Fluvalinate (BioDeep_00000008437)

 

Secondary id: BioDeep_00001873667

human metabolite blood metabolite


代谢物信息卡片


cyano(3-phenoxyphenyl)methyl 2-{[2-chloro-4-(trifluoromethyl)phenyl]amino}-3-methylbutanoate

化学式: C26H22ClF3N2O3 (502.1271)
中文名称: 尖顶的四面体窑具
谱图信息: 最多检出来源 Astragalus membranaceus(plant) 90.91%

分子结构信息

SMILES: CC(C)C(C(=O)OC(C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)NC3=C(C=C(C=C3)C(F)(F)F)Cl
InChI: InChI=1S/C26H22ClF3N2O3/c1-16(2)24(32-22-12-11-18(14-21(22)27)26(28,29)30)25(33)35-23(15-31)17-7-6-10-20(13-17)34-19-8-4-3-5-9-19/h3-14,16,23-24,32H,1-2H3

描述信息

D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins
D016573 - Agrochemicals

同义名列表

8 个代谢物同义名

cyano(3-phenoxyphenyl)methyl 2-{[2-chloro-4-(trifluoromethyl)phenyl]amino}-3-methylbutanoate; alpha-cyano-3-Phenoxybenzyl 2-(2-chloro-4-trifluoromethylanilino)-3-methylbutanoate; tau-fluvalinate; Fluvalinic acid; Fluvalinate; Mavrik; SPUR; Fluvalinate



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 EEF1A1, EEF2, GAPDH, MAPK8, PTGS1, RPL5, SOD1, VDR
Peripheral membrane protein 2 ACHE, PTGS1
Endoplasmic reticulum membrane 2 CD4, PTGS1
Nucleus 10 ACHE, EEF1A1, EEF2, GAPDH, JUN, MAPK8, RPL5, SOD1, TRIM33, VDR
cytosol 9 CD28, EEF1A1, EEF2, GAPDH, LIPE, MAPK8, RPL5, SOD1, VDR
nucleoplasm 7 JUN, MAPK8, RPL5, SCNN1G, SOD1, TRIM33, VDR
RNA polymerase II transcription regulator complex 2 JUN, VDR
Cell membrane 8 ACHE, AGTR2, CD28, CD4, CD8A, EEF1A1, LIPE, PTPRC
ruffle membrane 1 EEF1A1
Cytoplasmic granule 1 PGLYRP1
Multi-pass membrane protein 2 AGTR2, SCNN1G
Synapse 4 ACHE, EEF2, MAPK8, PTPRC
cell surface 3 ACHE, CD28, PTPRC
Golgi apparatus 2 ACHE, PTGS1
neuromuscular junction 1 ACHE
neuronal cell body 1 SOD1
Cytoplasm, cytosol 2 GAPDH, LIPE
plasma membrane 10 ACHE, AGTR2, CD28, CD4, CD8A, EEF1A1, EEF2, GAPDH, PTPRC, SCNN1G
Membrane 7 ACHE, EEF1A1, EEF2, GAPDH, LIPE, PTPRC, RPL5
apical plasma membrane 1 SCNN1G
axon 1 MAPK8
caveola 1 LIPE
extracellular exosome 10 EEF1A1, EEF2, GAPDH, PGLYRP1, PTGS1, PTPRC, RPL5, SCNN1G, SOD1, SOD2
endoplasmic reticulum 1 RPL5
extracellular space 4 ACHE, EEF1A1, PGLYRP1, SOD1
perinuclear region of cytoplasm 2 ACHE, GAPDH
mitochondrion 2 SOD1, SOD2
protein-containing complex 2 RPL5, SOD1
intracellular membrane-bounded organelle 2 GAPDH, PTGS1
Microsome membrane 1 PTGS1
Single-pass type I membrane protein 3 CD4, CD8A, PTPRC
Secreted 2 ACHE, PGLYRP1
extracellular region 6 ACHE, CD8A, EEF1A1, EEF2, PGLYRP1, SOD1
cytoplasmic side of plasma membrane 1 PTPRC
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 SOD1, SOD2
Extracellular side 1 ACHE
transcription regulator complex 1 JUN
photoreceptor outer segment 1 PTGS1
nuclear membrane 1 GAPDH
external side of plasma membrane 5 CD28, CD4, CD8A, PTPRC, SCNN1G
cytoplasmic vesicle 1 SOD1
microtubule cytoskeleton 1 GAPDH
nucleolus 2 EEF1A1, RPL5
axon cytoplasm 1 SOD1
Early endosome 1 CD4
vesicle 1 GAPDH
Apical cell membrane 1 SCNN1G
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 2 CD4, PTPRC
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 2 PTPRC, RPL5
mitochondrial nucleoid 1 SOD2
Peroxisome 1 SOD1
basement membrane 1 ACHE
mitochondrial intermembrane space 1 SOD1
dendrite cytoplasm 1 SOD1
receptor complex 2 CD8A, VDR
neuron projection 1 PTGS1
chromatin 3 JUN, TRIM33, VDR
cytoskeleton 1 GAPDH
Nucleus, nucleolus 2 EEF1A1, RPL5
nuclear chromosome 1 JUN
Lipid-anchor, GPI-anchor 1 ACHE
Endomembrane system 1 PTGS1
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
sodium channel complex 1 SCNN1G
euchromatin 1 JUN
side of membrane 1 ACHE
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 2 EEF1A1, EEF2
secretory granule lumen 2 EEF1A1, EEF2
secretory granule membrane 1 PTPRC
endoplasmic reticulum lumen 1 CD4
cortical actin cytoskeleton 1 EEF1A1
specific granule lumen 1 PGLYRP1
tertiary granule lumen 1 PGLYRP1
immunological synapse 1 CD28
aggresome 1 EEF2
clathrin-coated endocytic vesicle membrane 1 CD4
phagocytic vesicle lumen 1 PGLYRP1
ribonucleoprotein complex 3 EEF2, GAPDH, RPL5
synaptic cleft 1 ACHE
basal dendrite 1 MAPK8
[Isoform 1]: Cell membrane 1 CD8A
GAIT complex 1 GAPDH
cytosolic ribosome 2 EEF1A1, RPL5
membrane microdomain 1 PTPRC
cytoplasmic side of lysosomal membrane 1 EEF1A1
bleb 1 PTPRC
ribosome 3 EEF1A1, EEF2, RPL5
transcription factor AP-1 complex 1 JUN
T cell receptor complex 2 CD4, CD8A
cytosolic large ribosomal subunit 1 RPL5
[Isoform 3]: Cell surface 1 CD28
protein complex involved in cell adhesion 1 CD28
[Isoform H]: Cell membrane 1 ACHE
eukaryotic translation elongation factor 1 complex 1 EEF1A1


文献列表

  • Jahangir Khajehali, Nafiseh Poorjavad, Alireza Bolandnazar, Farid Shahim-Germi, Mahyar Kimiaie, Masoud M Ardestani. Efficiency of plant-based acaricide gels compared to fluvalinate-impregnated strips for control of Varroa destructor in honey bee colonies. Experimental & applied acarology. 2023 Sep; 91(1):57-67. doi: 10.1007/s10493-023-00833-z. [PMID: 37603256]
  • Chao Tianle, Fan Yunhan, Lou Delong, Xia Haitao, Ma Lanting, Shan Xueqing, Yang Liuxu, He Yu, Wang Guizhi. Transcriptomic analysis to elucidate the response of Apis mellifera ligustica brain tissue to fluvalinate exposure. Animal biotechnology. 2022 Apr; ?(?):1-12. doi: 10.1080/10495398.2022.2061506. [PMID: 35436166]
  • Tomas Erban, Marta Vaclavikova, Daniela Tomesova, Tatana Halesova, Jan Hubert. tau-Fluvalinate and other pesticide residues in honey bees before overwintering. Pest management science. 2019 Dec; 75(12):3245-3251. doi: 10.1002/ps.5446. [PMID: 30983110]
  • Jitka Stara, Stano Pekar, Marta Nesvorna, Tomas Erban, Hana Vinsova, Jan Kopecky, Ivo Doskocil, Martin Kamler, Jan Hubert. Detection of tau-fluvalinate resistance in the mite Varroa destructor based on the comparison of vial test and PCR-RFLP of kdr mutation in sodium channel gene. Experimental & applied acarology. 2019 Feb; 77(2):161-171. doi: 10.1007/s10493-019-00353-9. [PMID: 30810851]
  • Hanan A Gashout, Paul H Goodwin, Ernesto Guzman-Novoa. Lethality of synthetic and natural acaricides to worker honey bees (Apis mellifera) and their impact on the expression of health and detoxification-related genes. Environmental science and pollution research international. 2018 Dec; 25(34):34730-34739. doi: 10.1007/s11356-018-3205-6. [PMID: 30324372]
  • Shaoying Wu, Yoshiko Nomura, Yuzhe Du, Boris S Zhorov, Ke Dong. Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate. Proceedings of the National Academy of Sciences of the United States of America. 2017 12; 114(49):12922-12927. doi: 10.1073/pnas.1711699114. [PMID: 29158414]
  • Martin Kamler, Marta Nesvorna, Jitka Stara, Tomas Erban, Jan Hubert. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Experimental & applied acarology. 2016 May; 69(1):1-9. doi: 10.1007/s10493-016-0023-8. [PMID: 26910521]
  • Caitlin J Oliver, Samantha Softley, Sally M Williamson, Philip C Stevenson, Geraldine A Wright. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera). PloS one. 2015; 10(8):e0133733. doi: 10.1371/journal.pone.0133733. [PMID: 26280999]
  • Chia-Wen Hsu, Jinghua Zhao, Ruili Huang, Jui-Hua Hsieh, Jon Hamm, Xiaoqing Chang, Keith Houck, Menghang Xia. Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Scientific reports. 2014 Sep; 4(?):6437. doi: 10.1038/srep06437. [PMID: 25257666]
  • Ignacio Morales, Beatriz María Diaz, Alfonso Hermoso de Mendoza, Miguel Nebreda, Alberto Fereres. The development of an economic threshold for Nasonovia ribisnigri (Hemiptera: Aphididae) on lettuce in central Spain. Journal of economic entomology. 2013 Apr; 106(2):891-8. doi: 10.1603/ec12275. [PMID: 23786079]
  • Guodong Niu, Henry S Pollock, Allen Lawrance, Joel P Siegel, May R Berenbaum. Effects of a naturally occurring and a synthetic synergist on toxicity of three insecticides and a phytochemical to navel orangeworm (Lepidoptera: Pyralidae). Journal of economic entomology. 2012 Apr; 105(2):410-7. doi: 10.1603/ec10194. [PMID: 22606811]
  • Hiroyuki Kojima, Fumihiro Sata, Shinji Takeuchi, Tatsuya Sueyoshi, Tadanori Nagai. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology. 2011 Feb; 280(3):77-87. doi: 10.1016/j.tox.2010.11.008. [PMID: 21115097]
  • Christine J Akre, James D MacNeil. Determination of eight synthetic pyrethroids in bovine fat by gas chromatography with electron capture detection. Journal of AOAC International. 2006 Sep; 89(5):1425-31. doi: . [PMID: 17042195]
  • Hongbin Gao, Yun Ling, Ting Xu, Weiwen Zhu, Hongyu Jing, Wei Sheng, Qing X Li, Ji Li. Development of an enzyme-linked immunosorbent assay for the pyrethroid insecticide cyhalothrin. Journal of agricultural and food chemistry. 2006 Jul; 54(15):5284-91. doi: 10.1021/jf0607009. [PMID: 16848507]
  • Nathan D Rice, Mark L Winston, Robin Whittington, Heathier A Higo. Comparison of release mechanisms for botanical oils to control Varroa destructor (Acari: Varroidae) and Acarapis woodi (acari: Tarsonemidae) in colonies of honey bees (Hymenoptera: Apidae). Journal of economic entomology. 2002 Apr; 95(2):221-6. doi: 10.1603/0022-0493-95.2.221. [PMID: 12019993]
  • N Kaushik, S K Handa. Metabolism of fluvalinate in chickpea plants under sub-tropical conditions of northern India. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2001 May; 36(3):289-300. doi: 10.1081/pfc-100103570. [PMID: 11411852]
  • M Nakata, A Fukushima, H Ohkawa. A monoclonal antibody-based ELISA for the analysis of the insecticide flucythrinate in environmental and crop samples. Pest management science. 2001 Mar; 57(3):269-77. doi: 10.1002/ps.286. [PMID: 11455657]
  • K J Stelzer, M A Gordon. Interactions of pyrethroids with phosphatidylcholine liposomal membranes. Biochimica et biophysica acta. 1985 Jan; 812(2):361-8. doi: 10.1016/0005-2736(85)90310-4. [PMID: 3967018]
  • K J Stelzer, M A Gordon. Effects of pyrethroids on lymphocyte membrane lipid packing order. Journal of immunopharmacology. 1984; 6(4):389-410. doi: 10.3109/08923978409028611. [PMID: 6527010]
  • G B Quistad, L E Staiger, G C Jamieson, D A Schooley. Metabolism of fluvalinate by a lactating dairy cow. Journal of agricultural and food chemistry. 1982 Sep; 30(5):895-901. doi: 10.1021/jf00113a023. [PMID: 7142592]