Butanal (BioDeep_00000003916)
Secondary id: BioDeep_00000405573, BioDeep_00000863411, BioDeep_00001867628
human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H8O (72.0575)
中文名称: 正丁醛, 丁醛
谱图信息:
最多检出来源 Viridiplantae(plant) 5.54%
分子结构信息
SMILES: CCCC=O
InChI: InChI=1S/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3
描述信息
Butanal, also known as butyral or butyl aldehyde, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. It is miscible with most organic solvents. Butanal exists in all living organisms, ranging from bacteria to humans. Upon prolonged exposure to air, butyraldehyde oxidizes to form butyric acid. Butanal is an apple, bready, and chocolate tasting compound. Outside of the human body, Butanal is found, on average, in the highest concentration within cow milk and carrots. Butanal has also been detected, but not quantified in several different foods, such as hard wheats, borages, ostrich ferns, skunk currants, and fennels. This could make butanal a potential biomarker for the consumption of these foods. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand Tppts. Butyraldehyde is produced almost exclusively by the hydroformylation of propylene:CH3CHCH2 + H2 + CO → CH3CH2CH2CHO. Traditionally, hydroformylation was catalyzed by cobalt carbonyl and later rhodium complexes of triphenylphosphine. At one time, it was produced industrially by the catalytic hydrogenation of crotonaldehyde, which is derived from acetaldehyde. Butyraldehyde can be produced by the catalytic dehydrogenation of n-butanol. This compound is the aldehyde derivative of butane. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter immiscible phase. About 6 billion kilograms are produced annually by hydroformylation. It is a colourless flammable liquid with an unpleasant smell.
Occurs in essential oils, e.g. lavender, hopand is also present in apple, banana, blackberry, hog plum, wheat bread, malt whiskey, red or white wine, tea, toasted oat flakes and other foodstuffs. Flavouring agent
同义名列表
24 个代谢物同义名
Aldehyde butyrique; Aldeide butirrica; N-Butyl aldehyde; Butyric aldehyde; N-Butylaldehyde; N-Butyraldehyde; Butyrylaldehyde; Butyl aldehyde; butyraldehyde; Butylaldehyde; Butanaldehyde; Butyraldehyd; Butaldehyde; Butan-1-al; N-C3H7CHO; N-Butanal; 1-Butanal; butoxide; Butalyde; Butanal; Butyral; Butal; Butanal; Butyraldehyde
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:15743
- KEGG: C01412
- PubChem: 261
- HMDB: HMDB0003543
- Metlin: METLIN6947
- ChEMBL: CHEMBL1478334
- Wikipedia: Butanal
- MetaCyc: BUTANAL
- KNApSAcK: C00050431
- foodb: FDB003378
- chemspider: 256
- CAS: 27789-14-6
- CAS: 123-72-8
- PMhub: MS000013595
- PubChem: 4600
- 3DMET: B00287
- NIKKAJI: J2.501A
- RefMet: Butanal
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-395
- KNApSAcK: 15743
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
代谢反应
225 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(13)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- butanol and isobutanol biosynthesis (engineered):
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- glycerol degradation to butanol:
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- pyruvate fermentation to butanol II (engineered):
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- 1-butanol autotrophic biosynthesis (engineered):
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- pyruvate fermentation to butanol I:
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- butane degradation:
NADH + O2 + butan-1-al ⟶ H2O + NAD+ + butanoate
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- glycerol degradation to butanol:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation to butanol:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
- glycerol degradation to butanol:
NAD+ + glycerol ⟶ H+ + NADH + dihydroxyacetone
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(212)
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a 2(R)-hydroperoxy fatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- alkane oxidation:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- alkane oxidation:
O2 + an ω-hydroxy fatty acid ⟶ an ω-oxo fatty acid + hydrogen peroxide
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H+ + a (2R)-2-hydroperoxyfatty acid ⟶ CO2 + H2O + a fatty aldehyde
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- alkane oxidation:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- alkane oxidation:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- fatty acid α-oxidation I:
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
- fatty acid α-oxidation I (plants):
H2O + NAD+ + a fatty aldehyde ⟶ H+ + NADH + a fatty acid
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
12 个相关的物种来源信息
- 13443 - Coffea arabica: 10.1021/JF60160A010
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 33161 - Gyromitra esculenta: 10.1021/JF60211A006
- 9606 - Homo sapiens: -
- 2689076 - Ligusticum chuanxiong: 10.1016/J.JEP.2012.10.010
- 1508160 - Ligusticum striatum: 10.1016/J.JEP.2012.10.010
- 2849048 - Lucensosergia lucens: 10.1080/00021369.1984.10866348
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 80338 - Spondias mombin: 10.1021/JF00008A025
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 94328 - Zingiber officinale: 10.1016/S0031-9422(00)86412-2
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- N Karami, A Karimi, A Aliahmadi, F Mirzajan, H Rezadoost, A Ghassempour, F Fallah. Identification of bacteria using volatile organic compounds.
Cellular and molecular biology (Noisy-le-Grand, France).
2017 Feb; 63(2):112-121. doi:
10.14715/cmb/2017.63.2.18
. [PMID: 28364792] - Ryusuke Tanaka, Mami Ishimaru, Hideo Hatate, Yoshimasa Sugiura, Teruo Matsushita. Relationship between 4-hydroxy-2-hexenal contents and commercial grade by organoleptic judgement in Japanese dried laver Porphyra spp.
Food chemistry.
2016 Dec; 212(?):104-9. doi:
10.1016/j.foodchem.2016.05.166
. [PMID: 27374512] - Begoña Alfaro, Igor Hernández, Lander Baliño-Zuazo, Alejandro Barranco. Quality changes of Atlantic horse mackerel fillets (Trachurus trachurus) packed in a modified atmosphere at different storage temperatures.
Journal of the science of food and agriculture.
2013 Jul; 93(9):2179-87. doi:
10.1002/jsfa.6025
. [PMID: 23401147] - M Overland, A Skrede. Fatty acid composition, oxidative stability and sensory quality of meat from broiler chicken fed autolysate from bacteria grown on natural gas.
Journal of animal physiology and animal nutrition.
2012 Aug; 96(4):739-46. doi:
10.1111/j.1439-0396.2011.01202.x
. [PMID: 21831229] - Stacey E Anderson, Loren Tapp, Srinivas Durgam, B Jean Meade, Laurel G Jackson, David E Cohen. The identification of a sensitizing component used in the manufacturing of an ink ribbon.
Journal of immunotoxicology.
2012 Apr; 9(2):193-200. doi:
10.3109/1547691x.2011.654364
. [PMID: 22375946] - Allam Appa Rao, Gundlapally Jyothsna, Pulipati Shalini, Amit Kumar, Anupam Bhattacharya, Amita Kashyap. Exploring the role of BCHE in the onset of Diabetes, Obesity and Neurological Disorders.
Bioinformation.
2012; 8(6):276-80. doi:
10.6026/97320630008276
. [PMID: 22493536] - Zhifeng Huang, Guanghui Zhu, Chuanchuan Sun, Jingui Zhang, Yi Zhang, Youting Zhang, Chaohui Ye, Xiaojie Wang, Dariush Ilghari, Xiaokun Li. A novel solid-phase site-specific PEGylation enhances the in vitro and in vivo biostabilty of recombinant human keratinocyte growth factor 1.
PloS one.
2012; 7(5):e36423. doi:
10.1371/journal.pone.0036423
. [PMID: 22574160] - Mi Zhou, Bo-Guang Wang, De-Jun Zhao, Chun-Lin Zhang, Yin-Gang Gu. [Source emission characteristics of malodorous volatile organic carbonyls from a municipal sewage treatment plant].
Huan jing ke xue= Huanjing kexue.
2011 Dec; 32(12):3571-6. doi:
"
. [PMID: 22468520] - Glen E Kisby, Peter S Spencer. Is neurodegenerative disease a long-latency response to early-life genotoxin exposure?.
International journal of environmental research and public health.
2011 10; 8(10):3889-921. doi:
10.3390/ijerph8103889
. [PMID: 22073019] - Jairam Meena, Rakesh Ojha, A V Muruganandam, Sairam Krishnamurthy. Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes.
Neuroscience letters.
2011 Sep; 503(1):6-9. doi:
10.1016/j.neulet.2011.07.051
. [PMID: 21843599] - Yu Deng, Stephen S Fong. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol.
Metabolic engineering.
2011 Sep; 13(5):570-7. doi:
10.1016/j.ymben.2011.06.007
. [PMID: 21757023] - Mehmet Ali Cikrikcioglu, Mehmet Hursitoglu, Hafize Erkal, Burcin Erdem Kınas, Juan Sztajzel, Mustafa Cakirca, Aysun Guneri Arslan, Aybala Erek, Gulistan Halac, Tufan Tukek. Oxidative stress and autonomic nervous system functions in restless legs syndrome.
European journal of clinical investigation.
2011 Jul; 41(7):734-42. doi:
10.1111/j.1365-2362.2010.02461.x
. [PMID: 21250984] - Zhifeng Huang, Huiyan Wang, Meifei Lu, Chuanchuan Sun, Xiaoping Wu, Yi Tan, Chaohui Ye, Guanghui Zhu, Xiaojie Wang, Lu Cai, Xiaokun Li. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol.
PloS one.
2011; 6(6):e20669. doi:
10.1371/journal.pone.0020669
. [PMID: 21673953] - Laura R Jarboe. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals.
Applied microbiology and biotechnology.
2011 Jan; 89(2):249-57. doi:
10.1007/s00253-010-2912-9
. [PMID: 20924577] - Anna Floegel, Dagmar Drogan, Rui Wang-Sattler, Cornelia Prehn, Thomas Illig, Jerzy Adamski, Hans-Georg Joost, Heiner Boeing, Tobias Pischon. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach.
PloS one.
2011; 6(6):e21103. doi:
10.1371/journal.pone.0021103
. [PMID: 21698256] - Vicky P Chen, Wilson K W Luk, Wallace K B Chan, K Wing Leung, Ava J Y Guo, Gallant K L Chan, Sherry L Xu, Roy C Y Choi, Karl W K Tsim. Molecular Assembly and Biosynthesis of Acetylcholinesterase in Brain and Muscle: the Roles of t-peptide, FHB Domain, and N-linked Glycosylation.
Frontiers in molecular neuroscience.
2011; 4(?):36. doi:
10.3389/fnmol.2011.00036
. [PMID: 22046147] - M Øverland, G I Borge, G Vogt, H F Schøyen, A Skrede. Oxidative stability and sensory quality of meat from broiler chickens fed a bacterial meal produced on natural gas.
Poultry science.
2011 Jan; 90(1):201-10. doi:
10.3382/ps.2010-00784
. [PMID: 21177461] - Helen L Rose, Caroline A Dewey, Morgan S Ely, Sarah L Willoughby, Tanya M Parsons, Victoria Cox, Phillippa M Spencer, Simon A Weller. Comparison of eight methods for the extraction of Bacillus atrophaeus spore DNA from eleven common interferents and a common swab.
PloS one.
2011; 6(7):e22668. doi:
10.1371/journal.pone.0022668
. [PMID: 21818364] - Christy E Manyi-Loh, Roland N Ndip, Anna M Clarke. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities.
International journal of molecular sciences.
2011; 12(12):9514-32. doi:
10.3390/ijms12129514
. [PMID: 22272147] - Luciane Conceição Silva Bastos, Pedro Afonso de Paula Pereira. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil.
Journal of agricultural and food chemistry.
2010 Dec; 58(24):12777-83. doi:
10.1021/jf1028575
. [PMID: 21105653] - Makoto Takei, Yosuke Ando, Wataru Saitoh, Tomoe Tanimoto, Naoki Kiyosawa, Sunao Manabe, Atsushi Sanbuissho, Osamu Okazaki, Haruo Iwabuchi, Takashi Yamoto, Klaus-Peter Adam, James E Weiel, John A Ryals, Michael V Milburn, Lining Guo. Ethylene glycol monomethyl ether-induced toxicity is mediated through the inhibition of flavoprotein dehydrogenase enzyme family.
Toxicological sciences : an official journal of the Society of Toxicology.
2010 Dec; 118(2):643-52. doi:
10.1093/toxsci/kfq211
. [PMID: 20616209] - Md Rezaul Karim, Abedul Haque, Khairul Islam, Nurshad Ali, Kazi Abdus Salam, Zahangir Alam Saud, Ekhtear Hossain, Abul Fajol, Anwarul Azim Akhand, Seiichiro Himeno, Khaled Hossain. Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice.
Bangladesh Medical Research Council bulletin.
2010 Dec; 36(3):82-8. doi:
10.3329/bmrcb.v36i3.7287
. [PMID: 21548544] - Dongmao Zhang, Rukshani Haputhanthri, Siyam M Ansar, Karthikeshwar Vangala, Hondamuni I De Silva, Andrzej Sygula, Svein Saebo, Charles U Pittman. Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy.
Analytical and bioanalytical chemistry.
2010 Dec; 398(7-8):3193-201. doi:
10.1007/s00216-010-4225-3
. [PMID: 20924567] - B K Binukumar, Amanjit Bal, Ramesh J L Kandimalla, Kiran Dip Gill. Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes.
Molecular brain.
2010 Nov; 3(?):35. doi:
10.1186/1756-6606-3-35
. [PMID: 21073741] - Alessandra Fraternale, Maria Filomena Paoletti, Sabrina Dominici, Antonella Caputo, Arianna Castaldello, Enrico Millo, Egidio Brocca-Cofano, Michaël Smietana, Pascal Clayette, Joël Oiry, Umberto Benatti, Mauro Magnani. The increase in intra-macrophage thiols induced by new pro-GSH molecules directs the Th1 skewing in ovalbumin immunized mice.
Vaccine.
2010 Nov; 28(48):7676-82. doi:
10.1016/j.vaccine.2010.09.033
. [PMID: 20875491] - Guo-Zhang Wu, Hong-Wei Xue. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development.
The Plant cell.
2010 Nov; 22(11):3726-44. doi:
10.1105/tpc.110.075564
. [PMID: 21081696] - M Karami, M A Ebrahimzadeh, M R Mahdavi, A Kazemi. Effect of Fe2+ and Fe3+ ions on human plasma cholinesterase activity.
European review for medical and pharmacological sciences.
2010 Oct; 14(10):897-901. doi:
NULL
. [PMID: 21222379] - Sander Michel Houten, Ronald J A Wanders. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation.
Journal of inherited metabolic disease.
2010 Oct; 33(5):469-77. doi:
10.1007/s10545-010-9061-2
. [PMID: 20195903] - Stephen C Barker, Phillip M Altman. A randomised, assessor blind, parallel group comparative efficacy trial of three products for the treatment of head lice in children--melaleuca oil and lavender oil, pyrethrins and piperonyl butoxide, and a 'suffocation' product.
BMC dermatology.
2010 Aug; 10(?):6. doi:
10.1186/1471-5945-10-6
. [PMID: 20727129] - Nurshad Ali, Md Ashraful Hoque, Abedul Haque, Kazi Abdus Salam, Md Rezaul Karim, Aminur Rahman, Khairul Islam, Zahangir Alam Saud, Md Abdul Khalek, Anwarul Azim Akhand, Mostaque Hossain, Abul Mandal, Md Rezaul Karim, Hideki Miyataka, Seiichiro Himeno, Khaled Hossain. Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh.
Environmental health : a global access science source.
2010 Jul; 9(?):36. doi:
10.1186/1476-069x-9-36
. [PMID: 20618979] - Yuhao Ren, Gary Strobel, Joe Sears, Melina Park. Geobacillus sp., a thermophilic soil bacterium producing volatile antibiotics.
Microbial ecology.
2010 Jul; 60(1):130-6. doi:
10.1007/s00248-009-9630-9
. [PMID: 20091406] - Huiyu Liu, Dong Chen, Liuqing Yang, Xiangling Ren, Fangqiong Tang, Jun Ren. A study of the electron transfer and photothermal effect of gold nanorods on a glucose biosensor.
Nanotechnology.
2010 May; 21(18):185504. doi:
10.1088/0957-4484/21/18/185504
. [PMID: 20388977] - Tatsuro Suzuki, Sun-Ju Kim, Yuji Mukasa, Toshikazu Morishita, Takahiro Noda, Shigenobu Takigawa, Naoto Hashimoto, Hiroaki Yamauchi, Chie Matsuura-Endo. Effects of lipase, lipoxygenase, peroxidase and free fatty acids on volatile compound found in boiled buckwheat noodles.
Journal of the science of food and agriculture.
2010 May; 90(7):1232-7. doi:
10.1002/jsfa.3958
. [PMID: 20394006] - Mark Eggink, Maikel Wijtmans, Ansgar Kretschmer, Jeroen Kool, Henk Lingeman, Iwan J P de Esch, Wilfried M A Niessen, Hubertus Irth. Targeted LC-MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA.
Analytical and bioanalytical chemistry.
2010 May; 397(2):665-75. doi:
10.1007/s00216-010-3575-1
. [PMID: 20238107] - Lina Yin, Jun'ichi Mano, Shiwen Wang, Wataru Tsuji, Kiyoshi Tanaka. The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots.
Plant physiology.
2010 Mar; 152(3):1406-17. doi:
10.1104/pp.109.151449
. [PMID: 20023145] - Margarida R G Maia, Lal C Chaudhary, Charles S Bestwick, Anthony J Richardson, Nest McKain, Tony R Larson, Ian A Graham, Robert J Wallace. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens.
BMC microbiology.
2010 Feb; 10(?):52. doi:
10.1186/1471-2180-10-52
. [PMID: 20167098] - N Suganthy, S Karutha Pandian, K Pandima Devi. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata.
Neuroscience letters.
2010 Jan; 468(3):216-9. doi:
10.1016/j.neulet.2009.11.001
. [PMID: 19897016] - Eun-Hee Lee, Jaisoo Kim, Kyung-Suk Cho, Yun Gyong Ahn, Geum-Sook Hwang. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.
Environmental science and pollution research international.
2010 Jan; 17(1):64-77. doi:
10.1007/s11356-009-0238-x
. [PMID: 19756804] - S K Rastogi, P V V Satyanarayan, D Ravishankar, Sachin Tripathi. A study on oxidative stress and antioxidant status of agricultural workers exposed to organophosphorus insecticides during spraying.
Indian journal of occupational and environmental medicine.
2009 Dec; 13(3):131-4. doi:
10.4103/0019-5278.58916
. [PMID: 20442831] - Chenghui Han, Zhiyu Li, Jianyi Shen. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation.
Journal of hazardous materials.
2009 Aug; 168(1):215-9. doi:
10.1016/j.jhazmat.2009.02.020
. [PMID: 19342164] - Ali A Shati, Fahmy G Elsaid. Effects of water extracts of thyme (Thymus vulgaris) and ginger (Zingiber officinale Roscoe) on alcohol abuse.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2009 Aug; 47(8):1945-9. doi:
10.1016/j.fct.2009.05.007
. [PMID: 19457445] - Natarajan Suganthy, Shanmugiahthevar Karutha Pandian, Kasi Pandima Devi. Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: Mangroves inhabiting an Indian coastal area (Vellar Estuary).
Journal of enzyme inhibition and medicinal chemistry.
2009 Jun; 24(3):702-7. doi:
10.1080/14756360802334719
. [PMID: 18686140] - Danielle M Nevarez, Yemane A Mengistu, Irosha N Nawarathne, Kevin D Walker. An N-aroyltransferase of the BAHD superfamily has broad aroyl CoA specificity in vitro with analogues of N-dearoylpaclitaxel.
Journal of the American Chemical Society.
2009 Apr; 131(16):5994-6002. doi:
10.1021/ja900545m
. [PMID: 19382815] - Darren M Roberts, Renate Heilmair, Nick A Buckley, Andrew H Dawson, Mohamed Fahim, Michael Eddleston, Peter Eyer. Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series.
BMC clinical pharmacology.
2009 Feb; 9(?):3. doi:
10.1186/1472-6904-9-3
. [PMID: 19220887] - Uta von Rad, Ilona Klein, Petre I Dobrev, Jana Kottova, Eva Zazimalova, Agnes Fekete, Anton Hartmann, Philippe Schmitt-Kopplin, Jörg Durner. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere.
Planta.
2008 Dec; 229(1):73-85. doi:
10.1007/s00425-008-0811-4
. [PMID: 18766372] - Cornélie M Westermann, Bert Dorland, Monique G de Sain-van der Velden, Inge D Wijnberg, Eric Van Breda, Ellen De Graaf-Roelfsema, Hans A Keizer, Johannes H Van der Kolk. Plasma acylcarnitine and fatty acid profiles during exercise and training in Standardbreds.
American journal of veterinary research.
2008 Nov; 69(11):1469-75. doi:
10.2460/ajvr.69.11.1469
. [PMID: 18980429] - Maria D L Oliveira, Maria T S Correia, Luana C B B Coelho, Flamarion B Diniz. Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral.
Colloids and surfaces. B, Biointerfaces.
2008 Oct; 66(1):13-9. doi:
10.1016/j.colsurfb.2008.05.002
. [PMID: 18573642] - Demokritos C Tsoukatos, Isabelle Brochériou, Vassilios Moussis, Christina P Panopoulou, Elena D Christofidou, Stamatis Koussissis, Socratis Sismanidis, Ewa Ninio, Stavros Siminelakis. Platelet-activating factor acetylhydrolase and transacetylase activities in human aorta and mammary artery.
Journal of lipid research.
2008 Oct; 49(10):2240-9. doi:
10.1194/jlr.m800188-jlr200
. [PMID: 18587071] - Søren Langkilde, Malene Schrøder, Derek Stewart, Otto Meyer, Sean Conner, Howard Davies, Morten Poulsen. Acute toxicity of high doses of the glycoalkaloids, alpha-solanine and alpha-chaconine, in the Syrian Golden hamster.
Journal of agricultural and food chemistry.
2008 Sep; 56(18):8753-60. doi:
10.1021/jf8012794
. [PMID: 18710251] - Ulrich Hoffmann, Ute Hecker, Peter Abel. Acute poisoning by pirimicarb: clinical and toxicological features.
Clinical toxicology (Philadelphia, Pa.).
2008 Aug; 46(7):694-96. doi:
10.1080/15563650701476961
. [PMID: 18608305] - Jeroen Carol-Visser, Marcel van der Schans, Alex Fidder, Albert G Hulst, Ben L M van Baar, Hubertus Irth, Daan Noort. Development of an automated on-line pepsin digestion-liquid chromatography-tandem mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2008 Jul; 870(1):91-7. doi:
10.1016/j.jchromb.2008.06.008
. [PMID: 18573700] - Thalita Oliveira da Silva, Pedro Afonso de Paula Pereira. Influence of time, surface-to-volume ratio, and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils.
Journal of agricultural and food chemistry.
2008 May; 56(9):3129-35. doi:
10.1021/jf0734525
. [PMID: 18422332] - S K Rastogi, Vipul K Singh, C Kesavachandran, Jyoti, M K J Siddiqui, N Mathur, R S Bharti. Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers.
Indian journal of occupational and environmental medicine.
2008 Apr; 12(1):29-32. doi:
10.4103/0019-5278.40813
. [PMID: 20040995] - Haili Jin, Keiko Ogino, Toshihiro Fujioka, Miyako Yoshida, Kanji Ishimaru. A new acylphloroglucinol glycoside from Solidago altissima L.
Journal of natural medicines.
2008 Apr; 62(2):199-201. doi:
10.1007/s11418-007-0215-y
. [PMID: 18404323] - José Manuel Pérez, Felipe A Arenas, Gonzalo A Pradenas, Juan M Sandoval, Claudio C Vásquez. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes.
The Journal of biological chemistry.
2008 Mar; 283(12):7346-53. doi:
10.1074/jbc.m708846200
. [PMID: 18211903] - Jeffrey P Simpson, Rosa Di Leo, Preetinder K Dhanoa, Wendy L Allan, Amina Makhmoudova, Shawn M Clark, Gordon J Hoover, Robert T Mullen, Barry J Shelp. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification.
Journal of experimental botany.
2008; 59(9):2545-54. doi:
10.1093/jxb/ern123
. [PMID: 18495639] - Małgorzata A Majcher, Henryk H Jeleń. Effect of cysteine and cystine addition on sensory profile and potent odorants of extruded potato snacks.
Journal of agricultural and food chemistry.
2007 Jul; 55(14):5754-60. doi:
10.1021/jf0703147
. [PMID: 17567142] - Wei Liu, Wei-yun Zhu, Wen Yao, Sheng-yong Mao. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].
Wei sheng wu xue bao = Acta microbiologica Sinica.
2007 Jun; 47(3):435-40. doi:
. [PMID: 17672301]
- Emad S Osman, Hanan F Khafagy, Khalda G Radwan, Abdullah M Desouky. Role of cholinesterase activity on pharmacodynamics of mivacurium preceded by pancuronium in elderly and young adults.
Journal of the Egyptian Society of Parasitology.
2007 Apr; 37(1):243-55. doi:
. [PMID: 17580581]
- Nadeesha R Ileperuma, Sean D G Marshall, Christopher J Squire, Heather M Baker, John G Oakeshott, Robyn J Russell, Kim M Plummer, Richard D Newcomb, Edward N Baker. High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon.
Biochemistry.
2007 Feb; 46(7):1851-9. doi:
10.1021/bi062046w
. [PMID: 17256879] - Anna Roujeinikova, William J Simon, John Gilroy, David W Rice, John B Rafferty, Antoni R Slabas. Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates.
Journal of molecular biology.
2007 Jan; 365(1):135-45. doi:
10.1016/j.jmb.2006.09.049
. [PMID: 17059829] - M Catauro, M G Raucci, G Ausanio, L Ambrosio. Sol-gel synthesis, characterization and bioactivity of poly(ether-imide)/TiO2 hybrid materials.
Journal of applied biomaterials & biomechanics : JABB.
2007 Jan; 5(1):41-8. doi:
NULL
. [PMID: 20799196] - J Byard, D Needham. Metabolism and excretion of piperonyl butoxide in the rat.
Xenobiotica; the fate of foreign compounds in biological systems.
2006 Dec; 36(12):1259-72. doi:
10.1080/00498250600856306
. [PMID: 17162471] - H Orhan, H Gurer-Orhan, E Vriese, N P E Vermeulen, J H N Meerman. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes.
Toxicology in vitro : an international journal published in association with BIBRA.
2006 Sep; 20(6):1005-13. doi:
10.1016/j.tiv.2005.12.012
. [PMID: 16488111] - Qiang Hao, Wolfgang Maret. Aldehydes release zinc from proteins. A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc.
The FEBS journal.
2006 Sep; 273(18):4300-10. doi:
10.1111/j.1742-4658.2006.05428.x
. [PMID: 16930132] - N Gregory, L Craggs, N Hobson, C Krogh. Softening of cattle hoof soles and swelling of heel horn by environmental agents.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2006 Aug; 44(8):1223-7. doi:
10.1016/j.fct.2006.01.018
. [PMID: 16540224] - Hande Gurer-Orhan, Hilme Orhan, Nico P Vermeulen, John H Meerman. Screening the oxidative potential of several mono- and di-halogenated biphenyls and biphenyl ethers in rat hepatocytes.
Combinatorial chemistry & high throughput screening.
2006 Jul; 9(6):449-54. doi:
10.2174/138620706777698517
. [PMID: 16842226] - M Catauro, M G Raucci, D de Marco, L Ambrosio. Release kinetics of ampicillin, characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol-gel processing.
Journal of biomedical materials research. Part A.
2006 May; 77(2):340-50. doi:
10.1002/jbm.a.30617
. [PMID: 16404715] - Masato Inazu, Hiroshi Takeda, Katsuyuki Maehara, Kyoji Miyashita, Akio Tomoda, Teruhiko Matsumiya. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes.
Journal of neurochemistry.
2006 Apr; 97(2):424-34. doi:
10.1111/j.1471-4159.2006.03757.x
. [PMID: 16539668] - I V Benilova, V M Arkhypova, S V Dziadevych, N Jaffrezic-Renault, C Martelet, O P Soldatkin. [Kinetic properties of butyrylcholinesterases immobilised on pH-sensitive field-effect transistor surface and inhibitory action of steroidal glycoalkaloids on these enzymes].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2006 Mar; 78(2):131-41. doi:
. [PMID: 17100295]
- Matthias Laska, Dipa Joshi, Gordon M Shepherd. Olfactory sensitivity for aliphatic aldehydes in CD-1 mice.
Behavioural brain research.
2006 Feb; 167(2):349-54. doi:
10.1016/j.bbr.2005.09.022
. [PMID: 16253352] - David O Kennedy, Andrew B Scholey. The psychopharmacology of European herbs with cognition-enhancing properties.
Current pharmaceutical design.
2006; 12(35):4613-23. doi:
10.2174/138161206779010387
. [PMID: 17168769] - Anders Bach Nielsen, Anders Buur, Claus Larsen. Bioreversible quaternary N-acyloxymethyl derivatives of the poorly soluble tertiary amine Lu 28-179--synthesis, pharmaceutical chemical characterization and bioavailability studies in dogs.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2005 Dec; 26(5):421-8. doi:
10.1016/j.ejps.2005.07.009
. [PMID: 16150581] - Michael N Bates, Joshua W Hamilton, Judy S LaKind, Patricia Langenberg, Michael O'Malley, Wayne Snodgrass. Workgroup report: Biomonitoring study design, interpretation, and communication--lessons learned and path forward.
Environmental health perspectives.
2005 Nov; 113(11):1615-21. doi:
10.1289/ehp.8197
. [PMID: 16263520] - Luis A Sayavedra-Soto, David M Doughty, Elizabeth G Kurth, Peter J Bottomley, Daniel J Arp. Product and product-independent induction of butane oxidation in Pseudomonas butanovora.
FEMS microbiology letters.
2005 Sep; 250(1):111-6. doi:
10.1016/j.femsle.2005.06.058
. [PMID: 16055278] - Nan Sun, Wei-Min Mo, Zhen-Lu Shen, Bao-Xiang Hu. Adsorptive stripping voltammetric technique for the rapid determination of tobramycin on the hanging mercury electrode.
Journal of pharmaceutical and biomedical analysis.
2005 Jun; 38(2):256-62. doi:
10.1016/j.jpba.2005.01.002
. [PMID: 15925216] - C Motamed, K Kirov, X Combes, P Feiss, P Duvaldestin. Interaction between mivacurium and pancuronium: impact of the order of administration.
European journal of clinical pharmacology.
2005 May; 61(3):175-7. doi:
10.1007/s00228-005-0905-x
. [PMID: 15824913] - Hilmi Orhan, Berry van Holland, Betty Krab, Janine Moeken, Nico P E Vermeulen, Peter Hollander, John H N Meerman. Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise.
Free radical research.
2004 Dec; 38(12):1269-79. doi:
10.1080/10715760400013763
. [PMID: 15763951] - Dianping Tang, Ruo Yuan, Yaqin Chai, Jianyuan Dai, Xia Zhong, Yan Liu. A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy.
Bioelectrochemistry (Amsterdam, Netherlands).
2004 Dec; 65(1):15-22. doi:
10.1016/j.bioelechem.2004.05.004
. [PMID: 15522687] - I L Bykov. [Effect of L-carnitine on metabolic disorders in rats with experimental acyl-CoA dehydrogenase deficiency].
Eksperimental'naia i klinicheskaia farmakologiia.
2004 Nov; 67(6):48-52. doi:
NULL
. [PMID: 15707016] - Ruo Yuan, Dianping Tang, Yaqin Chai, Xia Zhong, Yan Liu, Jianyuan Dai. Ultrasensitive potentiometric immunosensor based on SA and OCA techniques for immobilization of HBsAb with colloidal Au and polyvinyl butyral as matrixes.
Langmuir : the ACS journal of surfaces and colloids.
2004 Aug; 20(17):7240-5. doi:
10.1021/la030428m
. [PMID: 15301511] - Karim Lahjouji, Ihsan Elimrani, Julie Lafond, Line Leduc, Ijaz A Qureshi, Grant A Mitchell. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2.
American journal of physiology. Cell physiology.
2004 Aug; 287(2):C263-9. doi:
10.1152/ajpcell.00333.2003
. [PMID: 15238359] - Brenda Eskenazi, Kim Harley, Asa Bradman, Erin Weltzien, Nicholas P Jewell, Dana B Barr, Clement E Furlong, Nina T Holland. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population.
Environmental health perspectives.
2004 Jul; 112(10):1116-24. doi:
10.1289/ehp.6789
. [PMID: 15238287] - Wei Zou, Silvia Borrelli, Michel Gilbert, Tianmin Liu, Robert A Pon, Harold J Jennings. Bioengineering of surface GD3 ganglioside for immunotargeting human melanoma cells.
The Journal of biological chemistry.
2004 Jun; 279(24):25390-9. doi:
10.1074/jbc.m402787200
. [PMID: 15047693] - Sergey U Savelev, Edward J Okello, Elaine K Perry. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents.
Phytotherapy research : PTR.
2004 Apr; 18(4):315-24. doi:
10.1002/ptr.1451
. [PMID: 15162368] - Soo-Bok Lee, Ki-chang Nam, Sung-Joon Lee, Jong-Ho Lee, Kuniyo Inouye, Kwan-Hwa Park. Antioxidative effects of glycosyl-ascorbic acids synthesized by maltogenic amylase to reduce lipid oxidation and volatiles production in cooked chicken meat.
Bioscience, biotechnology, and biochemistry.
2004 Jan; 68(1):36-43. doi:
10.1271/bbb.68.36
. [PMID: 14745161] - ". Ecraprost: AS 013, Circulase.
Drugs in R&D.
2004; 5(1):31-4. doi:
10.2165/00126839-200405010-00006
. [PMID: 14725489] - Chunshun Zhao, Zhonggui He, Shengmiao Cui, Ruhua Zhang. Determination of 3-n-butylphthalide in rabbit plasma by HPLC with fluorescence detection and its application in pharmacokinetic study.
Biomedical chromatography : BMC.
2003 Sep; 17(6):391-5. doi:
10.1002/bmc.255
. [PMID: 13680850] - Edson F de Assis, Adriana R Silva, Lara F C Caiado, Gopal K Marathe, Guy A Zimmerman, Stephen M Prescott, Thomas M McIntyre, Patricia T Bozza, Hugo C de Castro-Faria-Neto. Synergism between platelet-activating factor-like phospholipids and peroxisome proliferator-activated receptor gamma agonists generated during low density lipoprotein oxidation that induces lipid body formation in leukocytes.
Journal of immunology (Baltimore, Md. : 1950).
2003 Aug; 171(4):2090-8. doi:
10.4049/jimmunol.171.4.2090
. [PMID: 12902515] - Dwight D Koeberl, Sarah P Young, Niels S Gregersen, Jerry Vockley, Wendy E Smith, Daniel Kelly Benjamin, Yan An, Susan D Weavil, Shu H Chaing, Deeksha Bali, Marie T McDonald, Priya S Kishnani, Y-T Chen, David S Millington. Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening.
Pediatric research.
2003 Aug; 54(2):219-23. doi:
10.1203/01.pdr.0000074972.36356.89
. [PMID: 12736383] - Jui-Hung Yen, Chia Chun Tsai, Yei Shung Wang. Separation and toxicity of enantiomers of organophosphorus insecticide leptophos.
Ecotoxicology and environmental safety.
2003 Jun; 55(2):236-42. doi:
10.1016/s0147-6513(02)00066-0
. [PMID: 12742374] - Songbai Zhang, Akihiro Mizutani, Chihiro Hisatsune, Takayasu Higo, Hiroko Bannai, Tomohiro Nakayama, Mitsuharu Hattori, Katsuhiko Mikoshiba. Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells.
The Journal of biological chemistry.
2003 Feb; 278(6):4048-56. doi:
10.1074/jbc.m209960200
. [PMID: 12444087] - Konrad Müller, Matthias Pelzing, Thomas Gnauk, Anett Kappe, Ulrich Teichmann, Gerald Spindler, Sylvia Haferkorn, Yvonne Jahn, Hartmut Herrmann. Monoterpene emissions and carbonyl compound air concentrations during the blooming period of rape (Brassica napus).
Chemosphere.
2002 Dec; 49(10):1247-56. doi:
10.1016/s0045-6535(02)00610-0
. [PMID: 12489721] - Supachai Samappito, Jonathan Page, Jürgen Schmidt, Wanchai De-Eknamkul, Toni M Kutchan. Molecular characterization of root-specific chalcone synthases from Cassia alata.
Planta.
2002 Nov; 216(1):64-71. doi:
10.1007/s00425-002-0872-8
. [PMID: 12430015] - S Craig Duckham, Andrew T Dodson, Jokie Bakker, Jennifer M Ames. Effect of cultivar and storage time on the volatile flavor components of baked potato.
Journal of agricultural and food chemistry.
2002 Sep; 50(20):5640-8. doi:
10.1021/jf011326+
. [PMID: 12236691] - W A Collier, M Clear, A L Hart. Convenient and rapid detection of pesticides in extracts of sheep wool.
Biosensors & bioelectronics.
2002 Sep; 17(9):815-9. doi:
10.1016/s0956-5663(02)00074-x
. [PMID: 12191930] - Anna Roujeinikova, Clair Baldock, William J Simon, John Gilroy, Patrick J Baker, Antoine R Stuitje, David W Rice, John B Rafferty, Antoni R Slabas. Crystallization and preliminary X-ray crystallographic studies on acyl-(acyl carrier protein) from Escherichia coli.
Acta crystallographica. Section D, Biological crystallography.
2002 Feb; 58(Pt 2):330-2. doi:
10.1107/s0907444901020091
. [PMID: 11807267] - L A Sayavedra-Soto, C M Byrd, D J Arp. Induction of butane consumption in Pseudomonas butanovora.
Archives of microbiology.
2001 Jul; 176(1-2):114-20. doi:
10.1007/s002030100304
. [PMID: 11479710] - T L Zielinski, S A Smith, J J Pestka, J I Gray, D M Smith. Elisa to quantify hexanal-protein adducts in a meat model system.
Journal of agricultural and food chemistry.
2001 Jun; 49(6):3017-23. doi:
10.1021/jf001151o
. [PMID: 11410003]