Gene Association: SDCBP2

UniProt Search: SDCBP2 (PROTEIN_CODING)
Function Description: syndecan binding protein 2

found 29 associated metabolites with current gene based on the text mining result from the pubmed database.

Taurochenodesoxycholic acid

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO6S (499.2967)


Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurochenodesoxycholic acid has been found to be a microbial metabolite. Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Taurochenodeoxycholic acid is a bile acid taurine conjugate of chenodeoxycholic acid. It has a role as a mouse metabolite and a human metabolite. It is functionally related to a chenodeoxycholic acid. It is a conjugate acid of a taurochenodeoxycholate. Taurochenodeoxycholic acid is an experimental drug that is normally produced in the liver. Its physiologic function is to emulsify lipids such as cholesterol in the bile. As a medication, taurochenodeoxycholic acid reduces cholesterol formation in the liver, and is likely used as a choleretic to increase the volume of bile secretion from the liver and as a cholagogue to increase bile discharge into the duodenum. It is also being investigated for its role in inflammation and cancer therapy. Taurochenodeoxycholic acid is a natural product found in Trypanosoma brucei and Homo sapiens with data available. A bile salt formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. It acts as detergent to solubilize fats in the small intestine and is itself absorbed. It is used as a cholagogue and choleretic. Taurochenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=516-35-8 (retrieved 2024-07-01) (CAS RN: 516-35-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Clindamycin

(2S,4R)-N-{2-chloro-1-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(methylsulfanyl)oxan-2-yl]propyl}-1-methyl-4-propylpyrrolidine-2-carboxamide

C18H33ClN2O5S (424.1799)


Clindamycin is a semisynthetic lincosamide antibiotic that has largely replaced lincomycin due to an improved side effect profile. Clindamycin inhibits bacterial protein synthesis by binding to bacterial 50S ribosomal subunits. It may be bacteriostatic or bactericidal depending on the organism and drug concentration. Clindamycin, also known as cleocin or 7-CDL, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Clindamycin is a drug. Clindamycin is a semisynthetic lincosamide antibiotic that has largely replaced lincomycin due to an improved side effect profile. Clindamycin is a very strong basic compound (based on its pKa). In humans, clindamycin is involved in clindamycin action pathway. Orally and parenterally administered clindamycin has been associated with severe colitis (pseudomembranous colitis) which may result in patient death. Use of the topical formulation of clindamycin results in absorption of the antibiotic from the skin surface. Clindamycin is a potentially toxic compound. Rapidly absorbed after oral administration with peak serum concentrations observed after about 45 minutes. Oral; topical; parenteral (intramuscular, intravenous). Systemic/vaginal clindamycin inhibits protein synthesis of bacteria by binding to the 50S ribosomal subunits of the bacteria. Clindamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=18323-44-9 (retrieved 2024-06-28) (CAS RN: 18323-44-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Moxifloxacin

7-[(4aS,7aS)-octahydro-1H-pyrrolo[3,4-b]pyridin-6-yl]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

C21H24FN3O4 (401.1751)


Moxifloxacin is only found in individuals that have used or taken this drug. It is a synthetic fluoroquinolone antibiotic agent. Bayer AG developed the drug (initially called BAY 12-8039) and it is marketed worldwide (as the hydrochloride) under the brand name Avelox (in some countries also Avalox) for oral treatment.The bactericidal action of moxifloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV. DNA gyrase is an essential enzyme that is involved in the replication, transcription and repair of bacterial DNA. Topoisomerase IV is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mometasone furoate

Mometasone furoate

C27H30Cl2O6 (520.1419)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C29629 - Combination Medication > C29639 - Topical Preparation > C29505 - Topical Corticosteroid C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2834

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Butanal

Aldehyde butyrique

C4H8O (72.0575)


Butanal, also known as butyral or butyl aldehyde, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. It is miscible with most organic solvents. Butanal exists in all living organisms, ranging from bacteria to humans. Upon prolonged exposure to air, butyraldehyde oxidizes to form butyric acid. Butanal is an apple, bready, and chocolate tasting compound. Outside of the human body, Butanal is found, on average, in the highest concentration within cow milk and carrots. Butanal has also been detected, but not quantified in several different foods, such as hard wheats, borages, ostrich ferns, skunk currants, and fennels. This could make butanal a potential biomarker for the consumption of these foods. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand Tppts. Butyraldehyde is produced almost exclusively by the hydroformylation of propylene:CH3CHCH2 + H2 + CO → CH3CH2CH2CHO. Traditionally, hydroformylation was catalyzed by cobalt carbonyl and later rhodium complexes of triphenylphosphine. At one time, it was produced industrially by the catalytic hydrogenation of crotonaldehyde, which is derived from acetaldehyde. Butyraldehyde can be produced by the catalytic dehydrogenation of n-butanol. This compound is the aldehyde derivative of butane. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter immiscible phase. About 6 billion kilograms are produced annually by hydroformylation. It is a colourless flammable liquid with an unpleasant smell. Occurs in essential oils, e.g. lavender, hopand is also present in apple, banana, blackberry, hog plum, wheat bread, malt whiskey, red or white wine, tea, toasted oat flakes and other foodstuffs. Flavouring agent

   

Isovaleraldehyde

3-Methyl-butyraldehyde

C5H10O (86.0732)


Iso-Valeraldehyde, also known as isoamyl aldehyde or 3-methyl-butanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Iso-Valeraldehyde exists in all eukaryotes, ranging from yeast to humans. Iso-Valeraldehyde is an aldehydic, chocolate, and ethereal tasting compound. Iso-Valeraldehyde is found, on average, in the highest concentration within a few different foods, such as milk (cow), beers, and taco and in a lower concentration in kohlrabis, corns, and tortilla. Iso-Valeraldehyde has also been detected, but not quantified, in several different foods, such as muskmelons, highbush blueberries, fenugreeks, hazelnuts, and dills. This could make iso-valeraldehyde a potential biomarker for the consumption of these foods. A methylbutanal that is butanal substituted by a methyl group at position 3. Iso-Valeraldehyde, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, crohns disease, perillyl alcohol administration for cancer treatment, and hepatic encephalopathy; iso-valeraldehyde has also been linked to the inborn metabolic disorder celiac disease. Occurs in orange, bergamot, lemon, sandalwood, citronella, peppermint, eucalyptus and other oilsand is also in apple, grape, peach cider, vinegar, wines, wheatbreads, scallops and ginger

   

n-Butyl acetate

Butyl ester OF acetic acid

C6H12O2 (116.0837)


n-Butyl acetate is a flavouring ingredient used in apple flavours. n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of fruit, where along with other chemicals it imparts characteristic flavors. Apples, especially of the Red Delicious variety, are flavored in part by this chemical. It is a colourless flammable liquid with a sweet smell of banana. Flavouring ingredient used in apple flavours

   

4-Nitroanisole

4-Nitrophenyl methyl ether

C7H7NO3 (153.0426)


   

(±)-2,4,6-Triphenyl-1-hexene

(3,5-diphenylhex-5-en-1-yl)benzene

C24H24 (312.1878)


Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating. Styrene trimer. Present as an impurity in polystyrene food containers and other products - liberated on heating

   

2,4-Diphenyl-1-butene

1,1-(1-Methylene-1,3-propanediyl)bisbenzene, 9ci

C16H16 (208.1252)


2,4-Diphenyl-1-butene is a styrene dimer. Present as an impurity in polystyrene food containers and other products - liberated on heatin

   

1,3-Diphenylpropane

Benzene, 1,1-(1,3-propanediyl)bis- (9ci)

C15H16 (196.1252)


1,3-Diphenylpropane is a styrene dimer. Present as an impurity in polystyrene food containers and other products - liberated on heatin

   

Tauroursodeoxycholic acid

2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO6S (499.2967)


Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2]. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.

   

Taurochenodeoxycholate

2-[(3a,7a-dihydroxy-24-oxo-5beta-cholan-24-yl)amino]ethanesulfonate

C26H45NO6S (499.2967)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Isovaleraldehyde

Isovaleraldehyde

C5H10O (86.0732)


A methylbutanal that is butanal substituted by a methyl group at position 3. It occurs as a volatile constituent in olives.

   

Moxifloxacin

1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-quinoline-3-carboxylic acid

C21H24FN3O4 (401.1751)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

LS-684

4-02-00-00143 (Beilstein Handbook Reference)

C6H12O2 (116.0837)


   

Isovaleral

4-01-00-03291 (Beilstein Handbook Reference)

C5H10O (86.0732)


   

Butal

4-01-00-03229 (Beilstein Handbook Reference)

C4H8O (72.0575)


   

butyraldehyde

butyraldehyde

C4H8O (72.0575)


   

4-Nitroanisole

4-Nitroanisole

C7H7NO3 (153.0426)


   

Butyl acetate

n-Butyl acetate

C6H12O2 (116.0837)


The acetate ester of butanol.

   

Dibenzylmethane

1,3-Diphenylpropane

C15H16 (196.1252)


   

2,4-Diphenyl-1-butene

3-phenylbut-3-enylbenzene

C16H16 (208.1252)


   

2,4,6-Triphenyl-1-hexene

1,5-diphenylhex-5-en-3-ylbenzene

C24H24 (312.1878)