NCBI Taxonomy: 41844

Riccia fluitans (ncbi_taxid: 41844)

found 15 associated metabolites at species taxonomy rank level.

Ancestor: Riccia

Child Taxonomies: none taxonomy data.

Luteolin 7-glucoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 7-O-beta-D-glucoside is a glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and a plant metabolite. It is a beta-D-glucoside, a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a luteolin. It is a conjugate acid of a luteolin 7-O-beta-D-glucoside(1-). Cynaroside is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. See also: Cynara scolymus leaf (part of); Lonicera japonica flower (part of); Chamaemelum nobile flower (part of). Luteolin 7-glucoside is found in anise. Luteolin 7-glucoside is a constituent of the leaves of Capsicum annuum (red pepper).Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin and can be found in dandelion coffee, in Ferula varia and F. foetida in Campanula persicifolia and C. rotundifolia and in Cynara scolymus (artichoke) A glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Constituent of the leaves of Capsicum annuum (red pepper) Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

Luteolin 7-glucuronide

(2S,3S,4S,5R,6S)-6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-glucuronide, also known as cyanidenon-7-O-B-D-glucuronate or luteolin 7-O-beta-D-glucuronopyranoside, is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Luteolin 7-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Luteolin 7-glucuronide can be found in a number of food items such as globe artichoke, wild carrot, carrot, and lettuce, which makes luteolin 7-glucuronide a potential biomarker for the consumption of these food products. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Luteolin

(2S,3S,4S,5R,6S)-6-((2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O12 (462.0798)


Luteolin 7-O-beta-D-glucosiduronic acid is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. It has a role as a metabolite. It is a trihydroxyflavone, a glycosyloxyflavone, a monosaccharide derivative and a luteolin O-glucuronoside. It is a conjugate acid of a luteolin 7-O-beta-D-glucosiduronate and a luteolin 7-O-beta-D-glucosiduronate(2-). Luteolin 7-glucuronide is a natural product found in Galeopsis tetrahit, Galeopsis ladanum, and other organisms with data available. A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Luteolin 7-glucuronide

Luteolin 7-O-glucuronide

C21H18O12 (462.0798)


Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.1006)


   

Luteolin 7-O-glucuronide

Luteolin 7-O-glucuronide

C21H18O12 (462.0798)


Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.

   

cinaroside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

methyl octadeca-9,12-dien-6-ynoate

methyl octadeca-9,12-dien-6-ynoate

C19H30O2 (290.2246)


   

methyl (9z,12z,15z)-octadeca-9,12,15-trien-6-ynoate

methyl (9z,12z,15z)-octadeca-9,12,15-trien-6-ynoate

C19H28O2 (288.2089)


   

octadec-9-en-6-ynoic acid

octadec-9-en-6-ynoic acid

C18H30O2 (278.2246)


   

methyl (9z,12z)-octadeca-9,12-dien-6-ynoate

methyl (9z,12z)-octadeca-9,12-dien-6-ynoate

C19H30O2 (290.2246)


   

(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}oxane-2-carboxylic acid

(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}oxane-2-carboxylic acid

C21H18O11 (446.0849)


   

methyl octadec-9-en-6-ynoate

methyl octadec-9-en-6-ynoate

C19H32O2 (292.2402)


   

methyl (9z)-octadec-9-en-6-ynoate

methyl (9z)-octadec-9-en-6-ynoate

C19H32O2 (292.2402)


   

methyl octadeca-9,12,15-trien-6-ynoate

methyl octadeca-9,12,15-trien-6-ynoate

C19H28O2 (288.2089)