Caffeoylmalic acid (BioDeep_00000004272)

 

Secondary id: BioDeep_00001870245

human metabolite Endogenous natural product


代谢物信息卡片


2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid

化学式: C13H12O8 (296.0532)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 94.32%

分子结构信息

SMILES: c1(c(ccc(c1)/C=C/C(=O)O[C@@H](CC(=O)O)C(=O)O)O)O
InChI: InChI=1S/C13H12O8/c14-8-3-1-7(5-9(8)15)2-4-12(18)21-10(13(19)20)6-11(16)17/h1-5,10,14-15H,6H2,(H,16,17)(H,19,20)/b4-2+

描述信息

Isolated from leaves of French bean (Phaseolus vulgaris) and from Trifolium pratense (red clover). L-Malic acid caffeate is found in many foods, some of which are yellow wax bean, herbs and spices, tea, and pulses.
Caffeoylmalic acid is found in common bean. Caffeoylmalic acid is isolated from leaves of French bean (Phaseolus vulgaris) and from Trifolium pratense (red clover

同义名列表

13 个代谢物同义名

2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}butanedioic acid; 2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}butanedioate; L-Malic acid caffeic acid; L-Malic acid caffeate; Caffeoylmalic acid; (S)-Phaselic acid; L-Malate caffeate; Phaseolic acid?; Caffeoylmalate; Phaseolic acid; Phaselic acid; ACMC-20lvsc; Phaseolic acid



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(5)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(5)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

52 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALOX5, DDX4, IVL, POU5F1, PRPF19, PTGS1, PTGS2, TH, TYR
Peripheral membrane protein 6 ACHE, ALOX5, CYP1B1, GBA1, PTGS1, PTGS2
Endoplasmic reticulum membrane 3 CYP1B1, PTGS1, PTGS2
Nucleus 6 ACHE, DDX4, PLCZ1, POU5F1, PRPF19, TH
cytosol 6 ALOX5, IVL, PLCZ1, POU5F1, PRKCQ, TH
dendrite 1 TH
nuclear body 1 IVL
trans-Golgi network 1 GBA1
centrosome 1 IVL
nucleoplasm 4 ALOX5, PLCZ1, POU5F1, PRPF19
Cell membrane 2 ACHE, TNF
Cell projection, axon 1 TH
Synapse 1 ACHE
cell surface 2 ACHE, TNF
Golgi apparatus 3 ACHE, GBA1, PTGS1
lysosomal membrane 2 GAA, GBA1
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 1 ALOX5
Lysosome 3 GAA, GBA1, TYR
plasma membrane 5 ACHE, BCHE, GAA, PRKCQ, TNF
terminal bouton 1 TH
Membrane 4 ACHE, CYP1B1, GAA, PRPF19
axon 1 TH
caveola 1 PTGS2
extracellular exosome 4 GAA, GBA1, IVL, PTGS1
Lysosome membrane 2 GAA, GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 2 GBA1, PTGS2
extracellular space 7 ACHE, ALOX5, BCHE, IL10, IL4, PNLIP, TNF
lysosomal lumen 2 GAA, GBA1
perinuclear region of cytoplasm 6 ACHE, ALOX5, DDX4, PLCZ1, TH, TYR
mitochondrion 3 CYP1B1, POU5F1, TH
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 4 CYP1B1, GAA, PTGS1, TYR
Microsome membrane 3 CYP1B1, PTGS1, PTGS2
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 TYR
Secreted 6 ACHE, BCHE, GAA, IL10, IL4, PNLIP
extracellular region 8 ACHE, ALOX5, BCHE, GAA, IL10, IL4, PNLIP, TNF
cytoplasmic side of plasma membrane 1 TH
Extracellular side 1 ACHE
transcription regulator complex 1 POU5F1
centriolar satellite 1 PRKCQ
photoreceptor outer segment 1 PTGS1
Nucleus membrane 1 ALOX5
nuclear membrane 1 ALOX5
external side of plasma membrane 1 TNF
perikaryon 1 TH
cytoplasmic vesicle 1 TH
nucleolus 1 PLCZ1
Melanosome membrane 2 TH, TYR
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 4 ALOX5, DDX4, PLCZ1, TH
Membrane raft 1 TNF
Cytoplasm, cytoskeleton, spindle 1 PRPF19
spindle 1 PRPF19
basement membrane 1 ACHE
nuclear speck 1 PRPF19
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 3 PTGS1, PTGS2, TH
chromatin 1 POU5F1
phagocytic cup 1 TNF
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
spliceosomal complex 1 PRPF19
site of double-strand break 1 PRPF19
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
Endomembrane system 1 PTGS1
Lipid droplet 1 PRPF19
Cornified envelope 1 IVL
Nucleus, nucleoplasm 1 PRPF19
tertiary granule membrane 1 GAA
Melanosome 1 TYR
side of membrane 1 ACHE
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 1 ALOX5
endoplasmic reticulum lumen 2 BCHE, PTGS2
nuclear matrix 1 ALOX5
azurophil granule membrane 1 GAA
P granule 1 DDX4
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Nucleus matrix 1 ALOX5
nuclear envelope lumen 2 ALOX5, BCHE
synaptic cleft 1 ACHE
U2-type catalytic step 1 spliceosome 1 PRPF19
ficolin-1-rich granule membrane 1 GAA
catalytic step 2 spliceosome 1 PRPF19
Prp19 complex 1 PRPF19
U2-type catalytic step 2 spliceosome 1 PRPF19
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
sperm head 1 PLCZ1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
Nucleus intermembrane space 1 ALOX5
autolysosome lumen 1 GAA
[Isoform H]: Cell membrane 1 ACHE
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
piP-body 1 DDX4
pi-body 1 DDX4


文献列表

  • Meta Sterniša, Franz Bucar, Olaf Kunert, Sonja Smole Možina. Targeting fish spoilers Pseudomonas and Shewanella with oregano and nettle extracts. International journal of food microbiology. 2020 Sep; 328(?):108664. doi: 10.1016/j.ijfoodmicro.2020.108664. [PMID: 32474229]
  • Christine Becker, Hans-Peter Klaering, Lothar W Kroh, Angelika Krumbein. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid. Food chemistry. 2014 Mar; 146(?):404-11. doi: 10.1016/j.foodchem.2013.09.061. [PMID: 24176360]
  • K Judith Webb, Alan Cookson, Gordon Allison, Michael L Sullivan, Ana L Winters. Gene expression patterns, localization, and substrates of polyphenol oxidase in red clover ( Trifolium pratense L.). Journal of agricultural and food chemistry. 2013 Aug; 61(31):7421-30. doi: 10.1021/jf401122d. [PMID: 23790148]
  • Ildikó Vashegyi, Zsuzsa Marozsán-Tóth, Gábor Galiba, Petre I Dobrev, Radomira Vankova, Balázs Tóth. Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures. Molecular biotechnology. 2013 Jun; 54(2):337-49. doi: 10.1007/s12033-012-9569-9. [PMID: 22669585]
  • Semih Otles, Buket Yalcin. Phenolic compounds analysis of root, stalk, and leaves of nettle. TheScientificWorldJournal. 2012; 2012(?):564367. doi: 10.1100/2012/564367. [PMID: 22593694]
  • Barbara Szajwaj, Jaroslaw Moldoch, Milena Masullo, Sonia Piacente, Wieslaw Oleszek, Anna Stochmal. Amides and esters of phenylpropenoic acids from the aerial parts of Trifolium pallidum. Natural product communications. 2011 Sep; 6(9):1293-6. doi: ". [PMID: 21941901]
  • Michael L Sullivan, Robert Zarnowski. Red clover HCT2, a hydroxycinnamoyl-coenzyme A:malate hydroxycinnamoyl transferase, plays a crucial role in biosynthesis of phaselic acid and other hydroxycinnamoyl-malate esters in vivo. Plant physiology. 2011 Mar; 155(3):1060-7. doi: 10.1104/pp.110.166793. [PMID: 21205620]
  • Michael L Sullivan, Robert Zarnowski. Red clover coumarate 3'-hydroxylase (CYP98A44) is capable of hydroxylating p-coumaroyl-shikimate but not p-coumaroyl-malate: implications for the biosynthesis of phaselic acid. Planta. 2010 Jan; 231(2):319-28. doi: 10.1007/s00425-009-1054-8. [PMID: 19921248]
  • Michaell Sullivan. A novel red clover hydroxycinnamoyl transferase has enzymatic activities consistent with a role in phaselic acid biosynthesis. Plant physiology. 2009 Aug; 150(4):1866-79. doi: 10.1104/pp.109.136689. [PMID: 19525325]
  • Patrizia Pinelli, Francesca Ieri, Pamela Vignolini, Laura Bacci, Silvia Baronti, Annalisa Romani. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. Journal of agricultural and food chemistry. 2008 Oct; 56(19):9127-32. doi: 10.1021/jf801552d. [PMID: 18778029]
  • Ana L Winters, Frank R Minchin, Terry P T Michaelson-Yeates, Michael R F Lee, Phillip Morris. Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. Journal of agricultural and food chemistry. 2008 Apr; 56(8):2817-24. doi: 10.1021/jf0726177. [PMID: 18361497]
  • Anastasia Karioti, Anastasia Protopappa, Nikolaos Megoulas, Helen Skaltsa. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorganic & medicinal chemistry. 2007 Apr; 15(7):2708-14. doi: 10.1016/j.bmc.2007.01.035. [PMID: 17287127]
  • Y-S Liang, H K Kim, A W M Lefeber, C Erkelens, Y H Choi, R Verpoorte. Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. Journal of chromatography. A. 2006 Apr; 1112(1-2):148-55. doi: 10.1016/j.chroma.2005.11.114. [PMID: 16375911]
  • Sevser Sahpaz, Nancy Garbacki, Monique Tits, Francois Bailleul. Isolation and pharmacological activity of phenylpropanoid esters from Marrubium vulgare. Journal of ethnopharmacology. 2002 Mar; 79(3):389-92. doi: 10.1016/s0378-8741(01)00415-9. [PMID: 11849848]
  • L Viornery, C Saliba, J B Daskiewicz, C Bayet, G Comte, B Fenet, G Gutierrez, D Barron. Phenylpropanoids from Umbilicus pendulinus. Chemical & pharmaceutical bulletin. 2000 Nov; 48(11):1768-70. doi: 10.1248/cpb.48.1768. [PMID: 11086910]
  • V Seidel, M Verholle, Y Malard, F Tillequin, J C Fruchart, P Duriez, F Bailleul, E Teissier. Phenylpropanoids from Ballota nigra L. inhibit in vitro LDL peroxidation. Phytotherapy research : PTR. 2000 Mar; 14(2):93-8. doi: 10.1002/(sici)1099-1573(200003)14:2<93::aid-ptr558>3.0.co;2-x. [PMID: 10685104]
  • S C Boegge, S Kesper, E J Verspohl, A Nahrstedt. Reduction of ACh-induced contraction of rat isolated ileum by coptisine, (+)-caffeoylmalic acid, Chelidonium majus, and Corydalis lutea extracts. Planta medica. 1996 Apr; 62(2):173-4. doi: 10.1055/s-2006-957845. [PMID: 8657755]