Glucoraphanin (BioDeep_00000230230)

 

Secondary id: BioDeep_00000002610

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(((5-(Methylsulfinyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)pentylidene)amino)oxy)sulfonic acid

化学式: C12H23NO10S3 (437.0484058)
中文名称: 葡甘氨酸钾盐, 萝卜硫苷
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 34.88%

分子结构信息

SMILES: CS(=O)CCCCC(=NOS(=O)(=O)O)SC1C(C(C(C(O1)CO)O)O)O
InChI: InChI=1S/C12H23NO10S3/c1-25(18)5-3-2-4-8(13-23-26(19,20)21)24-12-11(17)10(16)9(15)7(6-14)22-12/h7,9-12,14-17H,2-6H2,1H3,(H,19,20,21)/b13-8+/t7-,9-,10+,11-,12+,25?/m1/s1

描述信息

A thia-glucosinolic acid that is glucoerucin in which the sulfur atom of the methyl thioether group has been oxidised to the corresponding sulfoxide.
Acquisition and generation of the data is financially supported by the Max-Planck-Society
Glucoraphanin is under investigation in clinical trial NCT01879878 (Pilot Study Evaluating Broccoli Sprouts in Advanced Pancreatic Cancer [POUDER Trial]).
Glucoraphanin is a natural product found in Arabidopsis thaliana, Brassica, and Raphanus sativus with data available.
Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.

同义名列表

14 个代谢物同义名

Glucoraphanin; 4-Methylsulfinyl-n-butyl glucosinolate; 4-Methylsuphinylbutyl glucosinolate; 4-Methylsulfinylbutyl glucosinolate; 4-(Methylsulfinyl)butylglucosinolate; (((5-(Methylsulfinyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)pentylidene)amino)oxy)sulfonic acid; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1E)-5-methylsulfinyl-N-sulfooxypentanimidothioate; glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)valerohydroximate) nO-(hydrogen sulfate), beta-D-; beta-D-glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate); 4-(methylsulfinyl)butyl glucosinolate; Glucoraphani potassium salt; Sulforaphane glucosinolate; Glucorafanin; RAA



数据库引用编号

43 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Hao Zheng, Wenli Huang, Xiangxiang Li, Huanhuan Huang, Qiao Yuan, Ruobin Liu, Hongmei Di, Sha Liang, Mengyu Wang, Mengyao Li, Zhi Huang, Yi Tang, Yangxia Zheng, Huiying Miao, Jie Ma, Huanxiu Li, Qiaomei Wang, Bo Sun, Fen Zhang. CRISPR/Cas9-mediated BoaAOP2s editing alters aliphatic glucosinolate side-chain metabolic flux and increases the glucoraphanin content in Chinese kale. Food research international (Ottawa, Ont.). 2023 08; 170(?):112995. doi: 10.1016/j.foodres.2023.112995. [PMID: 37316021]
  • Jiaying Wu, Weiling Guo, Shumao Cui, Xin Tang, Qiuxiang Zhang, Wenwei Lu, Yan Jin, Jianxin Zhao, Bingyong Mao, Wei Chen. Broccoli seed extract rich in polysaccharides and glucoraphanin ameliorates DSS-induced colitis via intestinal barrier protection and gut microbiota modulation in mice. Journal of the science of food and agriculture. 2023 Mar; 103(4):1749-1760. doi: 10.1002/jsfa.12382. [PMID: 36495024]
  • Qingxi Yang, Manli Luo, Qian Zhou, Yingbo Zhao, Jianye Chen, Shujuan Ji. Insights into the loss of glucoraphanin in post-harvested broccoli--Possible involvement of the declined supply capacity of sulfur donor. Plant science : an international journal of experimental plant biology. 2023 Mar; 328(?):111580. doi: 10.1016/j.plantsci.2022.111580. [PMID: 36587585]
  • Jinyu Bao, Xu Lu, Lei Ma, Xiumin Zhang, Peng Tian, Xiaoling Zhang, Sheng Li, Shaoying Ma, Jie Yang, Yaqi Lu, Yunchun Wei, Congcong Zhang, Xiaotong Shi. Transcriptome analysis of genes related to glucoraphanin and sulforaphane synthesis in methyl jasmonate treated broccoli (Brassica oleracea var. italica) hairy roots. Journal of plant research. 2022 Nov; 135(6):757-770. doi: 10.1007/s10265-022-01407-7. [PMID: 35999478]
  • Shaoying Ma, Jinyu Bao, Yaqi Lu, Xu Lu, Peng Tian, Xiaoling Zhang, Jie Yang, Xiaotong Shi, Zhihui Pu, Sheng Li. Glucoraphanin and sulforaphane biosynthesis by melatonin mediating nitric oxide in hairy roots of broccoli (Brassica oleracea L. var. italica Planch): insights from transcriptome data. BMC plant biology. 2022 Aug; 22(1):403. doi: 10.1186/s12870-022-03747-x. [PMID: 35974315]
  • Collin R Barnum, Benjamin J Endelman, Izaiah J Ornelas, Roxanna M Pignolet, Patrick M Shih. Optimization of Heterologous Glucoraphanin Production In Planta. ACS synthetic biology. 2022 05; 11(5):1865-1873. doi: 10.1021/acssynbio.2c00030. [PMID: 35438493]
  • Sachithra S Ranaweera, Premkumar Natraj, Priyanka Rajan, Laksi A Dayarathne, Suyama P Mihindukulasooriya, Duong Thi Thuy Dinh, Youngheun Jee, Chang-Hoon Han. Anti-obesity effect of sulforaphane in broccoli leaf extract on 3T3-L1 adipocytes and ob/ob mice. The Journal of nutritional biochemistry. 2022 02; 100(?):108885. doi: 10.1016/j.jnutbio.2021.108885. [PMID: 34655754]
  • Prabhakaran Soundararajan, Sin-Gi Park, So Youn Won, Mi-Sun Moon, Hyun Woo Park, Kang-Mo Ku, Jung Sun Kim. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. International journal of molecular sciences. 2021 Jul; 22(14):. doi: 10.3390/ijms22147301. [PMID: 34298919]
  • Francis González, Julián Quintero, Rodrigo Del Río, Andrea Mahn. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli (Brassica oleracea var. italica). Molecules (Basel, Switzerland). 2021 Jul; 26(13):. doi: 10.3390/molecules26134042. [PMID: 34279379]
  • Wu Yuanfeng, Lv Chengzhi, Zou Ligen, Sun Juan, Song Xinjie, Zhang Yao, Mao Jianwei. Approaches for enhancing the stability and formation of sulforaphane. Food chemistry. 2021 May; 345(?):128771. doi: 10.1016/j.foodchem.2020.128771. [PMID: 33601652]
  • Salah Abukhabta, Sameer Khalil Ghawi, Kimon Andreas Karatzas, Dimitris Charalampopoulos, Gordon McDougall, J Will Allwood, Susan Verrall, Siobhan Lavery, Cheryl Latimer, L Kirsty Pourshahidi, Roger Lawther, Gloria O'Connor, Ian Rowland, Chris I R Gill. Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane. European journal of nutrition. 2021 Apr; 60(3):1263-1276. doi: 10.1007/s00394-020-02322-0. [PMID: 32651764]
  • Kenji Hashimoto. Risk of neuropsychiatric disorders in offspring of COVID-19-infected pregnant women and nutritional intervention. European archives of psychiatry and clinical neuroscience. 2021 Mar; 271(2):387-389. doi: 10.1007/s00406-020-01148-5. [PMID: 32488522]
  • Li Zhuang, Kexin Xu, Yinglian Zhu, Fengwu Wang, Junxia Xiao, Liping Guo. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. Food chemistry. 2021 Jan; 334(?):127520. doi: 10.1016/j.foodchem.2020.127520. [PMID: 32693332]
  • Mohammed S Almuhayawi, Hamada AbdElgawad, Soad K Al Jaouni, Samy Selim, Abdelrahim H A Hassan, Galal Khamis. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food chemistry. 2020 Oct; 328(?):127102. doi: 10.1016/j.foodchem.2020.127102. [PMID: 32512468]
  • Han Yang, Jiayang Qin, Xiuwen Wang, Hamed M Ei-Shora, Bo Yu. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli. Microbiological research. 2020 Sep; 238(?):126484. doi: 10.1016/j.micres.2020.126484. [PMID: 32408045]
  • Huiying Miao, Wei Zeng, Meng Zhao, Jiansheng Wang, Qiaomei Wang. Effect of melatonin treatment on visual quality and health-promoting properties of broccoli florets under room temperature. Food chemistry. 2020 Jul; 319(?):126498. doi: 10.1016/j.foodchem.2020.126498. [PMID: 32169761]
  • Sónia S Ferreira, Filipa Monteiro, Cláudia P Passos, Artur M S Silva, Dulcineia Ferreira Wessel, Manuel A Coimbra, Susana M Cardoso. Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food research international (Ottawa, Ont.). 2020 06; 132(?):109055. doi: 10.1016/j.foodres.2020.109055. [PMID: 32331656]
  • Jianghao Sun, Craig S Charron, Janet A Novotny, Bing Peng, Liangli Yu, Pei Chen. Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food chemistry. 2020 Mar; 309(?):125660. doi: 10.1016/j.foodchem.2019.125660. [PMID: 31670121]
  • Paula Garcia-Ibañez, Diego A Moreno, Vanessa Nuñez-Gomez, Agatha Agudelo, Micaela Carvajal. Use of elicitation in the cultivation of Bimi® for food and ingredients. Journal of the science of food and agriculture. 2020 Mar; 100(5):2099-2109. doi: 10.1002/jsfa.10233. [PMID: 31875967]
  • Liyang Wei, Changhong Liu, Huanhuan Zheng, Lei Zheng. Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food chemistry. 2020 Mar; 307(?):125562. doi: 10.1016/j.foodchem.2019.125562. [PMID: 31648174]
  • Adji Baskoro Dwi Nugroho, Narae Han, Aditya Nurmalita Pervitasari, Dong-Hwan Kim, Jongkee Kim. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Plant molecular biology. 2020 Jan; 102(1-2):171-184. doi: 10.1007/s11103-019-00939-2. [PMID: 31792713]
  • Liang Xu, Naoto Nagata, Tsuguhito Ota. Impact of Glucoraphanin-Mediated Activation of Nrf2 on Non-Alcoholic Fatty Liver Disease with a Focus on Mitochondrial Dysfunction. International journal of molecular sciences. 2019 Nov; 20(23):. doi: 10.3390/ijms20235920. [PMID: 31775341]
  • Jack Coode-Bate, Tharsini Sivapalan, Antonietta Melchini, Shikha Saha, Paul W Needs, Jack R Dainty, Jean-Bapiste Maicha, Gemma Beasy, Maria H Traka, Robert D Mills, Richard Y Ball, Richard F Mithen. Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue. Molecular nutrition & food research. 2019 10; 63(20):e1900461. doi: 10.1002/mnfr.201900461. [PMID: 31410992]
  • Supatta Chawalitpong, Saki Ichikawa, Yuki Uchibori, Soichiro Nakamura, Shigeru Katayama. Long-Term Intake of Glucoraphanin-Enriched Kale Suppresses Skin Aging via Activating Nrf2 and the TβRII/Smad Pathway in SAMP1 Mice. Journal of agricultural and food chemistry. 2019 Sep; 67(35):9782-9788. doi: 10.1021/acs.jafc.9b02725. [PMID: 31390859]
  • Yaoyu Pu, Youge Qu, Lijia Chang, Si-Ming Wang, Kai Zhang, Yusuke Ushida, Hiroyuki Suganuma, Kenji Hashimoto. Dietary intake of glucoraphanin prevents the reduction of dopamine transporter in the mouse striatum after repeated administration of MPTP. Neuropsychopharmacology reports. 2019 09; 39(3):247-251. doi: 10.1002/npr2.12060. [PMID: 31132231]
  • Diana L Zuluaga, Neil S Graham, Annett Klinder, A E Elaine van Ommen Kloeke, Angelo R Marcotrigiano, Carol Wagstaff, Ruud Verkerk, Gabriella Sonnante, Mark G M Aarts. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant molecular biology. 2019 Sep; 101(1-2):65-79. doi: 10.1007/s11103-019-00890-2. [PMID: 31190320]
  • Jed W Fahey, Kristina L Wade, Katherine K Stephenson, Anita A Panjwani, Hua Liu, Grace Cornblatt, Brian S Cornblatt, Stacy L Ownby, Edward Fuchs, Walter David Holtzclaw, Lawrence J Cheskin. Bioavailability of Sulforaphane Following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration. Nutrients. 2019 Jun; 11(7):. doi: 10.3390/nu11071489. [PMID: 31261930]
  • Alena Vanduchova, Pavel Anzenbacher, Eva Anzenbacherova. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. Journal of medicinal food. 2019 Feb; 22(2):121-126. doi: 10.1089/jmf.2018.0024. [PMID: 30372361]
  • Ginés B Martínez-Hernández, Tâmmila Venzke-Klug, María Del Mar Carrión-Monteagudo, Francisco Artés Calero, José M López-Nicolás, Francisco Artés-Hernández. Effects of α-, β- and maltosyl-β-cyclodextrins use on the glucoraphanin-sulforaphane system of broccoli juice. Journal of the science of food and agriculture. 2019 Jan; 99(2):941-946. doi: 10.1002/jsfa.9269. [PMID: 30009400]
  • Zhansheng Li, Yumei Liu, Lingyun Li, Zhiyuan Fang, Limei Yang, Mu Zhuang, Yangyong Zhang, Honghao Lv. Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets. PloS one. 2019; 14(3):e0213902. doi: 10.1371/journal.pone.0213902. [PMID: 30908527]
  • Craig S Charron, Bryan T Vinyard, Sharon A Ross, Harold E Seifried, Elizabeth H Jeffery, Janet A Novotny. Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: effects of BMI and daily consumption in a randomised clinical trial. The British journal of nutrition. 2018 12; 120(12):1370-1379. doi: 10.1017/s0007114518002921. [PMID: 30499426]
  • Teresa Oliviero, Simone Lamers, Edoardo Capuano, Matthijs Dekker, Ruud Verkerk. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels. Molecular nutrition & food research. 2018 09; 62(18):e1700837. doi: 10.1002/mnfr.201700837. [PMID: 29532635]
  • Olukayode Okunade, Keshavan Niranjan, Sameer K Ghawi, Gunter Kuhnle, Lisa Methven. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli. Molecular nutrition & food research. 2018 09; 62(18):e1700980. doi: 10.1002/mnfr.201700980. [PMID: 29806738]
  • Tharsini Sivapalan, Antonietta Melchini, Shikha Saha, Paul W Needs, Maria H Traka, Henri Tapp, Jack R Dainty, Richard F Mithen. Bioavailability of Glucoraphanin and Sulforaphane from High-Glucoraphanin Broccoli. Molecular nutrition & food research. 2018 09; 62(18):e1700911. doi: 10.1002/mnfr.201700911. [PMID: 29266773]
  • Lucia Giorgetti, Gianluca Giorgi, Edoardo Cherubini, Pier Giovanni Gervasi, Clara Maria Della Croce, Vincenzo Longo, Lorenza Bellani. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L. Natural product research. 2018 Jul; 32(14):1617-1626. doi: 10.1080/14786419.2017.1392953. [PMID: 29058468]
  • Noelia Castillejo, Ginés Benito Martínez-Hernández, Antonio José Lozano-Guerrero, Juan Luis Pedreño-Molina, Perla A Gómez, Encarna Aguayo, Francisco Artés, Francisco Artés-Hernández. Microwave heating modelling of a green smoothie: Effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage. Journal of the science of food and agriculture. 2018 Mar; 98(5):1863-1872. doi: 10.1002/jsfa.8665. [PMID: 28885683]
  • Han Yang, Feixia Liu, Yin Li, Bo Yu. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli. ACS synthetic biology. 2018 01; 7(1):121-131. doi: 10.1021/acssynbio.7b00256. [PMID: 29149798]
  • Alessandra Ferramosca, Mariangela Di Giacomo, Vincenzo Zara. Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World journal of gastroenterology. 2017 Jun; 23(23):4146-4157. doi: 10.3748/wjg.v23.i23.4146. [PMID: 28694655]
  • Eva María Toledo-Martín, Rafael Font, Sara Obregón-Cano, Antonio De Haro-Bailón, Myriam Villatoro-Pulido, Mercedes Del Río-Celestino. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy. Molecules (Basel, Switzerland). 2017 May; 22(5):. doi: 10.3390/molecules22050851. [PMID: 28531129]
  • Naoto Nagata, Liang Xu, Susumu Kohno, Yusuke Ushida, Yudai Aoki, Ryohei Umeda, Nobuo Fuke, Fen Zhuge, Yinhua Ni, Mayumi Nagashimada, Chiaki Takahashi, Hiroyuki Suganuma, Shuichi Kaneko, Tsuguhito Ota. Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes. 2017 05; 66(5):1222-1236. doi: 10.2337/db16-0662. [PMID: 28209760]
  • Jed W Fahey, Kristina L Wade, Scott L Wehage, Walter David Holtzclaw, Hua Liu, Paul Talalay, Edward Fuchs, Katherine K Stephenson. Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular nutrition & food research. 2017 04; 61(4):. doi: 10.1002/mnfr.201600766. [PMID: 27935214]
  • Ji-Chun Zhang, Wei Yao, Chao Dong, Chun Yang, Qian Ren, Min Ma, Mei Han, Jin Wu, Yusuke Ushida, Hiroyuki Suganuma, Kenji Hashimoto. Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation. The Journal of nutritional biochemistry. 2017 01; 39(?):134-144. doi: 10.1016/j.jnutbio.2016.10.004. [PMID: 27833054]
  • Wei Yao, Ji-Chun Zhang, Tamaki Ishima, Chao Dong, Chun Yang, Qian Ren, Min Ma, Mei Han, Jin Wu, Hiroyuki Suganuma, Yusuke Ushida, Masayuki Yamamoto, Kenji Hashimoto. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Scientific reports. 2016 07; 6(?):30659. doi: 10.1038/srep30659. [PMID: 27470577]
  • Maria Del Carmen Martínez-Ballesta, Horacio Pérez-Sánchez, Diego A Moreno, Micaela Carvajal. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates. Colloids and surfaces. B, Biointerfaces. 2016 Jul; 143(?):318-326. doi: 10.1016/j.colsurfb.2016.03.056. [PMID: 27022872]
  • Arif Hasan Khan Robin, Go-Eun Yi, Rawnak Laila, Kiwoung Yang, Jong-In Park, Hye Ran Kim, Ill-Sup Nou. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content. Molecules (Basel, Switzerland). 2016 Jun; 21(6):. doi: 10.3390/molecules21060787. [PMID: 27322230]
  • Nadia Mirza, Christoph Crocoll, Carl Erik Olsen, Barbara Ann Halkier. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metabolic engineering. 2016 May; 35(?):31-37. doi: 10.1016/j.ymben.2015.09.012. [PMID: 26410451]
  • Peter Felker, Ronald Bunch, Angela M Leung. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutrition reviews. 2016 Apr; 74(4):248-58. doi: 10.1093/nutrit/nuv110. [PMID: 26946249]
  • Rehna Augustine, Naveen C Bisht. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Scientific reports. 2015 Dec; 5(?):18005. doi: 10.1038/srep18005. [PMID: 26657321]
  • Ling Yin, Changming Chen, Guoju Chen, Bihao Cao, Jianjun Lei. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey). Molecules (Basel, Switzerland). 2015 Nov; 20(11):20254-67. doi: 10.3390/molecules201119688. [PMID: 26569208]
  • Ingrid Aguiló-Aguayo, Manuel Suarez, Lucia Plaza, Mohammad B Hossain, Nigel Brunton, James G Lyng, Dilip K Rai. Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk. Journal of the science of food and agriculture. 2015 Jul; 95(9):1868-75. doi: 10.1002/jsfa.6891. [PMID: 25171771]
  • Anika E Wagner, Christine Sturm, Stefanie Piegholdt, Insa M A Wolf, Tuba Esatbeyoglu, Gina Rosalinda De Nicola, Renato Iori, Gerald Rimbach. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1--studies in cultured HT-29 cells and mice. The Journal of nutritional biochemistry. 2015 Jun; 26(6):661-6. doi: 10.1016/j.jnutbio.2015.01.004. [PMID: 25776458]
  • Charlotte N Armah, Christos Derdemezis, Maria H Traka, Jack R Dainty, Joanne F Doleman, Shikha Saha, Wing Leung, John F Potter, Julie A Lovegrove, Richard F Mithen. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular nutrition & food research. 2015 May; 59(5):918-26. doi: 10.1002/mnfr.201400863. [PMID: 25851421]
  • Sonia Medina, Raúl Domínguez-Perles, Diego A Moreno, Cristina García-Viguera, Federico Ferreres, José Ignacio Gil, Ángel Gil-Izquierdo. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food chemistry. 2015 Apr; 173(?):1187-94. doi: 10.1016/j.foodchem.2014.10.152. [PMID: 25466142]
  • Hongmei Qian, Bo Sun, Huiying Miao, Congxi Cai, Chaojiong Xu, Qiaomei Wang. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering. Food chemistry. 2015 Feb; 168(?):321-6. doi: 10.1016/j.foodchem.2014.07.073. [PMID: 25172716]
  • Matthew K D Hall, Jenny J Jobling, Gordon S Rogers. Variations in the most abundant types of glucosinolates found in the leaves of baby leaf rocket under typical commercial conditions. Journal of the science of food and agriculture. 2015 Feb; 95(3):552-9. doi: 10.1002/jsfa.6774. [PMID: 24912775]
  • Jed W Fahey, W David Holtzclaw, Scott L Wehage, Kristina L Wade, Katherine K Stephenson, Paul Talalay. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase. PloS one. 2015; 10(11):e0140963. doi: 10.1371/journal.pone.0140963. [PMID: 26524341]
  • Fabricio William Avila, Yong Yang, Valdemar Faquin, Silvio Junio Ramos, Luiz Roberto G Guilherme, Theodore W Thannhauser, Li Li. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food chemistry. 2014 Dec; 165(?):578-86. doi: 10.1016/j.foodchem.2014.05.134. [PMID: 25038715]
  • Adriana Conzatti, Fernanda Carolina Telles da Silva Fróes, Ingrid Dalira Schweigert Perry, Carolina Guerini de Souza. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutricion hospitalaria. 2014 Nov; 31(2):559-69. doi: 10.3305/nh.2015.31.2.7685. [PMID: 25617536]
  • Gregory V Bricker, Kenneth M Riedl, Robin A Ralston, Kathleen L Tober, Tatiana M Oberyszyn, Steven J Schwartz. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Molecular nutrition & food research. 2014 Oct; 58(10):1991-2000. doi: 10.1002/mnfr.201400104. [PMID: 24975513]
  • Takanori Yamada, Min Wei, Takeshi Toyoda, Shoutaro Yamano, Hideki Wanibuchi. Inhibitory effect of Raphanobrassica on Helicobacter pylori-induced gastritis in Mongolian gerbils. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2014 Aug; 70(?):107-13. doi: 10.1016/j.fct.2014.04.037. [PMID: 24835035]
  • Patricia A Egner, Jian-Guo Chen, Adam T Zarth, Derek K Ng, Jin-Bing Wang, Kevin H Kensler, Lisa P Jacobson, Alvaro Muñoz, Jamie L Johnson, John D Groopman, Jed W Fahey, Paul Talalay, Jian Zhu, Tao-Yang Chen, Geng-Sun Qian, Steven G Carmella, Stephen S Hecht, Thomas W Kensler. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research (Philadelphia, Pa.). 2014 Aug; 7(8):813-823. doi: 10.1158/1940-6207.capr-14-0103. [PMID: 24913818]
  • Teresa Oliviero, Ruud Verkerk, Martijn Vermeulen, Matthijs Dekker. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Molecular nutrition & food research. 2014 Jul; 58(7):1447-56. doi: 10.1002/mnfr.201300894. [PMID: 24687744]
  • Doris Lippmann, Carsten Lehmann, Simone Florian, Gitte Barknowitz, Michael Haack, Inga Mewis, Melanie Wiesner, Monika Schreiner, Hansruedi Glatt, Regina Brigelius-Flohé, Anna P Kipp. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. Food & function. 2014 Jun; 5(6):1073-81. doi: 10.1039/c3fo60676g. [PMID: 24714741]
  • Liping Guo, Runqiang Yang, Zhiying Wang, Qianghui Guo, Zhenxin Gu. Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. International journal of food sciences and nutrition. 2014 Jun; 65(4):476-81. doi: 10.3109/09637486.2013.860583. [PMID: 24320244]
  • Ibrahim Guillermo Castro-Torres, Minarda De la O-Arciniega, Janeth Gallegos-Estudillo, Elia Brosla Naranjo-Rodríguez, Miguel Ángel Domínguez-Ortíz. Raphanus sativus L. var niger as a source of phytochemicals for the prevention of cholesterol gallstones. Phytotherapy research : PTR. 2014 Feb; 28(2):167-71. doi: 10.1002/ptr.4964. [PMID: 23495001]
  • Raul Dominguez-Perles, Sonia Medina, Diego Ángel Moreno, Cristina García-Viguera, Federico Ferreres, Ángel Gil-Izquierdo. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food chemistry. 2014 Jan; 143(?):132-8. doi: 10.1016/j.foodchem.2013.07.116. [PMID: 24054222]
  • Myriam Villatoro-Pulido, Feliciano Priego-Capote, Beatriz Álvarez-Sánchez, Shikha Saha, Mark Philo, Sara Obregón-Cano, Antonio De Haro-Bailón, Rafael Font, Mercedes Del Río-Celestino. An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. Journal of the science of food and agriculture. 2013 Dec; 93(15):3809-19. doi: 10.1002/jsfa.6286. [PMID: 23794443]
  • Julia Budnowski, Franziska S Hanschen, Carsten Lehmann, Michael Haack, Regina Brigelius-Flohé, Lothar W Kroh, Michael Blaut, Sascha Rohn, Laura Hanske. A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Analytical biochemistry. 2013 Oct; 441(2):199-207. doi: 10.1016/j.ab.2013.07.002. [PMID: 23872004]
  • Kang Mo Ku, Elizabeth H Jeffery, John A Juvik. Influence of seasonal variation and methyl jasmonate mediated induction of glucosinolate biosynthesis on quinone reductase activity in broccoli florets. Journal of agricultural and food chemistry. 2013 Oct; 61(40):9623-31. doi: 10.1021/jf4027734. [PMID: 24032372]
  • Charlotte N Armah, Maria H Traka, Jack R Dainty, Marianne Defernez, Astrid Janssens, Wing Leung, Joanne F Doleman, John F Potter, Richard F Mithen. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. The American journal of clinical nutrition. 2013 Sep; 98(3):712-22. doi: 10.3945/ajcn.113.065235. [PMID: 23964055]
  • Simona I Vicas, Alin C Teusdea, Mihai Carbunar, Sonia A Socaci, Carmen Socaciu. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant foods for human nutrition (Dordrecht, Netherlands). 2013 Sep; 68(3):313-21. doi: 10.1007/s11130-013-0367-8. [PMID: 23817957]
  • Kristin Hennig, Ruud Verkerk, Matthijs Dekker, Guusje Bonnema. Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2013 Sep; 126(9):2323-34. doi: 10.1007/s00122-013-2138-1. [PMID: 23748744]
  • Sabrina Giacoppo, Maria Galuppo, Renato Iori, Gina R De Nicola, Giovanni Cassata, Placido Bramanti, Emanuela Mazzon. Protective role of (RS )-glucoraphanin bioactivated with myrosinase in an experimental model of multiple sclerosis. CNS neuroscience & therapeutics. 2013 Aug; 19(8):577-84. doi: 10.1111/cns.12106. [PMID: 23638842]
  • Kang Mo Ku, Jeong-Hee Choi, Mosbah M Kushad, Elizabeth H Jeffery, John A Juvik. Pre-harvest methyl jasmonate treatment enhances cauliflower chemoprotective attributes without a loss in postharvest quality. Plant foods for human nutrition (Dordrecht, Netherlands). 2013 Jun; 68(2):113-7. doi: 10.1007/s11130-013-0356-y. [PMID: 23640295]
  • Maria H Traka, Shikha Saha, Stine Huseby, Stanislav Kopriva, Peter G Walley, Guy C Barker, Jonathan Moore, Gene Mero, Frans van den Bosch, Howard Constant, Leo Kelly, Hans Schepers, Sekhar Boddupalli, Richard F Mithen. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. The New phytologist. 2013 Jun; 198(4):1085-1095. doi: 10.1111/nph.12232. [PMID: 23560984]
  • Sameer Khalil Ghawi, Lisa Methven, Keshavan Niranjan. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food chemistry. 2013 Jun; 138(2-3):1734-41. doi: 10.1016/j.foodchem.2012.10.119. [PMID: 23411305]
  • Hao Liang, Qipeng Yuan, Mingming Liu. Simultaneous determination of glucoraphanin and sulforaphane in Brassica oleracea seeds by high-performance liquid chromatography with evaporative light-scattering detector. Natural product research. 2013; 27(2):194-7. doi: 10.1080/14786419.2012.662649. [PMID: 22352409]
  • Shikha Saha, Wendy Hollands, Birgit Teucher, Paul W Needs, Arjan Narbad, Catharine A Ortori, David A Barrett, John T Rossiter, Richard F Mithen, Paul A Kroon. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Molecular nutrition & food research. 2012 Dec; 56(12):1906-16. doi: 10.1002/mnfr.201200225. [PMID: 23109475]
  • Zheng Liu, Arvind H Hirani, Peter B E McVetty, Fouad Daayf, Carlos F Quiros, Genyi Li. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant molecular biology. 2012 May; 79(1-2):179-89. doi: 10.1007/s11103-012-9905-2. [PMID: 22477389]
  • Joscelyn Sarsby, Mark W Towers, Chris Stain, Rainer Cramer, Olga A Koroleva. Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques. Phytochemistry. 2012 May; 77(?):110-8. doi: 10.1016/j.phytochem.2012.01.026. [PMID: 22386577]
  • Jenna M Cramer, Margarita Teran-Garcia, Elizabeth H Jeffery. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder. The British journal of nutrition. 2012 May; 107(9):1333-8. doi: 10.1017/s0007114511004429. [PMID: 21910945]
  • Yingjuan Gu, Qianghui Guo, Liang Zhang, Zhigang Chen, Yongbin Han, Zhenxin Gu. Physiological and biochemical metabolism of germinating broccoli seeds and sprouts. Journal of agricultural and food chemistry. 2012 Jan; 60(1):209-13. doi: 10.1021/jf203599v. [PMID: 22142148]
  • Thomas W Kensler, Derek Ng, Steven G Carmella, Menglan Chen, Lisa P Jacobson, Alvaro Muñoz, Patricia A Egner, Jian Guo Chen, Geng Sun Qian, Tao Yang Chen, Jed W Fahey, Paul Talalay, John D Groopman, Jian-Min Yuan, Stephen S Hecht. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis. 2012 Jan; 33(1):101-7. doi: 10.1093/carcin/bgr229. [PMID: 22045030]
  • Nicole M Blum, Kristin Mueller, Frank Hirche, Doris Lippmann, Erika Most, Josef Pallauf, Thomas Linn, Andreas S Mueller. Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes. Food & function. 2011 Nov; 2(11):654-64. doi: 10.1039/c1fo10122f. [PMID: 21959850]
  • John D Clarke, Ken Riedl, Deborah Bella, Steven J Schwartz, Jan F Stevens, Emily Ho. Comparison of isothiocyanate metabolite levels and histone deacetylase activity in human subjects consuming broccoli sprouts or broccoli supplement. Journal of agricultural and food chemistry. 2011 Oct; 59(20):10955-63. doi: 10.1021/jf202887c. [PMID: 21928849]
  • Fei Li, Meredith A J Hullar, Shirley A A Beresford, Johanna W Lampe. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. The British journal of nutrition. 2011 Aug; 106(3):408-16. doi: 10.1017/s0007114511000274. [PMID: 21342607]
  • Patricia A Egner, Jian Guo Chen, Jin Bing Wang, Yan Wu, Yan Sun, Jian Hua Lu, Jian Zhu, Yong Hui Zhang, Yong Sheng Chen, Marlin D Friesen, Lisa P Jacobson, Alvaro Muñoz, Derek Ng, Geng Sun Qian, Yuan Rong Zhu, Tao Yang Chen, Nigel P Botting, Qingzhi Zhang, Jed W Fahey, Paul Talalay, John D Groopman, Thomas W Kensler. Bioavailability of Sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer prevention research (Philadelphia, Pa.). 2011 Mar; 4(3):384-95. doi: 10.1158/1940-6207.capr-10-0296. [PMID: 21372038]
  • Fu-Chen Hsu, Markus Wirtz, Simon C Heppel, Jochen Bogs, Ute Krämer, Muhammad Sayyar Khan, Achim Bub, Rüdiger Hell, Thomas Rausch. Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism. Plant, cell & environment. 2011 Feb; 34(2):192-207. doi: 10.1111/j.1365-3040.2010.02235.x. [PMID: 20880203]
  • Jenna M Cramer, Elizabeth H Jeffery. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutrition and cancer. 2011; 63(2):196-201. doi: 10.1080/01635581.2011.523495. [PMID: 21240766]
  • Ren-Hau Lai, Michael J Miller, Elizabeth Jeffery. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food & function. 2010 Nov; 1(2):161-6. doi: 10.1039/c0fo00110d. [PMID: 21776467]
  • Michael J Cwik, Huaping Wu, Miguel Muzzio, David L McCormick, Izet Kapetanovic. Direct quantitation of glucoraphanin in dog and rat plasma by LC-MS/MS. Journal of pharmaceutical and biomedical analysis. 2010 Aug; 52(4):544-9. doi: 10.1016/j.jpba.2010.01.020. [PMID: 20144518]
  • Michael Dalgaard Mikkelsen, Carl Erik Olsen, Barbara Ann Halkier. Production of the cancer-preventive glucoraphanin in tobacco. Molecular plant. 2010 Jul; 3(4):751-9. doi: 10.1093/mp/ssq020. [PMID: 20457641]
  • Albena T Dinkova-Kostova, Jed W Fahey, Andrea L Benedict, Stephanie N Jenkins, Lingxiang Ye, Scott L Wehage, Paul Talalay. Dietary glucoraphanin-rich broccoli sprout extracts protect against UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2010 Apr; 9(4):597-600. doi: 10.1039/b9pp00130a. [PMID: 20354656]
  • Ning Zhu, Mette Soendergaard, Elizabeth H Jeffery, Ren-Hau Lai. The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats. Journal of agricultural and food chemistry. 2010 Feb; 58(3):1558-63. doi: 10.1021/jf9034817. [PMID: 20085276]
  • Olga N Campas-Baypoli, Carolina Bueno-Solano, Diana M Martínez-Ibarra, Francisco Camacho-Gil, Alma G Villa-Lerma, Jesús R Rodríguez-Núñez, Jaime Lóez-Cervantes, Dalia I Sánchez-Machado. [Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane) content in cruciferous vegetables]. Archivos latinoamericanos de nutricion. 2009 Mar; 59(1):95-100. doi: ". [PMID: 19480351]
  • David J Williams, Christa Critchley, Sharon Pun, Stephen Nottingham, Timothy J O'Hare. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Phytochemistry. 2008 Nov; 69(16):2765-73. doi: 10.1016/j.phytochem.2008.09.018. [PMID: 18977005]
  • R-H Lai, A-S Keck, M A Wallig, L G West, E H Jeffery. Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2008 Jan; 46(1):195-202. doi: 10.1016/j.fct.2007.07.015. [PMID: 17804139]
  • Alix Toribio, Jean-Marc Nuzillard, Jean-Hugues Renault. Strong ion-exchange centrifugal partition chromatography as an efficient method for the large-scale purification of glucosinolates. Journal of chromatography. A. 2007 Nov; 1170(1-2):44-51. doi: 10.1016/j.chroma.2007.09.004. [PMID: 17904564]
  • Kristina L Wade, Ian J Garrard, Jed W Fahey. Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates. Journal of chromatography. A. 2007 Jun; 1154(1-2):469-72. doi: 10.1016/j.chroma.2007.04.034. [PMID: 17482632]