alpha-muricholic acid (BioDeep_00000278207)

Main id: BioDeep_00000638108

 

Bile acids


代谢物信息卡片


3a,6b,7a-Trihydroxy-5b-cholan-24-oic acid

化学式: C24H40O5 (408.2876)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(CCC(=O)O)C1CCC2C1(CCC3C2C(C(C4C3(CCC(C4)O)C)O)O)C
InChI: InChI=1S/C24H40O5/c1-13(4-7-19(26)27)15-5-6-16-20-17(9-11-23(15,16)2)24(3)10-8-14(25)12-18(24)21(28)22(20)29/h13-18,20-22,25,28-29H,4-12H2,1-3H3,(H,26,27)

描述信息

D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay

同义名列表

4 个代谢物同义名

alpha-muricholic acid; 3a,6b,7a-Trihydroxy-5b-cholan-24-oic acid; 3,6,7-Trihydroxycholan-24-oic acid; alpha-Muricholate



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ALB, APOE, CASP1, CYP2C9, FGFR4, GPBAR1, KEAP1, NQO1, NR0B2, SREBF1, TXNIP
Peripheral membrane protein 1 CYP27A1
Endoplasmic reticulum membrane 4 CYP2C9, CYP7A1, HMOX1, SREBF1
Mitochondrion membrane 1 CYP27A1
Nucleus 9 ALB, APOE, GABPA, HMOX1, KEAP1, NQO1, NR0B2, NR1H4, SREBF1
cytosol 7 ALB, CASP1, HMOX1, KEAP1, NQO1, SREBF1, TXNIP
dendrite 2 APOE, NQO1
centrosome 1 ALB
nucleoplasm 6 GABPA, HMOX1, KEAP1, NR0B2, NR1H4, SREBF1
RNA polymerase II transcription regulator complex 1 NR1H4
Cell membrane 5 CASP1, FGFR4, GPBAR1, SLC10A1, TNF
Cytoplasmic side 1 HMOX1
Multi-pass membrane protein 3 GPBAR1, SLC10A1, SREBF1
Golgi apparatus membrane 1 SREBF1
Synapse 1 NQO1
cell surface 1 TNF
glutamatergic synapse 1 APOE
Golgi apparatus 3 ALB, APOE, FGFR4
Golgi membrane 2 INS, SREBF1
mitochondrial inner membrane 1 CYP27A1
neuronal cell body 3 APOE, NQO1, TNF
Cytoplasm, cytosol 1 NQO1
endosome 1 FGFR4
plasma membrane 8 APOE, CASP1, CYP2C9, FGFR4, GCG, GPBAR1, SLC10A1, TNF
Membrane 5 APOE, FGFR4, HMOX1, NQO1, SLC10A1
basolateral plasma membrane 1 SLC10A1
extracellular exosome 2 ALB, APOE
endoplasmic reticulum 6 ALB, APOE, FGFR4, HMOX1, KEAP1, SREBF1
extracellular space 6 ALB, APOE, GCG, HMOX1, INS, TNF
perinuclear region of cytoplasm 1 HMOX1
mitochondrion 1 CYP27A1
protein-containing complex 4 ALB, CASP1, NR0B2, SREBF1
intracellular membrane-bounded organelle 3 CYP2C9, CYP7A1, NR0B2
Microsome membrane 2 CYP2C9, CYP7A1
Single-pass type I membrane protein 1 FGFR4
Secreted 4 ALB, APOE, GCG, INS
extracellular region 6 ALB, APOE, FGFR4, GCG, INS, TNF
Single-pass membrane protein 1 CYP7A1
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 1 CYP27A1
anchoring junction 1 ALB
centriolar satellite 1 KEAP1
external side of plasma membrane 1 TNF
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
nucleolus 1 CASP1
midbody 1 KEAP1
Early endosome 1 APOE
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP27A1
Membrane raft 1 TNF
microtubule 1 CASP1
extracellular matrix 1 APOE
collagen-containing extracellular matrix 1 APOE
NLRP3 inflammasome complex 1 CASP1
receptor complex 3 FGFR4, GPBAR1, NR1H4
ciliary basal body 1 ALB
chromatin 4 GABPA, NR0B2, NR1H4, SREBF1
phagocytic cup 1 TNF
[Isoform 3]: Nucleus 1 NR1H4
centriole 1 ALB
Secreted, extracellular space 1 APOE
spindle pole 1 ALB
actin filament 1 KEAP1
blood microparticle 2 ALB, APOE
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 SREBF1
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 SREBF1
Melanosome 1 APOE
euchromatin 1 NR1H4
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, APOE, GCG, INS
platelet alpha granule lumen 1 ALB
transport vesicle 2 FGFR4, INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
ER to Golgi transport vesicle membrane 1 SREBF1
AIM2 inflammasome complex 1 CASP1
clathrin-coated endocytic vesicle membrane 1 APOE
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
synaptic cleft 1 APOE
canonical inflammasome complex 1 CASP1
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
[Isoform 4]: Nucleus 1 NR1H4
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
inclusion body 1 KEAP1
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Zeping Zhang, Boyan Zhang, Xianzhe Jiang, Yue Yu, Yimeng Cui, Hailing Luo, Bing Wang. Hyocholic acid retards renal fibrosis by regulating lipid metabolism and inflammatory response in a sheep model. International immunopharmacology. 2023 Jul; 122(?):110670. doi: 10.1016/j.intimp.2023.110670. [PMID: 37481851]
  • Yang Xie, Feng Shen, Yafang He, Canjie Guo, Ruixu Yang, Haixia Cao, Qin Pan, Jiangao Fan. Gamma-Muricholic Acid Inhibits Nonalcoholic Steatohepatitis: Abolishment of Steatosis-Dependent Peroxidative Impairment by FXR/SHP/LXRα/FASN Signaling. Nutrients. 2023 Mar; 15(5):. doi: 10.3390/nu15051255. [PMID: 36904254]
  • Jie Jiang, Yuandi Ma, Yameng Liu, Dasheng Lu, Xiaoxia Gao, Kristopher W Krausz, Dhimant Desai, Shantu G Amin, Andrew D Patterson, Frank J Gonzalez, Cen Xie. Glycine-β-muricholic acid antagonizes the intestinal farnesoid X receptor-ceramide axis and ameliorates NASH in mice. Hepatology communications. 2022 12; 6(12):3363-3378. doi: 10.1002/hep4.2099. [PMID: 36196594]
  • Antwi-Boasiako Oteng, Sei Higuchi, Alexander S Banks, Rebecca A Haeusler. Cyp2c-deficiency depletes muricholic acids and protects against high-fat diet-induced obesity in male mice but promotes liver damage. Molecular metabolism. 2021 11; 53(?):101326. doi: 10.1016/j.molmet.2021.101326. [PMID: 34438105]
  • Dany Gaillard, David Masson, Erwan Garo, Maamar Souidi, Jean-Paul Pais de Barros, Kristina Schoonjans, Jacques Grober, Philippe Besnard, Charles Thomas. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. International journal of molecular sciences. 2021 Jul; 22(13):. doi: 10.3390/ijms22137163. [PMID: 34281217]
  • Anders Ø Petersen, Hanna Julienne, Tuulia Hyötyläinen, Partho Sen, Yong Fan, Helle Krogh Pedersen, Sirkku Jäntti, Tue H Hansen, Trine Nielsen, Torben Jørgensen, Torben Hansen, Pernille Neve Myers, H Bjørn Nielsen, S Dusko Ehrlich, Matej Orešič, Oluf Pedersen. Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Scientific reports. 2021 06; 11(1):13252. doi: 10.1038/s41598-021-91482-y. [PMID: 34168163]
  • Xiaojiao Zheng, Tianlu Chen, Runqiu Jiang, Aihua Zhao, Qing Wu, Junliang Kuang, Dongnan Sun, Zhenxing Ren, Mengci Li, Mingliang Zhao, Shouli Wang, Yuqian Bao, Huating Li, Cheng Hu, Bing Dong, Defa Li, Jiayu Wu, Jialin Xia, Xuemei Wang, Ke Lan, Cynthia Rajani, Guoxiang Xie, Aiping Lu, Weiping Jia, Changtao Jiang, Wei Jia. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell metabolism. 2021 04; 33(4):791-803.e7. doi: 10.1016/j.cmet.2020.11.017. [PMID: 33338411]
  • Xiaojiao Zheng, Tianlu Chen, Aihua Zhao, Zhangchi Ning, Junliang Kuang, Shouli Wang, Yijun You, Yuqian Bao, Xiaojing Ma, Haoyong Yu, Jian Zhou, Miao Jiang, Mengci Li, Jieyi Wang, Xiaohui Ma, Shuiping Zhou, Yitao Li, Kun Ge, Cynthia Rajani, Guoxiang Xie, Cheng Hu, Yike Guo, Aiping Lu, Weiping Jia, Wei Jia. Hyocholic acid species as novel biomarkers for metabolic disorders. Nature communications. 2021 03; 12(1):1487. doi: 10.1038/s41467-021-21744-w. [PMID: 33674561]
  • Sayuri Takada, Tsutomu Matsubara, Hideki Fujii, Misako Sato-Matsubara, Atsuko Daikoku, Naoshi Odagiri, Yuga Amano-Teranishi, Norifumi Kawada, Kazuo Ikeda. Stress can attenuate hepatic lipid accumulation via elevation of hepatic β-muricholic acid levels in mice with nonalcoholic steatohepatitis. Laboratory investigation; a journal of technical methods and pathology. 2021 02; 101(2):193-203. doi: 10.1038/s41374-020-00509-x. [PMID: 33303970]
  • Jan Freark de Boer, Hilde D de Vries, Anna Palmiotti, Rumei Li, Marwah Doestzada, Joanne A Hoogerland, Jingyuan Fu, Anouk M La Rose, Marit Westerterp, Niels L Mulder, Milaine V Hovingh, Martijn Koehorst, Niels J Kloosterhuis, Justina C Wolters, Vincent W Bloks, Joel T Haas, David Dombrowicz, Bart Staels, Bart van de Sluis, Folkert Kuipers. Cholangiopathy and Biliary Fibrosis in Cyp2c70-Deficient Mice Are Fully Reversed by Ursodeoxycholic Acid. Cellular and molecular gastroenterology and hepatology. 2021; 11(4):1045-1069. doi: 10.1016/j.jcmgh.2020.12.004. [PMID: 33309945]
  • Yunhuan Liu, Kefei Chen, Fengyuan Li, Zelin Gu, Qi Liu, Liqing He, Tuo Shao, Qing Song, Fenxia Zhu, Lihua Zhang, Mengwei Jiang, Yun Zhou, Shirish Barve, Xiang Zhang, Craig J McClain, Wenke Feng. Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology (Baltimore, Md.). 2020 06; 71(6):2050-2066. doi: 10.1002/hep.30975. [PMID: 31571251]
  • Sara Straniero, Amit Laskar, Christina Savva, Jennifer Härdfeldt, Bo Angelin, Mats Rudling. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. Journal of lipid research. 2020 04; 61(4):480-491. doi: 10.1194/jlr.ra119000307. [PMID: 32086245]
  • Jin Chen, Minghua Zheng, Jun Liu, Yan Luo, Wenjun Yang, Jing Yang, Juan Liu, Jingxing Zhou, Chengfu Xu, Faling Zhao, Mingming Su, Shufei Zang, Junping Shi. Ratio of Conjugated Chenodeoxycholic to Muricholic Acids is Associated with Severity of Nonalcoholic Steatohepatitis. Obesity (Silver Spring, Md.). 2019 12; 27(12):2055-2066. doi: 10.1002/oby.22627. [PMID: 31657148]
  • Marine Coué, Angela Tesse, Juliette Falewée, Audrey Aguesse, Mikaël Croyal, Lionel Fizanne, Julien Chaigneau, Jérôme Boursier, Khadija Ouguerram. Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid. Nutrients. 2019 Jan; 11(1):. doi: 10.3390/nu11010194. [PMID: 30669332]
  • Sandra von Hardenberg, Carsten Gnewuch, Gerd Schmitz, Jürgen Borlak. ApoE is a major determinant of hepatic bile acid homeostasis in mice. The Journal of nutritional biochemistry. 2018 02; 52(?):82-91. doi: 10.1016/j.jnutbio.2017.09.008. [PMID: 29175670]
  • Tammy L Kindel, Crystal Krause, Melissa C Helm, Corrigan L McBride, Dmitry Oleynikov, Rhishikesh Thakare, Jawaher Alamoudi, Vishal Kothari, Yazen Alnouti, Rohit Kohli. Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy. Surgical endoscopy. 2018 02; 32(2):805-812. doi: 10.1007/s00464-017-5747-y. [PMID: 28779240]
  • Jia Liu, Guan Lian, Ting Wang, Yuanheng Ma, Junto Zhou, Changtao Jiang, Yuxin Yin. An HPLC-MS/MS method for quantitation of Gly-MCA in mouse plasma: Application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2017 Nov; 146(?):53-58. doi: 10.1016/j.jpba.2017.07.020. [PMID: 28854403]
  • Kyosuke Fujita, Yusuke Iguchi, Mizuho Une, Shiro Watanabe. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist. Lipids. 2017 04; 52(4):335-344. doi: 10.1007/s11745-017-4242-5. [PMID: 28315136]
  • Shogo Takahashi, Tatsuki Fukami, Yusuke Masuo, Chad N Brocker, Cen Xie, Kristopher W Krausz, C Roland Wolf, Colin J Henderson, Frank J Gonzalez. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. Journal of lipid research. 2016 12; 57(12):2130-2137. doi: 10.1194/jlr.m071183. [PMID: 27638959]
  • Mats Rudling. Understanding mouse bile acid formation: Is it time to unwind why mice and rats make unique bile acids?. Journal of lipid research. 2016 12; 57(12):2097-2098. doi: 10.1194/jlr.c072876. [PMID: 27777318]
  • Ylva Bonde, Gösta Eggertsen, Mats Rudling. Mice Abundant in Muricholic Bile Acids Show Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose Metabolism. PloS one. 2016; 11(1):e0147772. doi: 10.1371/journal.pone.0147772. [PMID: 26824238]
  • Changtao Jiang, Cen Xie, Ying Lv, Jing Li, Kristopher W Krausz, Jingmin Shi, Chad N Brocker, Dhimant Desai, Shantu G Amin, William H Bisson, Yulan Liu, Oksana Gavrilova, Andrew D Patterson, Frank J Gonzalez. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nature communications. 2015 Dec; 6(?):10166. doi: 10.1038/ncomms10166. [PMID: 26670557]
  • Zidong Donna Fu, Curtis D Klaassen. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicology and applied pharmacology. 2013 Dec; 273(3):680-90. doi: 10.1016/j.taap.2013.10.020. [PMID: 24183703]
  • Martin Perreault, Louis Gauthier-Landry, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Moshe Finel, Olivier Barbier. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Drug metabolism and disposition: the biological fate of chemicals. 2013 Sep; 41(9):1616-20. doi: 10.1124/dmd.113.052613. [PMID: 23756265]
  • Tatsuki Mizuochi, Akihiko Kimura, Atsushi Tanaka, Akina Muto, Hiroshi Nittono, Yoshitaka Seki, Tomoyuki Takahashi, Takao Kurosawa, Masayoshi Kage, Hajime Takikawa, Toyojiro Matsuishi. Characterization of urinary bile acids in a pediatric BRIC-1 patient: effect of rifampicin treatment. Clinica chimica acta; international journal of clinical chemistry. 2012 Aug; 413(15-16):1301-4. doi: 10.1016/j.cca.2012.04.011. [PMID: 22525741]
  • Youcai Zhang, Pallavi B Limaye, Lois D Lehman-McKeeman, Curtis D Klaassen. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PloS one. 2012; 7(4):e34522. doi: 10.1371/journal.pone.0034522. [PMID: 22496825]
  • Yu-Kun Jennifer Zhang, Grace L Guo, Curtis D Klaassen. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PloS one. 2011 Feb; 6(2):e16683. doi: 10.1371/journal.pone.0016683. [PMID: 21346810]
  • Jocelyn Trottier, Andrzej Białek, Patrick Caron, Robert J Straka, Piotr Milkiewicz, Olivier Barbier. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PloS one. 2011; 6(7):e22094. doi: 10.1371/journal.pone.0022094. [PMID: 21760958]
  • Lee R Hagey, Nicolas Vidal, Alan F Hofmann, Matthew D Krasowski. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC evolutionary biology. 2010 May; 10(?):133. doi: 10.1186/1471-2148-10-133. [PMID: 20444292]
  • Masahito Hagio, Megumi Matsumoto, Michihiro Fukushima, Hiroshi Hara, Satoshi Ishizuka. Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. Journal of lipid research. 2009 Jan; 50(1):173-80. doi: 10.1194/jlr.d800041-jlr200. [PMID: 18772484]
  • Kerstin Lundell, Kjell Wikvall. Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Current drug metabolism. 2008 May; 9(4):323-31. doi: 10.2174/138920008784220574. [PMID: 18473750]
  • Masami Kumagai, Akihiko Kimura, Hajime Takei, Takao Kurosawa, Kumiko Aoki, Takahiro Inokuchi, Toyojiro Matsuishi. Perinatal bile acid metabolism: bile acid analysis of meconium of preterm and full-term infants. Journal of gastroenterology. 2007 Nov; 42(11):904-10. doi: 10.1007/s00535-007-2108-y. [PMID: 18008035]
  • Susana Cuesta de Juan, Maria J Monte, Rocio I R Macias, Valérie Wauthier, Pedro Buc Calderon, Jose J G Marin. Ontogenic development-associated changes in the expression of genes involved in rat bile acid homeostasis. Journal of lipid research. 2007 Jun; 48(6):1362-70. doi: 10.1194/jlr.m700034-jlr200. [PMID: 17332599]
  • François-Pierre J Martin, Marc-Emmanuel Dumas, Yulan Wang, Cristina Legido-Quigley, Ivan K S Yap, Huiru Tang, Séverine Zirah, Gerard M Murphy, Olivier Cloarec, John C Lindon, Norbert Sprenger, Laurent B Fay, Sunil Kochhar, Peter van Bladeren, Elaine Holmes, Jeremy K Nicholson. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular systems biology. 2007; 3(?):112. doi: 10.1038/msb4100153. [PMID: 17515922]
  • Ephraim Sehayek, Lee R Hagey, Yee-Yan Fung, Elizabeth M Duncan, Hannah J Yu, Gösta Eggertsen, Ingemar Björkhem, Alan F Hofmann, Jan L Breslow. Two loci on chromosome 9 control bile acid composition: evidence that a strong candidate gene, Cyp8b1, is not the culprit. Journal of lipid research. 2006 Sep; 47(9):2020-7. doi: 10.1194/jlr.m600176-jlr200. [PMID: 16763287]
  • Noam Zelcer, Koen van de Wetering, Rudi de Waart, George L Scheffer, Hanns-Ulrich Marschall, Peter R Wielinga, Annemieke Kuil, Cindy Kunne, Alexander Smith, Martin van der Valk, Jan Wijnholds, Ronald Oude Elferink, Piet Borst. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. Journal of hepatology. 2006 Apr; 44(4):768-75. doi: 10.1016/j.jhep.2005.07.022. [PMID: 16225954]
  • Tomoaki Tadano, Motonari Kanoh, Masaru Matsumoto, Kazuhiro Sakamoto, Toshiki Kamano. Studies of serum and feces bile acids determination by gas chromatography-mass spectrometry. Rinsho byori. The Japanese journal of clinical pathology. 2006 Feb; 54(2):103-10. doi: . [PMID: 16548228]
  • Ofélia P Bento, José M Martins, Maria J Lança, Manuel C de Abreu, Ana M Viegas-Crespo, João P B Freire, José A A Almeida, Michel Riottot. Effects of ileo-rectal anastomosis on cholesterol metabolism in pigs fed either casein or extruded soya beans. The British journal of nutrition. 2004 May; 91(5):689-98. doi: 10.1079/bjn20041102. [PMID: 15137920]
  • David Q-H Wang, Susumu Tazuma. Effect of beta-muricholic acid on the prevention and dissolution of cholesterol gallstones in C57L/J mice. Journal of lipid research. 2002 Nov; 43(11):1960-8. doi: 10.1194/jlr.m200297-jlr200. [PMID: 12401895]
  • P Håkansson, I Andersson, S Nyström, L Löfgren, L F Amrot, Hong Li. Ontogenetic development and spatial distribution of the ileal apical sodium-dependent bile acid transporter and the ileal lipid-binding protein in apoE knockout and C57BL/6 mice. Scandinavian journal of gastroenterology. 2002 Sep; 37(9):1089-96. doi: 10.1080/003655202320378301. [PMID: 12374235]
  • T Nakashima, T Yoh, Y Sumida, Y Kakisaka, H Mitsuyoshi. Differences in the efficacy of ursodeoxycholic acid and bile acid metabolism between viral liver diseases and primary biliary cirrhosis. Journal of gastroenterology and hepatology. 2001 May; 16(5):541-7. doi: 10.1046/j.1440-1746.2001.02485.x. [PMID: 11350551]
  • E Purucker, H U Marschall, R Winograd, S Matern. Metabolism and effects on cholestasis of isoursodeoxycholic and ursodeoxycholic acids in bile duct ligated rats. Biochimica et biophysica acta. 2001 Apr; 1526(1):44-52. doi: 10.1016/s0304-4165(01)00096-4. [PMID: 11287121]
  • K Ushijima, A Kimura, T Inokuchi, Y Yamato, K Maeda, Y Yamashita, E Nakashima, H Kato. Placental transport of bile acids: analysis of bile acids in maternal serum and urine, umbilical cord blood, and amniotic fluid. The Kurume medical journal. 2001; 48(2):87-91. doi: 10.2739/kurumemedj.48.87. [PMID: 11501503]
  • T Nakashima, Y Sakamoto, K Inaba, H Mitsuyoshi, H Ishikawa, Y Nakajima, M Sakai, T Shima, K Kashima. A paucity of unusual trihydroxy bile acids in the urine of patients with severe liver diseases. Hepatology (Baltimore, Md.). 1999 May; 29(5):1518-22. doi: 10.1002/hep.510290502. [PMID: 10216137]
  • M Kano, M Matsumoto, T Kamano, M Tsurumaru. ELISA determination of serum hyocholic acid concentrations in humans and their possible clinical significance. Hepato-gastroenterology. 1999 Mar; 46(26):983-4. doi: NULL. [PMID: 10370651]
  • A K Batta, G Salen, H Holubec, T A Brasitus, D Alberts, D L Earnest. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps. Cancer research. 1998 Apr; 58(8):1684-7. doi: . [PMID: 9563483]
  • C C Monsma, D D Gallaher, D M Ney. Reduced digestibility of beef tallow and cocoa butter affects bile acid excretion and reduces hepatic esterified cholesterol in rats. The Journal of nutrition. 1996 Aug; 126(8):2028-35. doi: 10.1093/jn/126.8.2028. [PMID: 8759376]
  • S Hashimoto, H Igimi, K Uchida, T Satoh, Y Benno, N Takeuchi. Effects of beta-lactam antibiotics on intestinal microflora and bile acid metabolism in rats. Lipids. 1996 Jun; 31(6):601-9. doi: 10.1007/bf02523830. [PMID: 8784740]
  • H Wietholtz, H U Marschall, J Sjövall, S Matern. Stimulation of bile acid 6 alpha-hydroxylation by rifampin. Journal of hepatology. 1996 Jun; 24(6):713-8. doi: 10.1016/s0168-8278(96)80268-6. [PMID: 8835747]
  • C M Rodrigues, B T Kren, C J Steer, K D Setchell. Formation of delta 22-bile acids in rats is not gender specific and occurs in the peroxisome. Journal of lipid research. 1996 Mar; 37(3):540-50. doi: 10.1016/s0022-2275(20)37597-0. [PMID: 8728317]
  • E Bravo, A Cantafora, T Marinelli, M Avella, P A Mayes, K M Botham. Differential effects of chylomicron remnants derived from corn oil or palm oil on bile acid synthesis and very low density lipoprotein secretion in cultured rat hepatocytes. Life sciences. 1996; 59(4):331-7. doi: 10.1016/0024-3205(96)00302-5. [PMID: 8761005]
  • K Kitani. The protective effect of hydrophilic bile acids on bile acid hepatotoxicity in the rat. The Italian journal of gastroenterology. 1995 Sep; 27(7):366-71. doi: . [PMID: 8563008]
  • C Cohen-Solal, M Parquet, J Férézou, C Sérougne, C Lutton. Effects of hyodeoxycholic acid and alpha-hyocholic acid, two 6 alpha-hydroxylated bile acids, on cholesterol and bile acid metabolism in the hamster. Biochimica et biophysica acta. 1995 Jul; 1257(2):189-97. doi: 10.1016/0005-2760(95)00073-l. [PMID: 7619860]
  • K D Setchell, H Yamashita, C M Rodrigues, N C O'Connell, B T Kren, C J Steer. delta 22-Ursodeoxycholic acid, a unique metabolite of administered ursodeoxycholic acid in rats, indicating partial beta-oxidation as a major pathway for bile acid metabolism. Biochemistry. 1995 Apr; 34(13):4169-78. doi: 10.1021/bi00013a004. [PMID: 7703228]
  • A Kimura, R Yamakawa, K Ushijima, T Fujisawa, N Kuriya, H Kato, T Inokuchi, R Mahara, T Kurosawa, M Tohma. Fetal bile acid metabolism during infancy: analysis of 1 beta-hydroxylated bile acids in urine, meconium and feces. Hepatology (Baltimore, Md.). 1994 Oct; 20(4 Pt 1):819-24. doi: 10.1002/hep.1840200408. [PMID: 7927221]
  • T Kayahara, T Tamura, Y Amuro, K Higashino, H Igimi, K Uchida. Delta 22-beta-muricholic acid in monoassociated rats and conventional rats. Lipids. 1994 Apr; 29(4):289-96. doi: 10.1007/bf02536334. [PMID: 8177022]
  • S Miki, E H Mosbach, B I Cohen, T Mikami, R Infante, N Ayyad, C K McSherry. Metabolism of beta-muricholic acid in the hamster and prairie dog. Journal of lipid research. 1993 Oct; 34(10):1709-16. doi: NULL. [PMID: 8245721]
  • J Scheibner, M Fuchs, M Schiemann, G Tauber, E Hörmann, E F Stange. Bile acid synthesis from newly synthesized vs. preformed cholesterol precursor pools in the rat. Hepatology (Baltimore, Md.). 1993 Jun; 17(6):1095-102. doi: 10.1002/hep.1840170624. [PMID: 8514259]
  • A Takahashi, N Tanida, A Kawaura, M Nishikawa, T Shimoyama. Sulphated bile acid per se inhibits colonic carcinogenesis in mice. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 1993 Mar; 2(2):161-7. doi: 10.1097/00008469-199303000-00009. [PMID: 8461867]
  • H Takikawa, N Sano, K Minagawa, M Yamanaka. Effects of ursodeoxycholate, its glucuronide and disulfate and beta-muricholate on biliary bicarbonate concentration and biliary lipid excretion. Journal of hepatology. 1992 May; 15(1-2):77-84. doi: 10.1016/0168-8278(92)90015-h. [PMID: 1506660]
  • A Roda, A Minutello, M A Angellotti, A Fini. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. Journal of lipid research. 1990 Aug; 31(8):1433-43. doi: . [PMID: 2280184]
  • M Parquet, V Legrand-defretin, M Riottot, A Karpouza, C Lutton. Metabolism and effects on biliary lipid secretion of murocholic acid in the hamster. Journal of hepatology. 1990 Jul; 11(1):111-9. doi: 10.1016/0168-8278(90)90280-5. [PMID: 2398262]
  • S Hashimoto, T Chikai, K Uchida. A radioimmunoassay of bile acids. Journal of immunoassay. 1990; 11(3):355-72. doi: 10.1080/01971529008055038. [PMID: 2229424]
  • S Kanai, M Ohta, K Kitani, Y Sato. Tauro beta-muricholate is as effective as tauroursodeoxycholate in preventing taurochenodeoxycholate-induced liver damage in the rat. Life sciences. 1990; 47(26):2421-8. doi: 10.1016/0024-3205(90)90486-b. [PMID: 2263167]
  • F Bianchini, G Caderni, P Dolara, L Fantetti, D Kriebel. Effect of dietary fat, starch and cellulose on fecal bile acids in mice. The Journal of nutrition. 1989 Nov; 119(11):1617-24. doi: 10.1093/jn/119.11.1617. [PMID: 2600667]
  • T Iida, T Momose, T Tamura, T Matsumoto, F C Chang, J Goto, T Nambara. Potential bile acid metabolites. 14. Hyocholic and muricholic acid stereoisomers. Journal of lipid research. 1989 Aug; 30(8):1267-79. doi: ". [PMID: 2769078]
  • T Okanoue, M Kimoto, A Maki, Y Usui, N Nishimura, N Kobayashi, Y Kamiyama, K Ozawa. Changes in serum bile acid composition in relation to histological findings after liver transplantation in piglets. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes. 1989; 21(3-4):145-55. doi: 10.1159/000129017. [PMID: 2806341]
  • T Nakashima, A Sano, Y Seto, T Nakajima, Y Nakagawa, T Okuno, T Takino, T Hasegawa. Unusual trihydroxy bile acids in the urine of healthy humans. Clinica chimica acta; international journal of clinical chemistry. 1986 Oct; 160(1):47-53. doi: 10.1016/0009-8981(86)90334-7. [PMID: 3769218]
  • C Tsaconas, P Padieu, G Maume, M Chessebeuf, N Hussein, N Pitoizet. Gas chromatography-mass spectrometry of isobutyl ester trimethylsilyl ether derivatives of bile acids and application to the study of bile sterol and bile acid biosynthesis in rat liver epithelial cell lines. Analytical biochemistry. 1986 Sep; 157(2):300-15. doi: 10.1016/0003-2697(86)90631-7. [PMID: 3777434]
  • T Akiyoshi, K Uchida, H Takase, Y Nomura, N Takeuchi. Cholesterol gallstones in alloxan-diabetic mice. Journal of lipid research. 1986 Sep; 27(9):915-24. doi: 10.1016/s0022-2275(20)38774-5. [PMID: 3783046]
  • L M Nelson, R I Russell. Influence of the intake and composition of elemental diets on bile acid metabolism and hepatic lipids in the rat. JPEN. Journal of parenteral and enteral nutrition. 1986 Jul; 10(4):399-404. doi: 10.1177/0148607186010004399. [PMID: 3755773]
  • F Kuipers, H H Spanjer, R Havinga, G L Scherphof, R J Vonk. Lipoproteins and liposomes as in vivo cholesterol vehicles in the rat: preferential use of cholesterol carried by small unilamellar liposomes for the formation of muricholic acids. Biochimica et biophysica acta. 1986 May; 876(3):559-66. doi: 10.1016/0005-2760(86)90044-5. [PMID: 3707985]
  • E Sacquet, M Parquet, M Riottot, A Raizman, B Nordlinger, R Infante. Metabolism of beta-muricholic acid in man. Steroids. 1985 May; 45(5):411-26. doi: 10.1016/0039-128x(85)90006-6. [PMID: 3834660]
  • H Eyssen, G De Pauw, J Van Eldere. Formation of hyodeoxycholate from beta-muricholate in gnotobiotic rats associated with Clostridium HDCA-1. Progress in clinical and biological research. 1985; 181(?):103-6. doi: NULL. [PMID: 4022963]
  • A K Singhal, B I Cohen, J Finver-Sadowsky, C K McSherry, E H Mosbach. Role of hydrophilic bile acids and of sterols on cholelithiasis in the hamster. Journal of lipid research. 1984 Jun; 25(6):564-70. doi: 10.1016/s0022-2275(20)37769-5. [PMID: 6547738]
  • E C Sacquet, D P Gadelle, M J Riottot, P M Raibaud. Absence of transformation of beta-muricholic acid by human microflora implanted in the digestive tracts of germfree male rats. Applied and environmental microbiology. 1984 May; 47(5):1167-8. doi: 10.1128/aem.47.5.1167-1168.1984. [PMID: 6742831]
  • Y Amuro, E Hayashi, T Endo, K Higashino, S Kishimoto. Unusual trihydroxylated bile acids in urine of patients with liver cirrhosis. Clinica chimica acta; international journal of clinical chemistry. 1983 Jan; 127(1):61-7. doi: 10.1016/0009-8981(83)90075-x. [PMID: 6825311]
  • I M Yousef, B Tuchweber. Bile acid composition in neonatal life in rats. Biology of the neonate. 1982; 42(3-4):105-12. doi: 10.1159/000241583. [PMID: 7138983]
  • E C Sacquet, P M Raibaud, C Mejean, M J Riottot, C Leprince, P C Leglise. Bacterial formation of omega-muricholic acid in rats. Applied and environmental microbiology. 1979 Jun; 37(6):1127-31. doi: 10.1128/aem.37.6.1127-1131.1979. [PMID: 485143]
  • H J Eyssen, G G Parmentier, J A Mertens. Sulfate bile acids in germ-free and conventional mice. European journal of biochemistry. 1976 Jul; 66(3):507-14. doi: 10.1111/j.1432-1033.1976.tb10576.x. [PMID: 954753]
  • C M Siegfried, E A Doisy, W H Elliott. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol. Biochimica et biophysica acta. 1975 Jan; 380(1):66-75. doi: 10.1016/0005-2760(75)90045-4. [PMID: 1122312]
  • E Sacquet, Y Van Heijenoort, M Riottot, C Leprince. [Action of microbial flora of the digestive tract on the metabolism of bile acids in the rat (author's transl)]. Biochimica et biophysica acta. 1975 Jan; 380(1):52-65. doi: NULL. [PMID: 1122311]
  • W T BEHER, G D BAKER, W L ANTHONY, D G PENNEY. EFFECT OF HYOCHOLIC ACID ON CHOLESTEROL AND BILE ACID METABOLISM IN THE MOUSE. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1964 Jun; 116(?):442-5. doi: 10.3181/00379727-116-29273. [PMID: 14193369]