Luteolin (BioDeep_00000017328)

 

Secondary id: BioDeep_00000000423, BioDeep_00000018820, BioDeep_00000403152

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


(2S,3S,4S,5R,6S)-6-((2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

化学式: C21H18O12 (462.0798)
中文名称: 木犀草素-7-O-葡萄糖醛酸苷, 木犀草素-7-葡萄糖醛酸苷
谱图信息: 最多检出来源 Viridiplantae(plant) 21.45%

分子结构信息

SMILES: C1(O[C@H]2[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(=O)O)O2)=CC2OC(C3C=C(O)C(O)=CC=3)=CC(=O)C=2C(O)=C1
InChI: InChI=1S/C21H18O12/c22-9-2-1-7(3-10(9)23)13-6-12(25)15-11(24)4-8(5-14(15)32-13)31-21-18(28)16(26)17(27)19(33-21)20(29)30/h1-6,16-19,21-24,26-28H,(H,29,30)/t16-,17-,18+,19-,21+/m0/s1

描述信息

Luteolin 7-O-beta-D-glucosiduronic acid is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. It has a role as a metabolite. It is a trihydroxyflavone, a glycosyloxyflavone, a monosaccharide derivative and a luteolin O-glucuronoside. It is a conjugate acid of a luteolin 7-O-beta-D-glucosiduronate and a luteolin 7-O-beta-D-glucosiduronate(2-).
Luteolin 7-glucuronide is a natural product found in Galeopsis tetrahit, Galeopsis ladanum, and other organisms with data available.
A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position.
Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

同义名列表

23 个代谢物同义名

(2S,3S,4S,5R,6S)-6-((2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid; (2S,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-chromen-7-yl]oxy-3,4,5-trihydroxy-tetrahydropyran-2-carboxylic acid; (2S,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid; GLUCOPYRANOSIDURONIC ACID, 2-(3,4-DIHYDROXYPHENYL)-5-HYDROXY-4-OXO-4H-1-BENZOPYRAN-7-YL, .BETA.-D-; .BETA.-D-GLUCOPYRANOSIDURONIC ACID, 2-(3,4-DIHYDROXYPHENYL)-5-HYDROXY-4-OXO-4H-1-BENZOPYRAN-7-YL; 2-(3,4-DIHYDROXYPHENYL)-5-HYDROXY-4-OXO-4H-1-BENZOPYRAN-7-YL .BETA.-D-GLUCOPYRANOSIDURONIC ACID; beta-D-Glucopyranosiduronic acid, 2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-1-benzopyran-7-yl; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-7-(.beta.-D-glucopyranuronosyloxy)-5-hydroxy-; 2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl beta-D-glucopyranosiduronic acid; FLAVONE, 3,4,5,7-TETRAHYDROXY-, 7-.BETA.-D-GLUCOPYRANURONOSIDE; Luteolin 7-O-beta-D-glucuronopyranoside; CYANIDENON-7-O-.BETA.-D-GLUCURONIC ACID; luteolin 7-O-beta-D-glucosiduronic acid; Cyanidenon-7-O-beta-D-glucuronic acid; Luteolin 7-O-beta-D-glucuronide (14); LUTEOLIN-7-.BETA.-D-GLUCURONIDE; Luteolin 7-O-beta-D-Glucuronide; Luteolin-7-O-glucuronside; Luteolin 7-O-glucuronide; luteolin-7-glucuronide; Luteolin 7-glucuronide; MEGxp0_000794; Luteolin



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

128 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKR1B1, CYP2E1, EGFR, ELANE, MAPK10, ME1, PTGS2, SLC2A2, SREBF1, TUBB2B, TYR
Peripheral membrane protein 2 CYP2E1, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 CYP2E1, EGFR, PTGS2, SREBF1
Nucleus 4 EGFR, MAPK10, SREBF1, TUBB2B
cytosol 5 AKR1B1, ELANE, MAPK10, ME1, SREBF1
phagocytic vesicle 1 ELANE
nucleoplasm 3 AKR1B1, MAPK10, SREBF1
Cell membrane 4 EGFR, PSD, SLC2A2, TNF
Lipid-anchor 1 MAPK10
Cleavage furrow 1 PSD
ruffle membrane 2 EGFR, PSD
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 SLC2A2, SREBF1
Golgi apparatus membrane 1 SREBF1
cell junction 1 EGFR
cell surface 4 EGFR, ELANE, F3, TNF
glutamatergic synapse 1 EGFR
Golgi membrane 2 EGFR, SREBF1
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 1 TNF
Lysosome 2 GAA, TYR
endosome 1 EGFR
plasma membrane 7 EGFR, F3, GAA, MAPK10, ME1, SLC2A2, TNF
Membrane 6 EGFR, F3, GAA, MAPK10, ME1, SLC2A2
apical plasma membrane 2 EGFR, SLC2A2
basolateral plasma membrane 1 EGFR
brush border 1 SLC2A2
caveola 1 PTGS2
extracellular exosome 3 AKR1B1, ELANE, GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 2 PTGS2, SREBF1
extracellular space 5 AKR1B1, EGFR, ELANE, F3, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 2 EGFR, TYR
Schaffer collateral - CA1 synapse 1 TUBB2B
mitochondrion 4 AKR1B1, MAPK10, ME1, PCK2
protein-containing complex 3 EGFR, PTGS2, SREBF1
intracellular membrane-bounded organelle 3 CYP2E1, GAA, TYR
Microsome membrane 2 CYP2E1, PTGS2
Single-pass type I membrane protein 3 EGFR, F3, TYR
Secreted 1 GAA
extracellular region 3 ELANE, GAA, TNF
Single-pass membrane protein 1 ME1
[Isoform 1]: Membrane 1 F3
[Isoform 2]: Secreted 1 F3
mitochondrial matrix 1 PCK2
nuclear membrane 1 EGFR
external side of plasma membrane 2 F3, TNF
dendritic spine 1 PSD
microtubule cytoskeleton 1 TUBB2B
Melanosome membrane 1 TYR
cell-cell junction 1 SLC2A2
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, ruffle membrane 1 PSD
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 2 EGFR, TNF
Cytoplasm, cytoskeleton 1 TUBB2B
focal adhesion 1 EGFR
microtubule 1 TUBB2B
intracellular vesicle 1 EGFR
collagen-containing extracellular matrix 2 ELANE, F3
secretory granule 1 ELANE
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
neuron projection 1 PTGS2
chromatin 1 SREBF1
phagocytic cup 1 TNF
mitotic spindle 1 TUBB2B
postsynaptic density, intracellular component 1 PSD
intercellular bridge 1 TUBB2B
nuclear envelope 1 SREBF1
Cytoplasmic vesicle membrane 1 SREBF1
tertiary granule membrane 1 GAA
Melanosome 1 TYR
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 1 PTGS2
transcription repressor complex 1 ELANE
specific granule lumen 1 ELANE
azurophil granule membrane 1 GAA
azurophil granule lumen 1 ELANE
ER to Golgi transport vesicle membrane 1 SREBF1
clathrin-coated endocytic vesicle membrane 1 EGFR
ficolin-1-rich granule membrane 1 GAA
Cytoplasmic vesicle, phagosome 1 ELANE
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
serine-type peptidase complex 1 F3
autolysosome lumen 1 GAA
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jun Gu Kim, Jin Woo Lee, Thi Phuong Linh Le, Jae Sang Han, Yong Beom Cho, Haeun Kwon, Dongho Lee, Mi Kyeong Lee, Bang Yeon Hwang. Sesquiterpenoids from Chrysanthemum indicum with Inhibitory Effects on NO Production. Journal of natural products. 2021 03; 84(3):562-569. doi: 10.1021/acs.jnatprod.0c01121. [PMID: 33667099]
  • Xing Wang, Ying Li, Meiling Chen, Chunyan Li, Wei Huang, Kun Gu, Hongxin Yu, Yu Yuan, Yuming Wang, Bin Yang, Yubo Li. Stepwise rapid tracking strategy to identify active molecules from Ixeris sonchifolia Hance based on ''affinity mass spectrometry-atomic force microscopy imaging'' technology. Talanta. 2020 Sep; 217(?):121031. doi: 10.1016/j.talanta.2020.121031. [PMID: 32498901]
  • Jingyi Zhu, Han Xiao, Qi Chen, Min Zhao, Dong Sun, Shunshan Duan. Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-glucuronide from Seagrass Enhalus acoroides. International journal of environmental research and public health. 2019 07; 16(14):. doi: 10.3390/ijerph16142615. [PMID: 31340457]
  • C T Sulaiman, Indira Balachandran. LC/MS characterization of phenolic antioxidants of Brindle berry (Garcinia gummi-gutta (L.) Robson). Natural product research. 2017 May; 31(10):1191-1194. doi: 10.1080/14786419.2016.1224871. [PMID: 27583573]
  • Peng-Fei Yang, Zi-Ming Feng, Ya-Nan Yang, Jian-Shuang Jiang, Pei-Cheng Zhang. Neuroprotective Caffeoylquinic Acid Derivatives from the Flowers of Chrysanthemum morifolium. Journal of natural products. 2017 04; 80(4):1028-1033. doi: 10.1021/acs.jnatprod.6b01026. [PMID: 28248102]
  • Fuad Al-Rimawi, Saleh Abu-Lafi, Jehad Abbadi, Ayman A A Alamarneh, Raneen A Sawahreh, Imad Odeh. ANALYSIS OF PHENOLIC AND FLAVONOIDS OF WILD EPHEDRA ALATA PLANT EXTRACTS BY LC/PDA AND LC/MS AND THEIR ANTIOXIDANT ACTIVITY. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2017; 14(2):130-141. doi: 10.21010/ajtcam.v14i2.14. [PMID: 28573229]
  • Bo Zhang, Tiegui Nan, Zhilai Zhan, Liping Kang, Jian Yang, Yuan Yuan, Baomin Wang, Luqi Huang. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for luteoloside detection in Flos Lonicerae Japonicae. Analytical and bioanalytical chemistry. 2016 Sep; 408(22):6053-61. doi: 10.1007/s00216-016-9396-0. [PMID: 26892641]
  • Ayako Kure, Kiyotaka Nakagawa, Momoko Kondo, Shunji Kato, Fumiko Kimura, Akio Watanabe, Naoki Shoji, Sakiko Hatanaka, Tojiro Tsushida, Teruo Miyazawa. Metabolic Fate of Luteolin in Rats: Its Relationship to Anti-inflammatory Effect. Journal of agricultural and food chemistry. 2016 Jun; 64(21):4246-54. doi: 10.1021/acs.jafc.6b00964. [PMID: 27170112]
  • Carla Pereira, Lillian Barros, Ana Maria Carvalho, Celestino Santos-Buelga, Isabel C F R Ferreira. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food & function. 2015 Jan; 6(1):56-62. doi: 10.1039/c4fo00834k. [PMID: 25367590]
  • Sinikka Rahte, Richard Evans, Philippe J Eugster, Laurence Marcourt, Jean-Luc Wolfender, Andreas Kortenkamp, Deniz Tasdemir. Salvia officinalis for hot flushes: towards determination of mechanism of activity and active principles. Planta medica. 2013 Jun; 79(9):753-60. doi: 10.1055/s-0032-1328552. [PMID: 23670626]
  • Ran Yin, Fei Han, Zheng Tang, Ran Liu, Xu Zhao, Xiaohui Chen, Kaishun Bi. UFLC-MS/MS method for simultaneous determination of luteolin-7-O-gentiobioside, luteolin-7-O-β-D-glucoside and luteolin-7-O-β-D-glucuronide in beagle dog plasma and its application to a pharmacokinetic study after administration of traditional Chinese medicinal preparation: Kudiezi injection. Journal of pharmaceutical and biomedical analysis. 2013 Jan; 72(?):127-33. doi: 10.1016/j.jpba.2012.09.028. [PMID: 23146236]
  • Jun Zhao, Fang Xu, Jin-Hua He, Wei Tan, Zheng-Yi Gu, Long Ma. [Study on chemical constituents of Hyssopus cuspidatus]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Jan; 36(1):54-7. doi: . [PMID: 23750409]
  • Hong-Li Liu, Bai-Lian Liu, Guo-Cai Wang, Yi Dai, Wen-Cai Ye, Yao-Lan Li. [Studies on the chemical constituents from Conyza canadensis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2011 May; 34(5):718-20. doi: . [PMID: 21954558]
  • Kyoung-Sook Kim, Yeon-Joo Kwak, Kyung-Mi Kim, Hai Yang Yu, Byoung-Won Kang, Eunsook Chung, Young-Choon Lee, Jung-In Kim, Jai-Heon Lee. Purification and structure determination of gelatinase and collagenase inhibitors from Viola patrinii fermentation extracts. Immunopharmacology and immunotoxicology. 2010 Dec; 32(4):614-6. doi: 10.3109/08923971003645631. [PMID: 20196628]
  • Seval Capanlar, Nazli Böke, Ihsan Yaşa, Süheyla Kirmizigül. A novel glycoside from Acanthus hirsutus (Acanthaceae). Natural product communications. 2010 Apr; 5(4):563-6. doi: ". [PMID: 20433073]
  • B Benedek, N Geisz, W Jäger, T Thalhammer, B Kopp. Choleretic effects of yarrow (Achillea millefolium s.l.) in the isolated perfused rat liver. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2006 Nov; 13(9-10):702-6. doi: 10.1016/j.phymed.2005.10.005. [PMID: 16303291]
  • Shoko Kobayashi, Jun Watanabe, Eri Fukushi, Jun Kawabata, Mitsutoshi Nakajima, Michiko Watanabe. Polyphenols from some foodstuffs as inhibitors of ovalbumin permeation through caco-2 cell monolayers. Bioscience, biotechnology, and biochemistry. 2003 Jun; 67(6):1250-7. doi: 10.1271/bbb.67.1250. [PMID: 12843650]
  • Supinya Tewtrakul, Hirotsugu Miyashiro, Norio Nakamura, Masao Hattori, Takuya Kawahata, Toru Otake, Tomokazu Yoshinaga, Tamio Fujiwara, Tanomjit Supavita, Supreeya Yuenyongsawad, Pranee Rattanasuwon, Sukanya Dej-Adisai. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytotherapy research : PTR. 2003 Mar; 17(3):232-9. doi: 10.1002/ptr.1111. [PMID: 12672152]
  • Liselotte Krenn, Anca Miron, Enne Pemp, Ursula Petr, Brigitte Kopp. Flavonoids from Achillea nobilis L. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2003 Jan; 58(1-2):11-6. doi: 10.1515/znc-2003-1-202. [PMID: 12622219]
  • Ming Hong Lee, Yeon Kyoung Son, Yong Nam Han. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Archives of pharmacal research. 2002 Dec; 25(6):842-50. doi: 10.1007/bf02977002. [PMID: 12510836]
  • Luis Góngora, Salvador Máñez, Rosa M Giner, M Carmen Recio, Alexander I Gray, José Luis Ríos. Phenolic glycosides from Phagnalon rupestre. Phytochemistry. 2002 Apr; 59(8):857-60. doi: 10.1016/s0031-9422(02)00011-0. [PMID: 11937166]
  • Gerd Vanhoenacker, Philippe Van Rompaey, Denis De Keukeleire, Pat Sandra. Chemotaxonomic features associated with flavonoids of cannabinoid-free cannabis (Cannabis sativa subsp. sativa L.) in relation to hops (Humulus lupulus L.). Natural product letters. 2002 Feb; 16(1):57-63. doi: 10.1080/1057563029001/4863. [PMID: 11942684]
  • H G Gumbinger, H Winterhoff, R Wylde, A Sosa. On the influence of the sugar moiety on the antigonadotropic activity of luteoline glycosides. Planta medica. 1992 Feb; 58(1):49-50. doi: 10.1055/s-2006-961388. [PMID: 1620743]