMID: 12701443]
  • D Debieu, J Bach, M Hugon, C Malosse, P Leroux. The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest management science. 2001 Nov; 57(11):1060-7. doi: 10.1002/ps.394. [PMID: 11721524]