Hydrogen sulfide (BioDeep_00000004378)
Secondary id: BioDeep_00000872655
human metabolite Endogenous blood metabolite Industrial Pollutants
代谢物信息卡片
化学式: H2S (33.9877)
中文名称: 硫化氢
谱图信息:
最多检出来源 Homo sapiens(otcml) 43.83%
分子结构信息
SMILES: S
InChI: InChI=1S/H2S/h1H2
描述信息
Hydrogen sulfide, also known as h2s or acide sulfhydrique, is a member of the class of compounds known as other non-metal sulfides. Other non-metal sulfides are inorganic compounds containing a sulfur atom of an oxidation state of -2, in which the heaviest atom bonded to the oxygen belongs to the class of other non-metals. Hydrogen sulfide can be found in a number of food items such as small-leaf linden, agar, devilfish, and nutmeg, which makes hydrogen sulfide a potential biomarker for the consumption of these food products. Hydrogen sulfide can be found primarily in blood and feces, as well as throughout most human tissues. Hydrogen sulfide exists in all living species, ranging from bacteria to humans. In humans, hydrogen sulfide is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. Hydrogen sulfide is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. Moreover, hydrogen sulfide is found to be associated with hydrogen sulfide poisoning. Hydrogen sulfide is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydrogen sulfide often results from the microbial breakdown of organic matter in the absence of oxygen gas, such as in swamps and sewers; this process is commonly known as anaerobic digestion. H 2S also occurs in volcanic gases, natural gas, and in some sources of well water. The human body produces small amounts of H 2S and uses it as a signaling molecule . Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBO). HBO therapy has anecdotal support and remains controversial (L1139) (T3DB).
Hydrogen sulfide is a highly toxic and flammable gas. Because it is heavier than air it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first, it quickly deadens the sense of smell, so potential victims may be unaware of its presence until it is too late. H2S arises from virtually anywhere where elemental sulfur comes into contact with organic material, especially at high temperatures. Hydrogen sulfide is a covalent hydride chemically related to water (H2O) since oxygen and sulfur occur in the same periodic table group. It often results when bacteria break down organic matter in the absence of oxygen, such as in swamps, and sewers (alongside the process of anaerobic digestion). It also occurs in volcanic gases, natural gas and some well waters. It is also important to note that Hydrogen sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth. As mentioned above, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules in the absence of oxygen by reducing sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids. Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using oxygen or nitrate as oxidant. The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as electron donor in photosynthesis, thereby producing elemental sulfur. (In fact, this mode of photosynthesis is older than the mode of cyanobacteria, algae and plants which uses water as electron donor and liberates oxygen). Hydrogen sulfide can be found in Alcaligenes, Chromobacteriumn, Klebsiella, Proteus and Pseudomonas (PMID: 13061742).
D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters
D004785 - Environmental Pollutants > D000393 - Air Pollutants
同义名列表
45 个代谢物同义名
Hydrogen sulfide (H2(SX)); Hydrogen sulfide (H2S3); Dihydrogen monosulphide; Hydrogen sulfide (H2S2); Dihydrogen monosulfide; Hydrogen monosulphide; Dihydrogen disulfide; Hydrogen monosulfide; Sulfuretted hydrogen; Sulfureted hydrogen; Acide sulphhydrique; HYDROsulphuric acid; Sulphure dhydrogene; Schwefelwasserstoff; Dihydrogen sulphide; HYDROsulfURIC ACID; Hydrogene sulphure; Sulfure dhydrogene; Acide sulfhydrique; Idrogeno solforato; Dihydrogen sulfide; Hydrogen-sulphide; Sulfide, hydrogen; Hydrogene sulfure; Hydrogen sulphide; hydrogen sulfide; Hydrogen-sulfide; Sulfur hydroxide; Zwavelwaterstof; Hydrosulfurate; Sulfur hydride; HYDROsulphate; Hepatic acid; HYDROsulfate; Hepatic gas; Siarkowodor; Stink dAMP; Sewer gas; Sulphide; Sour gas; Hepatate; SULFIDE; [SH2]; H2S; Hydrogen sulfide
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:29256
- ChEBI: CHEBI:26833
- ChEBI: CHEBI:16136
- KEGG: C00283
- KEGGdrug: D00024
- PubChem: 402
- HMDB: HMDB0003276
- ChEMBL: CHEMBL1200739
- ChEMBL: CHEMBL2105487
- Wikipedia: Hydrogen_sulfide
- MeSH: Hydrogen Sulfide
- MetaCyc: HS
- KNApSAcK: C00007266
- foodb: FDB030910
- chemspider: 391
- CAS: 37331-50-3
- CAS: 7783-06-4
- PMhub: MS000016793
- PubChem: 3578
- PDB-CCD: H2S
- 3DMET: B01206
- NIKKAJI: J3.759A
- KNApSAcK: 16136
分类词条
相关代谢途径
Reactome(5)
BioCyc(15)
- gallate degradation III (anaerobic)
- superpathway of dimethylsulfone degradation
- dimethyl sulfide degradation I
- NADH to cytochrome bo oxidase electron transfer I
- sulfate assimilation
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- thiocyanate degradation II
- carbon disulfide oxidation I (anaerobic)
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
代谢反应
1120 个相关的代谢反应过程信息。
Reactome(65)
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Cytosolic iron-sulfur cluster assembly:
NDOR1:CIAPIN1 oxidized + TPNH ⟶ H+ + NDOR1:CIAPIN1 reduced + TPN
- Cytosolic iron-sulfur cluster assembly (yeast):
TAH18:DRE2 oxidized + TPNH ⟶ H+ + TAH18:DRE2 reduced + TPN
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- The activation of arylsulfatases:
NAD ⟶ H2S + NADH
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- The activation of arylsulfatases:
NAD ⟶ H2S + NADH
BioCyc(227)
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- superpathway of dimethylsulfone degradation:
H+ + NADH + O2 + dimethyl sulfide ⟶ H2O + NAD+ + formaldehyde + methanethiol
- dimethyl sulfide degradation I:
H+ + NADH + O2 + dimethyl sulfide ⟶ H2O + NAD+ + formaldehyde + methanethiol
- thiocyanate degradation II:
H2O + carbonyl sulfide ⟶ CO2 + hydrogen sulfide
- carbon disulfide oxidation I (anaerobic):
H2O + carbon disulfide ⟶ carbonyl sulfide + hydrogen sulfide
- sulfur reduction II (via polysulfide):
H2 + a polysulfide ⟶ a polysulfide + hydrogen sulfide
- sulfur reduction I:
H2 + S0 ⟶ hydrogen sulfide
- carbon disulfide oxidation II (aerobic):
H+ + NADH + O2 + carbon disulfide ⟶ H2O + NAD+ + carbonyl sulfide + hydrogen sulfide
- thiosulfate disproportionation I (thiol-dependent):
a thiol + thiosulfate ⟶ H+ + a disulfide + hydrogen sulfide + sulfite
- superpathway of thiosulfate metabolism (Desulfovibrio sulfodismutans):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- thiosulfate disproportionation III (quinone):
H+ + MQ + hydrogen sulfide + sulfite ⟶ MQH2 + thiosulfate
- thiosulfate disproportionation II (cytochrome):
an oxidized cytochrome c3 + hydrogen sulfide + sulfite ⟶ H+ + a reduced cytochrome c3 + thiosulfate
- assimilatory sulfate reduction I:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- assimilatory sulfate reduction II:
H2O + an oxidized ferredoxin [iron-sulfur] cluster + hydrogen sulfide ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster + sulfite
- assimilatory sulfate reduction III:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfur metabolism (Desulfocapsa sulfoexigens):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- sulfur disproportionation I (anaerobic):
H2O + S0 ⟶ H+ + hydrogen sulfide + sulfite
- sulfur disproportionation II (aerobic):
H2O + O2 + S0 ⟶ H+ + hydrogen sulfide + sulfite
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfur oxidation (Acidianus ambivalens):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- superpathway of tetrathionate reduction (Salmonella typhimurium):
H+ + MQ + hydrogen sulfide + sulfite ⟶ MQH2 + thiosulfate
- assimilatory sulfate reduction I:
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction II (assimilatory):
AMP + GSSG + H+ + sulfite ⟶ APS + glutathione
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + Glu
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- assimilatory sulfate reduction I:
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- superpathway of sulfate assimilation and cysteine biosynthesis:
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfate reduction III (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- assimilatory sulfate reduction I:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- assimilatory sulfate reduction I:
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction II (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfate reduction III (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction II (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- thiosulfate disproportionation II (non thiol-dependent):
A(H2) + thiosulfate ⟶ A + H+ + hydrogen sulfide + sulfite
- superpathway of tetrathionate reduction (Salmonella typhimurium):
A + H2O + hydrogen sulfide ⟶ A(H2) + H+ + sulfite
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- thiosulfate disproportionation II (cytochrome):
an oxidized cytochrome c3 + hydrogen sulfide + sulfite ⟶ H+ + a reduced cytochrome c3 + thiosulfate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- methionine biosynthesis:
O-acetyl-L-homoserine + H2S ⟶ acetate + homocysteine
- carbon disulfide oxidation III (metazoa):
O2 + a reduced [NADPH-hemoprotein reductase] + carbon disulfide ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + sulfinylidenemethanethione
- thiocyanate degradation I:
H2O + thiocyanate ⟶ cyanate + hydrogen sulfide
- sulfate assimilation:
SO3-2 + adenosine 3',5'-bisphosphate + an oxidized thioredoxin ⟶ PAPS + a reduced thioredoxin
- galena oxidation:
H+ + galena + sulfate ⟶ anglesite + hydrogen sulfide
- glutathione amide metabolism:
A + glutathione amide + hydrogen sulfide ⟶ A(H2) + glutathione amide perthiol
- hydrogen sulfide biosynthesis II (mammalian):
H2O + cys ⟶ ammonium + hydrogen sulfide + pyruvate
- L-cysteine degradation II:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glu
- sulfide oxidation IV (metazoa):
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- dissimilatory sulfate reduction I (to hydrogen sufide)):
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- hydrogen sulfide biosynthesis II (mammalian):
H2O + cys ⟶ ammonium + hydrogen sulfide + pyruvate
- 4,4'-disulfanediyldibutanoate degradation:
4-oxo-4-sulfanylbutanoate + H2O ⟶ H+ + hydrogen sulfide + succinate
- L-cysteine biosynthesis II (tRNA-dependent):
hydrogen sulfide ⟶ phosphate
- sulfide oxidation I (sulfide-quinone reductase):
an electron-transfer quinone + hydrogen sulfide ⟶ an electron-transfer quinol + intracellular S0
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- coenzyme B biosynthesis:
7-oxoheptanoate + A(H2) + hydrogen sulfide ⟶ 7-mercaptoheptanoate + A + H2O
- sulfide oxidation IV (metazoa):
GSSH + H+ + sulfite ⟶ glutathione + thiosulfate
- sulfide oxidation II (sulfide dehydrogenase):
an oxidized c-type cytochrome + hydrogen sulfide ⟶ H+ + S0 + a reduced c-type cytochrome
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis IV (archaea):
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- L-cysteine biosynthesis IX (Trichomonas vaginalis):
3-phospho-L-serine + hydrogen sulfide ⟶ cys + phosphate
- superpathway of L-cysteine biosynthesis (fungi):
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis VIII (Thermococcus kodakarensis):
3-phospho-L-serine + hydrogen sulfide ⟶ cys + phosphate
- sulfur reduction III:
NAD(P)+ + hydrogen sulfide ⟶ H+ + NAD(P)H + S0
- L-cysteine degradation III:
3-mercaptopyruvate + a reduced thioredoxin ⟶ an oxidized thioredoxin + hydrogen sulfide + pyruvate
- L-cysteine degradation II:
cys ⟶ 2-aminoprop-2-enoate + hydrogen sulfide
- superpathway of sulfide oxidation (phototrophic sulfur bacteria):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- superpathway of sulfide oxidation (Starkeya novella):
H2O + an oxidized c-type cytochrome + sulfite ⟶ H+ + a reduced c-type cytochrome + sulfate
- superpathway of sulfide oxidation (Acidithiobacillus ferrooxidans):
Fe3+ + H2O + sulfite ⟶ Fe2+ + H+ + sulfate
- hydrogen sulfide biosynthesis I:
3-mercaptopyruvate ⟶ hydrogen sulfide + pyruvate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glu
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- cysteine biosynthesis IV (fungi):
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- L-cysteine degradation II:
cys ⟶ 2-aminoprop-2-enoate + H+ + hydrogen sulfide
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- sulfide oxidation I (sulfide-quinone reductase):
a quinone + hydrogen sulfide ⟶ a quinol + intracellular S0
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- homoserine and methionine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- cysteine biosynthesis IV (fungi):
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- hydrogen sulfide biosynthesis I:
2-oxoglutarate + cys ⟶ 3-mercaptopyruvate + glt
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- parathion degradation:
H2O + parathion ⟶ 4-nitrophenol + H+ + diethylthiophosphate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- sulfide oxidation I (sulfide-quinone reductase):
an electron-transfer quinone + hydrogen sulfide ⟶ an electron-transfer quinol + intracellular S0
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- superpathway of methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine degradation II:
H2O + cys ⟶ H+ + ammonia + hydrogen sulfide + pyruvate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfide oxidation I (sulfide-quinone reductase):
an electron-transfer quinone + hydrogen sulfide ⟶ an electron-transfer quinol + intracellular S0
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- superpathway of methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine degradation II:
2-iminopropanoate + H+ + H2O ⟶ ammonium + pyruvate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- sulfate reduction IV (dissimilatory, to hydrogen sufide)):
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-methionine biosynthesis III:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ H+ + L-homocysteine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
WikiPathways(3)
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Cysteine and methionine catabolism:
Cystine ⟶ S-sulfocysteine
- Ethylmalonic encephalopathy:
SO3 2- (sulfite) ⟶ SO4 2- (sulfate)
Plant Reactome(324)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
INOH(1)
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
PlantCyc(500)
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide detoxification I:
3-cyano-L-alanine + H+ + H2O ⟶ ammonium + asp
- cyanide detoxification I:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- cyanide degradation:
cys + hydrogen cyanide ⟶ 3-cyano-L-alanine + H+ + hydrogen sulfide
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Faisal Zulfiqar, Anam Moosa, Hayssam M Ali, John T Hancock, Jean Wan Hong Yong. Synergistic interplay between melatonin and hydrogen sulfide enhances cadmium-induced oxidative stress resistance in stock (Matthiola incana L.).
Plant signaling & behavior.
2024 Dec; 19(1):2331357. doi:
10.1080/15592324.2024.2331357
. [PMID: 38564424] - Chen Xu, Yukun Zhang, Mingguang Ren, Keyin Liu, Qin Wu, Chunling Zhang, Shoujuan Wang, Fangong Kong. A fluorescent probe for detecting H2O2 and delivering H2S in lysosomes and its application in maintaining the redox environments.
Talanta.
2024 Jun; 273(?):125894. doi:
10.1016/j.talanta.2024.125894
. [PMID: 38461644] - Manuel A Matamoros, Luis C Romero, Tao Tian, Ángela Román, Deqiang Duanmu, Manuel Becana. Persulfidation of plant and bacteroid proteins is involved in legume nodule development and senescence.
Journal of experimental botany.
2024 May; 75(10):3009-3025. doi:
10.1093/jxb/erad436
. [PMID: 37952184] - Abeer Abdelrazk Younis, Mohamed Magdy Fahim Mansour. Hydrogen sulfide-mitigated salinity stress impact in sunflower seedlings was associated with improved photosynthesis performance and osmoregulation.
BMC plant biology.
2024 May; 24(1):422. doi:
10.1186/s12870-024-05071-y
. [PMID: 38760671] - Simin Wang, Cuixia Zhang, Rongshan Chen, Kailin Cheng, Liai Ma, Wei Wang, Ning Yang. H2S is involved in drought-mediated stomatal closure through PLDα1 in Arabidopsis.
Planta.
2024 May; 259(6):142. doi:
10.1007/s00425-024-04421-2
. [PMID: 38702456] - Jacopo Spezzini, Eugenia Piragine, Lorenzo Flori, Vincenzo Calderone, Alma Martelli. Natural H2S-donors: A new pharmacological opportunity for the management of overweight and obesity.
Phytotherapy research : PTR.
2024 May; 38(5):2388-2405. doi:
10.1002/ptr.8181
. [PMID: 38430052] - Garima Singh, Sheo Mohan Prasad. Synergistic regulation of hydrogen sulfide and nitric oxide on biochemical components, exopolysaccharides, and nitrogen metabolism in nickel stressed rice field cyanobacteria.
Journal of plant research.
2024 May; 137(3):521-543. doi:
10.1007/s10265-024-01530-7
. [PMID: 38460108] - Tian Ma, Shutian Xu, Yaqin Wang, Liping Zhang, Zhiqiang Liu, Danmei Liu, Zhuping Jin, Yanxi Pei. Exogenous hydrogen sulphide promotes plant flowering through the Arabidopsis splicing factor AtU2AF65a.
Plant, cell & environment.
2024 May; 47(5):1782-1796. doi:
10.1111/pce.14849
. [PMID: 38315745] - Hanping Cao, Kejin Song, Yingying Hu, Qingxiao Li, Tengfei Ma, Rui Li, Nan Chen, Shunqin Zhu, Wanhong Liu. The role of exogenous hydrogen sulfide in mitigating cadmium toxicity in plants: A comprehensive meta-analysis.
Environmental science and pollution research international.
2024 May; 31(21):30273-30287. doi:
10.1007/s11356-024-33298-7
. [PMID: 38613761] - Yu-Xi Feng, Peng Tian, Cheng-Zhi Li, Xiao-Dong Hu, Yu-Juan Lin. Elucidating the intricacies of the H2S signaling pathway in gasotransmitters: Highlighting the regulation of plant thiocyanate detoxification pathways.
Ecotoxicology and environmental safety.
2024 May; 276(?):116307. doi:
10.1016/j.ecoenv.2024.116307
. [PMID: 38593497] - Samira Karami, Mahdi Farzadkia, Majid Kermani, Roshanak Rezaei Kalantary, Hasan Pasalari. Biological feasibility of discharge a local WTTP sludge to sewer network and centralized WWTP; a case study: Tehran, Iran.
Scientific reports.
2024 04; 14(1):9308. doi:
10.1038/s41598-024-58821-1
. [PMID: 38654035] - Jiankun Cui, Xin Wang, Lingling Dong, Qinwen Wang. Curcumin reduces myocardial ischemia-reperfusion injury, by increasing endogenous H2S levels and further modulating m6A.
Molecular biology reports.
2024 Apr; 51(1):558. doi:
10.1007/s11033-024-09478-6
. [PMID: 38643323] - Tianqi Wang, Xiaoju Li, Honglei Liu, Huaiwei Liu, Yongzhen Xia, Luying Xun. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide.
The Science of the total environment.
2024 Apr; 922(?):170504. doi:
10.1016/j.scitotenv.2024.170504
. [PMID: 38307292] - Xiang Xiao, Ke Kuang, Zijun Tang, Xia Yang, Haiwen Wu, Yunqing Wang, Ping Fang. Emission and spatial variation characteristics of odorous pollutants in the aerobic tank of an underground wastewater treatment plant (UWWTP) in southern China.
Environmental pollution (Barking, Essex : 1987).
2024 Apr; 346(?):123631. doi:
10.1016/j.envpol.2024.123631
. [PMID: 38395135] - Shaoyu Mao, Xuemei Wang, Miaoqing Li, Hanshu Liu, Hongxia Liang. The role and mechanism of hydrogen sulfide in liver fibrosis.
Nitric oxide : biology and chemistry.
2024 Apr; 145(?):41-48. doi:
10.1016/j.niox.2024.02.002
. [PMID: 38360133] - Xinshuang Zhang, Yan Sun, Hao Wu, Ying Zhu, Xin Liu, Songchong Lu. Tobacco Transcription Factor NtWRKY70b Facilitates Leaf Senescence via Inducing ROS Accumulation and Impairing Hydrogen Sulfide Biosynthesis.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073686
. [PMID: 38612502] - Francisco J Corpas. NO and H2S Contribute to Crop Resilience against Atmospheric Stressors.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063509
. [PMID: 38542480] - Lorenzo Flori, Eugenia Piragine, Vincenzo Calderone, Lara Testai. Role of hydrogen sulfide in the regulation of lipid metabolism: Implications on cardiovascular health.
Life sciences.
2024 Mar; 341(?):122491. doi:
10.1016/j.lfs.2024.122491
. [PMID: 38336275] - Jingcheng Dai, Dingxin Wen, Hao Li, Jingpeng Yang, Xiongfei Rao, Yong Yang, Jiangke Yang, Chunlei Yang, Jun Yu. Effect of hydrogen sulfide (H2S) on the growth and development of tobacco seedlings in absence of stress.
BMC plant biology.
2024 Mar; 24(1):162. doi:
10.1186/s12870-024-04819-w
. [PMID: 38429726] - Jie Wang, Jianhua Dou, Zhibin Yue, Jue Wang, Tongyan Chen, Jinbao Li, Haojie Dai, Tingting Dou, Jihua Yu, Zeci Liu. Effect of hydrogen sulfide on cabbage photosynthesis under black rot stress.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108453. doi:
10.1016/j.plaphy.2024.108453
. [PMID: 38417309] - Vivekanand Tiwari, Yuval Bussi, Itzhak Kamara, Adi Faigenboim, Vered Irihimovitch, Dana Charuvi. Priming avocado with sodium hydrosulfide prior to frost conditions induces the expression of genes involved in protection and stress responses.
Physiologia plantarum.
2024 Mar; 176(2):e14291. doi:
10.1111/ppl.14291
. [PMID: 38628053] - Gaurav Sharma, Nandni Sharma, Puja Ohri. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress.
Nitric oxide : biology and chemistry.
2024 Mar; 144(?):1-10. doi:
10.1016/j.niox.2024.01.002
. [PMID: 38185242] - Hamza Sohail, Iqra Noor, Mirza Hasanuzzaman, Shouyu Geng, Lanxing Wei, Muhammad Azher Nawaz, Yuan Huang, Li Yang, Zhilong Bie. CmoPIP1-4 confers drought tolerance in pumpkin by altering hydrogen sulfide signaling.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108443. doi:
10.1016/j.plaphy.2024.108443
. [PMID: 38479079] - Cengiz Kaya, Ferhat Uğurlar, Muhammad Ashraf, Mohammed Nasser Alyemeni, Raf Dewil, Parvaiz Ahmad. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide.
Journal of environmental management.
2024 Feb; 351(?):119759. doi:
10.1016/j.jenvman.2023.119759
. [PMID: 38091729] - Ruihuan Yu, Yuehong Wang, Jiechun Zhu, Guangdong Yang. H2S-mediated blockage of protein acetylation and oxidative stress attenuates lipid overload-induced cardiac senescence.
Archives of physiology and biochemistry.
2024 Feb; 130(1):96-109. doi:
10.1080/13813455.2021.1976209
. [PMID: 34511001] - Udayakumar Karunakaran, Suma Elumalai, Seung Min Chung, Kathrin Maedler, Kyu Chang Won, Jun Sung Moon. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system.
Redox biology.
2024 Feb; 69(?):102994. doi:
10.1016/j.redox.2023.102994
. [PMID: 38128451] - Ameena Fatima Alvi, Sheen Khan, Nafees A Khan. Hydrogen sulfide and ethylene regulate sulfur-mediated stomatal and photosynthetic responses and heat stress acclimation in rice.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108437. doi:
10.1016/j.plaphy.2024.108437
. [PMID: 38368727] - Xiao Fang, Siqi Wang, Qingqing Wang, Jun Gong, Li Li, Helin Lu, Ping Xue, Zhanhong Ren, Xiaobo Wang. A highly selective and sensitive fluorescence probe based on BODIPY-cyclen for hydrogen sulfide detection in living cells and serum.
Talanta.
2024 Feb; 268(Pt 1):125339. doi:
10.1016/j.talanta.2023.125339
. [PMID: 37918241] - Longshua Qin, Qiangqiang Yu, Yong Huang, Leichang Zhang, Xinying Yan, Wenqi Wu, Fusheng Liao, Jie Zhang, Hanfeng Cui, Jing Zhang, Hao Fan. A novel fluorescent sensor with an overtone peak reference for highly sensitive detection of mercury (II) ions and hydrogen sulfide: Mechanisms and applications in environmental monitoring and bioanalysis.
Analytica chimica acta.
2024 Jan; 1287(?):342086. doi:
10.1016/j.aca.2023.342086
. [PMID: 38182341] - Jesus H Beltran-Ornelas, Diana L Silva-Velasco, Jorge Tapia-Martínez, Araceli Sánchez-López, Edgar Cano-Europa, Saúl Huerta de la Cruz, David Centurión. NaHS reverts chronic stress-induced cardiovascular alterations by reducing oxidative stress.
Journal of cardiovascular pharmacology.
2024 Jan; ?(?):. doi:
10.1097/fjc.0000000000001538
. [PMID: 38207007] - Qian Ding, Wu Song, Menglin Zhu, Yue Yu, Zhongxiao Lin, Wei Hu, Jianghong Cai, Zhongyi Zhang, Hao Zhang, Junyang Zhou, Wei Lei, Yi Zhun Zhu. Hydrogen Sulfide and Functional Therapy: Novel Mechanisms from Epigenetics.
Antioxidants & redox signaling.
2024 01; 40(1-3):110-121. doi:
10.1089/ars.2023.0425
. [PMID: 37950704] - Hayet Houmani, Francisco J Corpas. Can nutrients act as signals under abiotic stress?.
Plant physiology and biochemistry : PPB.
2024 Jan; 206(?):108313. doi:
10.1016/j.plaphy.2023.108313
. [PMID: 38171136] - M Nasir Khan, Manzer H Siddiqui, Mazen A AlSolami, Zahid Hameed Siddiqui. Melatonin-regulated heat shock proteins and mitochondrial ATP synthase induce drought tolerance through sustaining ROS homeostasis in H2S-dependent manner.
Plant physiology and biochemistry : PPB.
2024 Jan; 206(?):108231. doi:
10.1016/j.plaphy.2023.108231
. [PMID: 38056039] - Tunisha Verma, Savita Bhardwaj, Ali Raza, Ivica Djalovic, Pv Vara Prasad, Dhriti Kapoor. Mitigation of salt stress in Indian mustard (Brassica juncea L.) by the application of triacontanol and hydrogen sulfide.
Plant signaling & behavior.
2023 12; 18(1):2189371. doi:
10.1080/15592324.2023.2189371
. [PMID: 36934336] - Xiao Zhang, Yuqin Ding, Miao Yang, Aili Wei, Dongao Huo. The role of NaHS pretreatment in improving salt stress resistance in foxtail millet seedlings: physiological and molecular mechanisms.
Plant signaling & behavior.
2023 Dec; 18(1):2276611. doi:
10.1080/15592324.2023.2276611
. [PMID: 37917857] - Xiaoming Gao, Ke Lu, Chong Li. Emerging relationship between hydrogen sulfide and ferroptosis: A literature review.
Acta biochimica Polonica.
2023 Dec; 70(4):735-744. doi:
10.18388/abp.2020_6756
. [PMID: 38060814] - Lars Ole Goffeng, Åse Dalseth Austigard, Kristin H Svendsen, Øivind Skare, Elin Einarsdottir, Lene Madsø, Kari Kulvik Heldal. A cross-sectional study of sensory-motor neuropsychological function among sewage plant and sewage net workers exposed to hydrogen sulphide when handling wastewater.
Annals of work exposures and health.
2023 11; 67(9):1027-1042. doi:
10.1093/annweh/wxad051
. [PMID: 37742044] - Xueping Song, Li Zhu, Dong Wang, Le Liang, Jiachang Xiao, Wen Tang, Minghui Xie, Zhao Zhao, Yunsong Lai, Bo Sun, Yi Tang, Huanxiu Li. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings.
International journal of molecular sciences.
2023 Nov; 24(22):. doi:
10.3390/ijms242216337
. [PMID: 38003525] - Jie Chen, Zhennan Chen, Dongyu Yu, Yufei Yan, Xiuli Hao, Mingxia Zhang, Tong Zhu. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway.
Cellular and molecular neurobiology.
2023 Nov; 43(8):4117-4140. doi:
10.1007/s10571-023-01399-5
. [PMID: 37624470] - Yuxin Miao, Shuangshuang Zhang, Zihui Liang, Yang Wang, Danyang Tian, Sheng Jin, Qi Guo, Hongmei Xue, Xu Teng, Lin Xiao, Yuming Wu. Hydrogen sulfide ameliorates endothelial dysfunction in aging arteries by regulating ferroptosis.
Nitric oxide : biology and chemistry.
2023 Nov; 140-141(?):77-90. doi:
10.1016/j.niox.2023.10.002
. [PMID: 37875241] - Francisco J Corpas. H2S: A Simple Molecule with Multifaceted Biochemistry and Functions.
Antioxidants & redox signaling.
2023 11; 39(13-15):980-982. doi:
10.1089/ars.2023.0430
. [PMID: 37603498] - Abeer Abdelrazk Younis, Mohamed Magdy F Mansour. Hydrogen sulfide priming enhanced salinity tolerance in sunflower by modulating ion hemostasis, cellular redox balance, and gene expression.
BMC plant biology.
2023 Oct; 23(1):525. doi:
10.1186/s12870-023-04552-w
. [PMID: 37899427] - Ke Wu, Xumei Wang, Lili Gong, Xinyuan Zhai, Kai Wang, Xiao Qiu, Hao Zhang, Zhixin Tang, Haiqiang Jiang, Xiaoming Wang. Screening of H2S donors with a red emission mitochondria-targetable fluorescent probe: Toward discovering a new therapeutic strategy for Parkinson's disease.
Biosensors & bioelectronics.
2023 Oct; 237(?):115521. doi:
10.1016/j.bios.2023.115521
. [PMID: 37429146] - Tianqi Wang, Guomei Zhong, Honglei Liu, Huaiwei Liu, Yongzhen Xia, Luying Xun. A common mechanism for rapid transfer of zero-valent sulfur between microbial cells.
The Science of the total environment.
2023 Sep; 891(?):164461. doi:
10.1016/j.scitotenv.2023.164461
. [PMID: 37247735] - Mohd Ali, Deepak Kumar, Raman Tikoria, Roohi Sharma, Parkirti Parkirti, Vikram Vikram, Kritika Kaushal, Puja Ohri. Exploring the potential role of hydrogen sulfide and jasmonic acid in plants during heavy metal stress.
Nitric oxide : biology and chemistry.
2023 Sep; 140-141(?):16-29. doi:
10.1016/j.niox.2023.09.001
. [PMID: 37696445] - Vinod Kumar, Rahul Sakla, Nancy Sharma, Kanika, Rehan Khan, D Amilan Jose. Liposome Based Near-Infrared Sensors for the Selective Detection of Hydrogen Sulfide.
ChemPlusChem.
2023 09; 88(9):e202300243. doi:
10.1002/cplu.202300243
. [PMID: 37530569] - Ana Jurado-Flores, Angeles Aroca, Luis C Romero, Cecilia Gotor. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis.
Journal of experimental botany.
2023 08; 74(15):4654-4669. doi:
10.1093/jxb/erad165
. [PMID: 37148339] - Xiaofeng Wang, Cong Shi, Yanfeng Hu, Ying Ma, Yuying Yi, Honglei Jia, Fali Li, Haotian Sun, Tian Li, Xiuyu Wang, Tianjinhong Li, Jisheng Li. Persulfidation maintains cytosolic G6PDs activity through changing tetrameric structure and competing cysteine sulfur oxidation under salt stress in Arabidopsis and tomato.
The New phytologist.
2023 Aug; ?(?):. doi:
10.1111/nph.19188
. [PMID: 37574819] - Andreas Luckert, Daniel Aguado, Rafael García-Bartual, Carlos Lafita, Tatiana Montoya, Norbert Frank. Odour mapping and air quality analysis of a wastewater treatment plant at a seaside tourist area.
Environmental monitoring and assessment.
2023 Aug; 195(8):1013. doi:
10.1007/s10661-023-11598-8
. [PMID: 37526776] - Stephen Lindahl, Ming Xian. Recent development of polysulfides: Chemistry and biological applications.
Current opinion in chemical biology.
2023 08; 75(?):102325. doi:
10.1016/j.cbpa.2023.102325
. [PMID: 37216872] - Satoshi Asaoka, Takamichi Ishidu, Kenji Nakamoto. Effect of chemical composition of coal ash used to prepare granulated coal ash on the removal of hydrogen sulfide from water.
Water environment research : a research publication of the Water Environment Federation.
2023 Aug; 95(8):e10916. doi:
10.1002/wer.10916
. [PMID: 37533124] - Cengiz Kaya, Muhammad Ashraf, Mohammed Nasser Alyemeni, Jörg Rinklebe, Parvaiz Ahmad. Citric acid and hydrogen sulfide cooperate to mitigate chromium stress in tomato plants by modulating the ascorbate-glutathione cycle, chromium sequestration, and subcellular allocation of chromium.
Environmental pollution (Barking, Essex : 1987).
2023 Aug; 335(?):122292. doi:
10.1016/j.envpol.2023.122292
. [PMID: 37536477] - Xiaomeng Cui, Menglin Yao, Yanjing Feng, Chengjun Li, Yarui Li, Dan Guo, Shuixiang He. Exogenous hydrogen sulfide alleviates hepatic endoplasmic reticulum stress via SIRT1/FoxO1/PCSK9 pathway in NAFLD.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2023 08; 37(8):e23027. doi:
10.1096/fj.202201705rr
. [PMID: 37410029] - Jie Zhang, Xiaoning Liang, Simin Xie, Yupeng Liang, Shuang Liang, Jihai Zhou, Yongjie Huang. Effects of hydrogen sulfide on the growth and physiological characteristics of Miscanthus sacchariflorus seedlings under cadmium stress.
Ecotoxicology and environmental safety.
2023 Jul; 263(?):115281. doi:
10.1016/j.ecoenv.2023.115281
. [PMID: 37499387] - Taoyun Wang, Xu Huang, Sheng Yang, Shan Hu, Xianglan Zheng, Guojiang Mao, Yi Li, Yibo Zhou. Monitoring H2S fluctuation during autophagic fusion of lysosomes and mitochondria using a lysosome-targeting fluorogenic probe.
Analytica chimica acta.
2023 Jul; 1265(?):341356. doi:
10.1016/j.aca.2023.341356
. [PMID: 37230562] - Mikko Selenius, Joonas Ruokolainen, Joakim Riikonen, Jimi Rantanen, Simo Näkki, Vesa-Pekka Lehto, Marko Hyttinen. Removing siloxanes and hydrogen sulfide from landfill gases with biochar and activated carbon filters.
Waste management (New York, N.Y.).
2023 Jul; 167(?):31-38. doi:
10.1016/j.wasman.2023.05.006
. [PMID: 37230876] - Dong-Dong Wu, Sheng Jin, Ruo-Xiao Cheng, Wen-Jie Cai, Wen-Long Xue, Qing-Qing Zhang, Le-Jie Yang, Qi Zhu, Meng-Yao Li, Ge Lin, Yi-Zhen Wang, Xue-Pan Mu, Yu Wang, Igor Ying Zhang, Qi Zhang, Ying Chen, Sheng-Yang Cai, Bo Tan, Ye Li, Yun-Qian Chen, Pu-Juan Zhang, Chen Sun, Yue Yin, Ming-Jie Wang, Yi-Zhun Zhu, Bei-Bei Tao, Jia-Hai Zhou, Wei-Xue Huang, Yi-Chun Zhu. Hydrogen sulfide functions as a micro-modulator bound at the copper active site of Cu/Zn-SOD to regulate the catalytic activity of the enzyme.
Cell reports.
2023 Jul; 42(7):112750. doi:
10.1016/j.celrep.2023.112750
. [PMID: 37421623] - María A Muñoz-Vargas, Javier López-Jaramillo, Salvador González-Gordo, Alberto Paradela, José M Palma, Francisco J Corpas. H2S-Generating Cytosolic L-Cysteine Desulfhydrase and Mitochondrial D-Cysteine Desulfhydrase from Sweet Pepper (Capsicum annuum L.) Are Regulated During Fruit Ripening and by Nitric Oxide.
Antioxidants & redox signaling.
2023 07; 39(1-3):2-18. doi:
10.1089/ars.2022.0222
. [PMID: 36950799] - Jingjing Huang, Yanjie Xie. Hydrogen Sulfide Signaling in Plants.
Antioxidants & redox signaling.
2023 07; 39(1-3):40-58. doi:
10.1089/ars.2023.0267
. [PMID: 36924280] - Stanislav Rodkin, Chizaram Nwosu, Alexander Sannikov, Margarita Raevskaya, Alexander Tushev, Inna Vasilieva, Mitkhat Gasanov. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310742
. [PMID: 37445920] - Li Feng, Lijuan Wei, Yayu Liu, Jiaxuan Ren, Weibiao Liao. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules.
Nitric oxide : biology and chemistry.
2023 Jun; 138-139(?):51-63. doi:
10.1016/j.niox.2023.06.005
. [PMID: 37364740] - M Nasir Khan, Manzer H Siddiqui, Khalaf M Alhussaen, Alaa Rafat El-Alosey, Meshari Atallah M AlOmrani, Hazem M Kalaji. Titanium dioxide nanoparticles require K+ and hydrogen sulfide to regulate nitrogen and carbohydrate metabolism during adaptive response to drought and nickel stress in cucumber.
Environmental pollution (Barking, Essex : 1987).
2023 Jun; 334(?):122008. doi:
10.1016/j.envpol.2023.122008
. [PMID: 37356795] - Ruoyu Hou, Rebecca E Jelley, Katryna A van Leeuwen, Farhana R Pinu, Bruno Fedrizzi, Rebecca C Deed. Hydrogen sulfide production during early yeast fermentation correlates with volatile sulfur compound biogenesis but not thiol release.
FEMS yeast research.
2023 Jun; ?(?):. doi:
10.1093/femsyr/foad031
. [PMID: 37279910] - Lucas León Peralta Ogorek, Hirokazu Takahashi, Mikio Nakazono, Ole Pedersen. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect.
The New phytologist.
2023 06; 238(5):1825-1837. doi:
10.1111/nph.18883
. [PMID: 36928886] - Zhi-Xin Xiang, Wen Li, Ying-Tang Lu, Ting-Ting Yuan. Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis.
The Plant journal : for cell and molecular biology.
2023 Jun; 114(6):1369-1384. doi:
10.1111/tpj.16198
. [PMID: 36948886] - Deepti Singh, Nathi Lal Sharma, Dharmendra Singh, Manzer H Siddiqui, Jyoti Taunk, Susheel Kumar Sarkar, Abhishek Rathore, Chandan Kumar Singh, Abdullah A Al-Amri, Saleh Alansi, Hayssam M Ali, Md Atikur Rahman. Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (Vigna radiata L.) seedlings.
Plant physiology and biochemistry : PPB.
2023 May; 200(?):107767. doi:
10.1016/j.plaphy.2023.107767
. [PMID: 37220675] - Ying Ma, Fali Li, Yuying Yi, Xiaofeng Wang, Tian Li, Xiuyu Wang, Haotian Sun, Luqi Li, Meijuan Ren, Sirui Han, Luan Zhang, Ying Chen, Haiqing Tang, Honglei Jia, Jisheng Li. Hydrogen sulfide improves salt tolerance through persulfidation of PMA1 in Arabidopsis.
Plant cell reports.
2023 May; ?(?):. doi:
10.1007/s00299-023-03029-2
. [PMID: 37179518] - Margarita García-Calderón, Thibaut Vignane, Milos R Filipovic, M Teresa Ruiz, Luis C Romero, Antonio J Márquez, Cecilia Gotor, Angeles Aroca. Persulfidation protects from oxidative stress under nonphotorespiratory conditions in Arabidopsis.
The New phytologist.
2023 05; 238(4):1431-1445. doi:
10.1111/nph.18838
. [PMID: 36840421] - Ameena Fatima Alvi, Noushina Iqbal, Mohammed Albaqami, Nafees A Khan. The emerging key role of reactive sulfur species in abiotic stress tolerance in plants.
Physiologia plantarum.
2023 May; 175(3):e13945. doi:
10.1111/ppl.13945
. [PMID: 37265249] - You-Hui Zhong, Ze-Jun Guo, Ming-Yue Wei, Ji-Cheng Wang, Shi-Wei Song, Bing-Jie Chi, Yu-Chen Zhang, Jing-Wen Liu, Jing Li, Xue-Yi Zhu, Han-Chen Tang, Ling-Yu Song, Chao-Qun Xu, Hai-Lei Zheng. Hydrogen sulfide upregulates the alternative respiratory pathway in mangrove plant Avicennia marina to attenuate waterlogging-induced oxidative stress and mitochondrial damage in a calcium-dependent manner.
Plant, cell & environment.
2023 05; 46(5):1521-1539. doi:
10.1111/pce.14546
. [PMID: 36658747] - Salvador González-Gordo, Javier López-Jaramillo, José M Palma, Francisco J Corpas. Soybean (Glycine max L.) Lipoxygenase 1 (LOX 1) Is Modulated by Nitric Oxide and Hydrogen Sulfide: An In Vitro Approach.
International journal of molecular sciences.
2023 Apr; 24(9):. doi:
10.3390/ijms24098001
. [PMID: 37175708] - Adrian T Press, Luisa Ungelenk, Anna Medyukhina, Samantha A Pennington, Sandor Nietzsche, Chunyi Kan, Amelie Lupp, Uta Dahmen, Rui Wang, Utz Settmacher, Reinhard Wetzker, Marc Thilo Figge, Mark G Clemens, Michael Bauer. Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury.
Free radical biology & medicine.
2023 Apr; ?(?):. doi:
10.1016/j.freeradbiomed.2023.04.012
. [PMID: 37105418] - M Nasir Khan, Manzer H Siddiqui, Soumya Mukherjee, Mazen A AlSolami, Khalaf M Alhussaen, Fahad M AlZuaibr, Zahid H Siddiqui, Abdullah A Al-Amri, Qasi D Alsubaie. Melatonin involves hydrogen sulfide in the regulation of H+-ATPase activity, nitrogen metabolism, and ascorbate-glutathione system under chromium toxicity.
Environmental pollution (Barking, Essex : 1987).
2023 Apr; 323(?):121173. doi:
10.1016/j.envpol.2023.121173
. [PMID: 36740162] - You-Mei Lin, Qing He, Xiang-Yu Wang, Fan-Feng Hua, Xin-Yue Liu, Ying-Long Fu. Near-Infrared Fluorescent Probe for Imaging Upregulated Hydrogen Sulfide Levels in Rice under Salt and Drought Stress.
Journal of agricultural and food chemistry.
2023 Apr; 71(13):5154-5161. doi:
10.1021/acs.jafc.3c00103
. [PMID: 36881720] - Yang Yu, Xinghui Li, Xiuquan Wu, Xinglong Li, Jialiang Wei, Xianjin Chen, Zhouyuan Sun, Qinghua Zhang. Sodium hydrosulfide inhibits hemin-induced ferroptosis and lipid peroxidation in BV2 cells via the CBS/H2S system.
Cellular signalling.
2023 Apr; 104(?):110594. doi:
10.1016/j.cellsig.2023.110594
. [PMID: 36646297] - Yifan Wang, Xiaoying Ying, Yuehong Wang, Zhiguo Zou, Ancai Yuan, Zemeng Xiao, Na Geng, ZhiQing Qiao, Wenli Li, Xiyuan Lu, Jun Pu. Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3-NFS1 axis in doxorubicin-induced cardiotoxicity.
Cellular signalling.
2023 Mar; 107(?):110655. doi:
10.1016/j.cellsig.2023.110655
. [PMID: 36924813] - Shuanghong Gao, Yifan Wang, Zhen Zeng, Menglei Zhang, Na Yi, Bowen Liu, Ruijia Wang, Si Long, Jiongjiong Gong, Tieyuan Liu, Yuefei Xu. Integrated bioinformatic and physiological analyses reveal the pivotal role of hydrogen sulfide in enhancing low-temperature tolerance in alfalfa.
Physiologia plantarum.
2023 Mar; 175(2):e13885. doi:
10.1111/ppl.13885
. [PMID: 36852715] - Bo He, Zhe Zhang, Zhao Huang, Xirui Duan, Yu Wang, Jiangjun Cao, Lei Li, Kai He, Edouard C Nice, Weifeng He, Wei Gao, Zhisen Shen. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response.
Biochemical pharmacology.
2023 03; 209(?):115444. doi:
10.1016/j.bcp.2023.115444
. [PMID: 36736962] - Bisma Hilal, Tanveer Ahmad Khan, Qazi Fariduddin. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants.
Plant physiology and biochemistry : PPB.
2023 Mar; 196(?):1065-1083. doi:
10.1016/j.plaphy.2023.03.006
. [PMID: 36921557] - Murtaza Khan, Sajid Ali, Tiba Nazar Ibrahim Al Azzawi, Byung-Wook Yun. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions.
International journal of molecular sciences.
2023 Mar; 24(5):. doi:
10.3390/ijms24054782
. [PMID: 36902213] - Xiuli Liu, Guilan Li, Shaoxiong Chen, Huiyun Jin, Xiaodong Liu, Linfang Zhang, Zhaohui Zhang. Hydrogen sulfide alleviates beryllium sulfate-induced ferroptosis and ferritinophagy in 16HBE cells.
Journal of applied toxicology : JAT.
2023 Feb; ?(?):. doi:
10.1002/jat.4453
. [PMID: 36843388] - Ahmed Y Ibrahim, Fatma H Ashour, Mamdouh A Gadalla, Amal Abdelhaleem. Performance assessment and process optimization of a sulfur recovery unit: a real starting up plant.
Environmental monitoring and assessment.
2023 Feb; 195(3):358. doi:
10.1007/s10661-023-10955-x
. [PMID: 36732405] - Long Guo, Long Ling, Xiaoqian Wang, Ting Cheng, Hongyan Wang, Yanan Ruan. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism.
BMC plant biology.
2023 Feb; 23(1):73. doi:
10.1186/s12870-023-04089-y
. [PMID: 36732696] - Yu-Juan Lin, Xing-Hui Feng, Yu-Xi Feng. Regulation of enzymatic and non-enzymatic antioxidants in rice seedlings against chromium stress through sodium hydrosulfide and sodium nitroprusside.
Environmental science and pollution research international.
2023 Feb; 30(10):25851-25862. doi:
10.1007/s11356-022-23917-6
. [PMID: 36346523] - Jerzy Bełtowski, Jolanta Kowalczyk-Bołtuć. Hydrogen sulfide in the experimental models of arterial hypertension.
Biochemical pharmacology.
2023 02; 208(?):115381. doi:
10.1016/j.bcp.2022.115381
. [PMID: 36528069] - Norhusna Mohamad Nor, Lau Lee Chung, Abdul Rahman Mohamed. Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach.
Environmental science and pollution research international.
2023 Feb; 30(7):17129-17148. doi:
10.1007/s11356-022-20627-x
. [PMID: 35554814] - Huy Thanh Vo, Tsuyoshi Imai, Masato Fukushima, Kanathip Promnuan, Tasuma Suzuki, Hiraku Sakuma, Takashi Hitomi, Yung-Tse Hung. Enhancing the Biological Oxidation of H2S in a Sewer Pipe with Highly Conductive Concrete and Electricity-Producing Bacteria.
International journal of environmental research and public health.
2023 01; 20(2):. doi:
10.3390/ijerph20021459
. [PMID: 36674215] - Hanghang Liu, Peifang Chong, Zehua Liu, Xinguang Bao, Bingbing Tan. Exogenous hydrogen sulfide improves salt stress tolerance of Reaumuria soongorica seedlings by regulating active oxygen metabolism.
PeerJ.
2023; 11(?):e15881. doi:
10.7717/peerj.15881
. [PMID: 37641597] - Francisco J Corpas, José M Palma. Functions of NO and H2S Signal Molecules Against Plant Abiotic Stress.
Methods in molecular biology (Clifton, N.J.).
2023; 2642(?):97-109. doi:
10.1007/978-1-0716-3044-0_5
. [PMID: 36944874] - Huandi Liu, Jiaxiang Sun, Xuhong Cheng, Liangwei Duan, Shuaifeng Guo, Zhongxin Zhang, Jia Wan, Chunduo Wang, Xiaoying Zhi, Linghui Yuan, Hui Wang. Hydrogen sulfide inhibits human T-cell leukemia virus type-1 (HTLV-1) protein expression via regulation of ATG4B.
Journal of medical virology.
2023 01; 95(1):e28176. doi:
10.1002/jmv.28176
. [PMID: 36163615] - Cengiz Kaya, Ferhat Ugurlar, Muhammed Ashraf, Pravej Alam, Parvaiz Ahmad. Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle.
Plant physiology and biochemistry : PPB.
2023 Jan; 194(?):651-663. doi:
10.1016/j.plaphy.2022.11.041
. [PMID: 36563571] - Aerbusili Genjiafu, Mengdi Shi, Xiangxing Zhang, Xiangdong Jian. Case report: Analysis of a case of hydrogen sulfide poisoning in a waste treatment plant.
Frontiers in public health.
2023; 11(?):1226282. doi:
10.3389/fpubh.2023.1226282
. [PMID: 37965501] - Xi-Li He, Wei-Qin Zhang, Ni-Na Zhang, Shi-Ming Wen, Juan Chen. Hydrogen sulfide and nitric oxide regulate the adaptation to iron deficiency through affecting Fe homeostasis and thiol redox modification in Glycine max seedlings.
Plant physiology and biochemistry : PPB.
2023 Jan; 194(?):1-14. doi:
10.1016/j.plaphy.2022.11.003
. [PMID: 36368221] - María A Muñoz-Vargas, Marta Rodríguez-Ruiz, Salvador González-Gordo, José M Palma, Francisco J Corpas. Analysis of Plant L-Cysteine Desulfhydrase (LCD) Isozymes by Non-denaturing Polyacrylamide Gel Electrophoresis.
Methods in molecular biology (Clifton, N.J.).
2023; 2642(?):233-240. doi:
10.1007/978-1-0716-3044-0_13
. [PMID: 36944882] - Ze-Fan Wu, Bin-Jie Yan, Wen Luo, Dan-Dan Gui, Zhong Ren, Yun Ma, Zhi-Sheng Jiang. Ferroptosis and Hydrogen Sulfide in Cardiovascular Disease.
Current medicinal chemistry.
2023; 30(16):1848-1859. doi:
10.2174/0929867329666220630144648
. [PMID: 35786179] - Pengfei Cheng, Liying Feng, Shuoyu Zhang, Longna Li, Rongzhan Guan, Weihua Long, Zhihui Xian, Jiefu Zhang, Wenbiao Shen. Ammonia borane positively regulates cold tolerance in Brassica napus via hydrogen sulfide signaling.
BMC plant biology.
2022 Dec; 22(1):585. doi:
10.1186/s12870-022-03973-3
. [PMID: 36517759] - Dan Wu, Bo Tan, Yuanyuan Sun, Qingxun Hu. Cystathionine γ lyase S-sulfhydrates Drp1 to ameliorate heart dysfunction.
Redox biology.
2022 12; 58(?):102519. doi:
10.1016/j.redox.2022.102519
. [PMID: 36327794] - Cengiz Kaya, Ferhat Ugurlar, Muhammed Ashraf, Mohammed Nasser Alyemeni, Andrzej Bajguz, Parvaiz Ahmad. The involvement of hydrogen sulphide in melatonin-induced tolerance to arsenic toxicity in pepper (Capsicum annuum L.) plants by regulating sequestration and subcellular distribution of arsenic, and antioxidant defense system.
Chemosphere.
2022 Dec; 309(Pt 1):136678. doi:
10.1016/j.chemosphere.2022.136678
. [PMID: 36191761] - Zhifeng Yang, Xiaoyu Wang, Jianrong Feng, Shuhua Zhu. Biological Functions of Hydrogen Sulfide in Plants.
International journal of molecular sciences.
2022 Dec; 23(23):. doi:
10.3390/ijms232315107
. [PMID: 36499443]