Classification Term: 3889

Alpha-hydrogen aldehydes (ontology term: CHEMONTID:0002434)

Aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group." []

found 38 associated metabolites at family metabolite taxonomy ontology rank level.

Ancestor: Aldehydes

Child Taxonomies: There is no child term of current ontology term.

Butanal

Aldehyde butyrique

C4H8O (72.0575118)


Butanal, also known as butyral or butyl aldehyde, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. It is miscible with most organic solvents. Butanal exists in all living organisms, ranging from bacteria to humans. Upon prolonged exposure to air, butyraldehyde oxidizes to form butyric acid. Butanal is an apple, bready, and chocolate tasting compound. Outside of the human body, Butanal is found, on average, in the highest concentration within cow milk and carrots. Butanal has also been detected, but not quantified in several different foods, such as hard wheats, borages, ostrich ferns, skunk currants, and fennels. This could make butanal a potential biomarker for the consumption of these foods. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand Tppts. Butyraldehyde is produced almost exclusively by the hydroformylation of propylene:CH3CHCH2 + H2 + CO → CH3CH2CH2CHO. Traditionally, hydroformylation was catalyzed by cobalt carbonyl and later rhodium complexes of triphenylphosphine. At one time, it was produced industrially by the catalytic hydrogenation of crotonaldehyde, which is derived from acetaldehyde. Butyraldehyde can be produced by the catalytic dehydrogenation of n-butanol. This compound is the aldehyde derivative of butane. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter immiscible phase. About 6 billion kilograms are produced annually by hydroformylation. It is a colourless flammable liquid with an unpleasant smell. Occurs in essential oils, e.g. lavender, hopand is also present in apple, banana, blackberry, hog plum, wheat bread, malt whiskey, red or white wine, tea, toasted oat flakes and other foodstuffs. Flavouring agent

   

Isovaleraldehyde

3-Methyl-butyraldehyde

C5H10O (86.07316100000001)


Iso-Valeraldehyde, also known as isoamyl aldehyde or 3-methyl-butanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Iso-Valeraldehyde exists in all eukaryotes, ranging from yeast to humans. Iso-Valeraldehyde is an aldehydic, chocolate, and ethereal tasting compound. Iso-Valeraldehyde is found, on average, in the highest concentration within a few different foods, such as milk (cow), beers, and taco and in a lower concentration in kohlrabis, corns, and tortilla. Iso-Valeraldehyde has also been detected, but not quantified, in several different foods, such as muskmelons, highbush blueberries, fenugreeks, hazelnuts, and dills. This could make iso-valeraldehyde a potential biomarker for the consumption of these foods. A methylbutanal that is butanal substituted by a methyl group at position 3. Iso-Valeraldehyde, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, crohns disease, perillyl alcohol administration for cancer treatment, and hepatic encephalopathy; iso-valeraldehyde has also been linked to the inborn metabolic disorder celiac disease. Occurs in orange, bergamot, lemon, sandalwood, citronella, peppermint, eucalyptus and other oilsand is also in apple, grape, peach cider, vinegar, wines, wheatbreads, scallops and ginger

   

Propanal

Propionaldehyde, 1-14C-labeled

C3H6O (58.041862599999995)


Propanal, also known as N-propionaldehyde or C2H5CHO, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Propanal exists in all living species, ranging from bacteria to humans. Propanal is an alcohol, cocoa, and earthy tasting compound. Outside of the human body, Propanal is found, on average, in the highest concentration within wild celeries and carrots. Propanal has also been detected, but not quantified in several different foods, such as purple lavers, black salsifies, strawberry guava, grapefruit/pummelo hybrids, and alaska wild rhubarbs. It is an aldehyde that consists of ethane bearing a formyl substituent. Isolated from various plant sources, e.g. hops, banana, sweet or sour cherry, blackcurrants, melon, pineapple, bread, chesses, coffee, cooked rice and strawberry or apple aroma. Flavouring agent

   

4-Aminobutyraldehyde

gamma-Aminobutyraldehyde

C4H9NO (87.0684104)


4-Aminobutyraldehyde is a metabolite of putrescine. It is a substrate of human liver aldehyde dehydrogenase (EC 1.2.1.3) cytoplasmic (E1) and mitochondrial (E2) isozymes (PMID 3324802). [HMDB]. 4-Aminobutyraldehyde is found in many foods, some of which are naranjilla, rambutan, oval-leaf huckleberry, and pepper (capsicum). 4-Aminobutyraldehyde is a metabolite of putrescine. It is a substrate of human liver aldehyde dehydrogenase (EC 1.2.1.3) cytoplasmic (E1) and mitochondrial (E2) isozymes (PMID 3324802).

   

3-Hydroxypropanal

beta-Hydroxypropionaldehyde

C3H6O2 (74.0367776)


3-Hydroxypropanal is a broad-spectrum antimicrobial substance termed reuterin produced by Lactobacillus reuteri. L. reuteri resides in the gastrointestinal tract of healthy humans and animals, and is believed to. function as a symbiont in the enteric ecosystem. Synthesis of such an antimicrobial substance by an enteric resident raises a number of interesting questions and possibilities as to the role these residents may play in the health of the host. (PMID 3245697). In vivo, glycerol is converted in one enzymatic step into 3-Hydroxypropanal. The 3-Hydroxypropanal -producing Lactobacillus reuteri is used as a probiotic in the health care of humans and animals. 3-Hydroxypropanal forms, together with Hydroxypropanal-hydrate and Hydroxypropanal-dimer, a dynamic, multi-component system (Hydroxypropanal system) used in food preservation, as a precursor for many modern chemicals such as acrolein, acrylic acid, and 1,3-propanediol (1,3-PDO), and for polymer production. 3-Hydroxypropanal can be obtained both through traditional chemistry and bacterial fermentation. To date, 3-HPA has been produced from petrochemical resources as an intermediate in 1,3-PDO production. The biotechnological production of 3-Hydroxypropanal from renewable resources is desirable both for use of 3-Hydroxypropanal in foods and for the production of bulk chemicals. The main challenge will be the efficient production and recovery of pure 3-Hydroxypropanal. (PMID 14669058). 3-Hydroxypropanal is a broad-spectrum antimicrobial substance termed reuterin produced by Lactobacillus reuteri. L. reuteri resides in the gastrointestinal tract of healthy humans and animals, and is believed to Reuterin is a broad-spectrum antimicrobial agent active against Gram positive and Gram negative bacteria, as well as yeasts, moulds and protozoa. Reuterin is produced by specific strains of Lactobacillus reuteri during anaerobic metabolism of glycerol. Reuterin also demonstrates potent antimicrobial activity against a broad panel of human and poultry meat campylobacter spp. Isolates[1][2].

   

4-Trimethylammoniobutanal

N,N,N-Trimethyl-4-oxo-1-butanaminium

C7H16NO+ (130.1231826)


4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial). [HMDB] 4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial).

   

4-hydroxybenzoyl-CoA

(2R)-4-({[({[(2R,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-(2-{[2-(4-hydroxybenzoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-3,3-dimethylbutanimidic acid

C28H40N7O18P3S (887.136333)


4-Hydroxybenzoyl-CoA is an intermediate in Fluorobenzoate degradation. 4-Hydroxybenzoyl-CoA is converted from 4-Fluorobenzoyl-CoA via the enzyme 4-chlorobenzoyl-CoA dehalogenase (EC 3.8.1.7). [HMDB]. 4-Hydroxybenzoyl-CoA is found in many foods, some of which are chinese chives, mustard spinach, salmonberry, and sunflower. 4-Hydroxybenzoyl-CoA is an intermediate in Fluorobenzoate degradation. 4-Hydroxybenzoyl-CoA is converted from 4-Fluorobenzoyl-CoA via the enzyme 4-chlorobenzoyl-CoA dehalogenase (EC 3.8.1.7). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Aminopropionaldehyde

beta-Aminopropion aldehyde

C3H7NO (73.0527612)


3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).

   

N4-Acetylaminobutanal

N-Acetyl-4-aminobutanal

C6H11NO2 (129.0789746)


N4-Acetylaminobutanal is an intermediate of the urea cycle and metabolism of amino groups, the product of the enzyme monoamine oxidase A [EC:1.4.3.4] and the substrate of the enzyme aldehyde dehydrogenase 2 family (mitochondrial) [EC:1.2.1.3]. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Butyn-1-al

3-Butyn-1-al

C4H4O (68.0262134)


3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID C06145). It is the third to last step in the synthesis and degradation of ketone bodies and is converted from 3-Butyn-1-ol via the enzyme alcohol dehydrogenase (acceptor) [EC:1.1.99.8]. It is then converted to 3-Butynoate via the enzyme aldehyde dehydrogenase (NAD+) [EC:1.2.1.3]. 3-Butyn-1-al is an intermediate in Butanoate metabolism (KEGG ID

   

5-Aminopentanal

5-Amino-pentanal

C5H11NO (101.0840596)


The aminoaldehydes 5-aminopentanal, derived from the oxidation of the diamines putrescine and cadaverine,is produced utilizing a copper amine oxidase (CAO) from Euphorbia characias latex and tested with in vitro cultivation of Leishmania infantum promastigotes.Whereas the aminoaldehydes derived from the oxidation of the diamines were stimulating factors for growth of Leishmania infantum promastigotes, the aldehydes derived from polyamines oxidation had a drastic inhibitory effect on the vitality and growth of these parasites. Thus, a double scenario arises, showing the use of aldehydes from diamines to obtain a large number of organisms of Leishmania infantum promastigotes to use in serological studies, whereas the aldehydes derived from polyamines could be used as a new strategy for therapeutic treatment against these parasites. [HMDB]. 5-Aminopentanal is found in many foods, some of which are watermelon, sorrel, medlar, and cornmint. The aminoaldehydes 5-aminopentanal, derived from the oxidation of the diamines putrescine and cadaverine,is produced utilizing a copper amine oxidase (CAO) from Euphorbia characias latex and tested with in vitro cultivation of Leishmania infantum promastigotes.Whereas the aminoaldehydes derived from the oxidation of the diamines were stimulating factors for growth of Leishmania infantum promastigotes, the aldehydes derived from polyamines oxidation had a drastic inhibitory effect on the vitality and growth of these parasites. Thus, a double scenario arises, showing the use of aldehydes from diamines to obtain a large number of organisms of Leishmania infantum promastigotes to use in serological studies, whereas the aldehydes derived from polyamines could be used as a new strategy for therapeutic treatment against these parasites.

   

Glutaral

Johnson and johnson brand OF glutaral

C5H8O2 (100.05242679999999)


Glutaral is used as an antimicrobial agent in sugar mills and as a fixing agent in the immobilisation of glucose isomerase enzyme preparations for use in the manufacture of high fructose corn syrup. It is a polymerized isomer of glutaraldehyde known as polycycloglutaracetal used as a fertilizer for aquatic plants. It is claimed that it provides a bioavailable source of carbon for higher plants that is not available to algae. Though not marketed as such due to federal regulations, the biocidal effect of glutaraldehyde kills most algae at concentrations of 0.5 - 5.0 ppm. These levels are not harmful to most aquatic fauna and flora. Adverse reactions have been observed by some aquarists at these concentrations in some aquatic mosses, liverworts, and vascular plants. Glutaraldehyde is a colorless liquid with a pungent odor used to disinfect medical and dental equipment. It is also used for industrial water treatment and as a chemical preservative. Glutaraldehyde is an oily liquid at room temperature (density 1.06 g/mL), and miscible with water, alcohol, and benzene. It is used as a tissue fixative in electron microscopy. It is also employed as an embalming fluid, is a component of leather tanning solutions, and occurs as an intermediate in the production of certain industrial chemicals. Glutaraldehyde is frequently used in biochemistry applications as an amine-reactive homobifunctional crosslinker. The oligomeric state of proteins can be examined through this application. However, it is toxic, causing severe eye, nose, throat and lung irritation, along with headaches, drowsiness and dizziness. It is a main source of occupational asthma among health care providers D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives Same as: D01120

   

Succinaldehyde

1,4-Butane dialdehyde

C4H6O2 (86.0367776)


   

Acetamidopropanal

N-(3-Oxopropyl)acetamide

C5H9NO2 (115.0633254)


Acetamidopropanal is associated with urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine. Induction of SSAT typically gives rise to growth inhibition or apoptosis, depending upon the cell type and the extent of enzyme overexpression. In such experiments, growth inhibition has been closely linked to depletion of intracellular polyamine pools ( 12) and disturbances in polyamine metabolism ( 13), whereas apoptosis has been associated with downstream events emanating from polyamine oxidase-mediated oxidation of acetylated polyamines and the associated release of oxidatively reactive by-products such as hydrogen peroxide and the aldehyde, 3-acetamidopropanal. Acetamidopropanal, also known as N-(3-oxopropyl)acetamide or 3aap, is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Acetamidopropanal is soluble (in water) and a very weakly acidic compound (based on its pKa). Acetamidopropanal can be found in a number of food items such as passion fruit, cloves, irish moss, and calabash, which makes acetamidopropanal a potential biomarker for the consumption of these food products. Acetamidopropanal exists in all living organisms, ranging from bacteria to humans.

   

3-(Methylthio)propanal

3-(methylthio)Propionaldehyde (methional)

C4H8OS (104.0295838)


3-(Methylthio)propanal, also known as 3-methylsulfanylpropanal or 4-thiapentanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-(Methylthio)propanal is a beef, cooked potato, and creamy tasting compound. 3-(Methylthio)propanal has been detected, but not quantified, in several different foods, such as anises, sparkleberries, oats, passion fruits, and hard wheats. 3-(Methylthio)propanal is a flavouring ingredient. It is found in many foods, some of which are cucumber, jujube, mugwort, and chicory leaves. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists

   

Pentanal

Pentanal (valeraldehyde)

C5H10O (86.07316100000001)


Pentanal, also known as N-valeraldehyde or amyl aldehyde, belongs to the class of organic compounds known as alpha-hydro gen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Pentanal is a saturated fatty aldehyde composed from five carbons in a straight chain. Thus, pentanal is considered to be a fatty aldehyde lipid molecule. Pentanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentanal is an almond, berry, and bready tasting compound. Pentanal is found, on average, in the highest concentration within a few different foods, such as black walnuts, milk (cow), and carrots and in a lower concentration in corns, tortilla, and safflowers. Pentanal has also been detected, but not quantified, in several different foods, such as crustaceans, garden tomato, herbs and spices, and guava. This could make pentanal a potential biomarker for the consumption of these foods. Found in olive oil and several essential oilsand is also present in Bantu beer, plum brandy, cardamom, coriander leaf, rice, Bourbon vanilla, clary sage, cooked shrimps, scallops, apple, banana, sweet cherry, blackcurrant and other foods.

   

4-Methylpentanal

Isocaproaldehyde: 4-methyl-pentanal

C6H12O (100.0888102)


4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial). [HMDB] 4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial).

   

2'-O-p-Coumaroylvitexin

2-[5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-8-yl]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C30H26O12 (578.1424196)


2-O-p-Coumaroylvitexin is found in fenugreek. 2-O-p-Coumaroylvitexin is isolated from fenugreek seeds Trigonella foenum-graecum. Isolated from fenugreek seeds Trigonella foenum-graecum. 2-p-Coumaroylvitexin is found in herbs and spices and fenugreek.

   

1-(3-Aminopropyl)-4-aminobutanal

4-(3-Aminopropylamino)butyraldehyde

C7H16N2O (144.1262566)


1-(3-Aminopropyl)-4-aminobutanal is an intermediate in beta-alanine biosynthesis I. Beta-alanine is the only naturally occurring beta-amino acid - the amino group is at the β-position from the carboxylate group. It is formed in vivo by the degradation of dihydrouracil and carnosine. Beta-alanine is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (Vitamin B-5) which itself is a component of coenzyme A. In beta-alanine biosynthesis I pathway, 1 (3 Aminopropyl) 4 aminobutanal is generated from the hydrolysis of spermine and can be converted by spontaneous cyclization to 1-(3-aminopropyl)-pyrrolinium. [HMDB] 1-(3-Aminopropyl)-4-aminobutanal is an intermediate in beta-alanine biosynthesis I. Beta-alanine is the only naturally occurring beta-amino acid - the amino group is at the β-position from the carboxylate group. It is formed in vivo by the degradation of dihydrouracil and carnosine. Beta-alanine is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (Vitamin B-5) which itself is a component of coenzyme A. In beta-alanine biosynthesis I pathway, 1 (3 Aminopropyl) 4 aminobutanal is generated from the hydrolysis of spermine and can be converted by spontaneous cyclization to 1-(3-aminopropyl)-pyrrolinium.

   

3a,7b,12a-Trihydroxy-5a-Cholanoic acid

(4R)-4-[(1S,2S,5R,7R,9S,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid

C24H40O5 (408.28755900000004)


3a,7b,12a-Trihydroxy-5a-Cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).

   

Spermine dialdehyde

3-({4-[(3-oxopropyl)amino]butyl}amino)propanal

C10H20N2O2 (200.15247000000002)


Spermine dialdehyde,an oxidized product of spermine, is a novel ex vivo purging agent for both allogeneic and autologous bone marrow transplantations It has been identified as the immunosuppressive agent "SAF" (suppressor activation factor) present in the supernatant of amutant cell line [PMID: 1428363] [HMDB] Spermine dialdehyde,an oxidized product of spermine, is a novel ex vivo purging agent for both allogeneic and autologous bone marrow transplantations It has been identified as the immunosuppressive agent "SAF" (suppressor activation factor) present in the supernatant of amutant cell line [PMID: 1428363].

   

(+/-)-3-(Methylthio)heptanal

(+/-)-3-(Methylthio)heptanal

C8H16OS (160.0921806)


(+/-)-3-(Methylthio)heptanal is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

4-Pentenal

Pent-4-enal

C5H8O (84.0575118)


4-Pentenal is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

2,6,6-Trimethyl-1-cyclohexen-1-acetaldehyde

2-(2,6,6-trimethylcyclohex-1-en-1-yl)acetaldehyde

C11H18O (166.1357578)


2,6,6-Trimethyl-1-cyclohexen-1-acetaldehyde is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .

   

4-(Methylthio)butanal

gamma-(methylmercapto)Butyraldehyde

C5H10OS (118.04523300000001)


4-(Methylthio)butanal is a flavouring ingredient. Flavouring ingredient

   

3-(Methylthio)hexanal

3-(Methylsulphanyl)hexanal

C7H14OS (146.07653140000002)


3-(Methylthio)hexanal is a flavouring ingredient. Flavouring ingredient

   

3-(Methylthio)butanal

3-(Methylsulphanyl)butanal

C5H10OS (118.04523300000001)


3-(Methylthio)butanal is a flavouring ingredient. Flavouring ingredient

   

3-Acetamidobutanal

N-(4-oxobutan-2-yl)ethanimidic acid

C6H11NO2 (129.0789746)


3-acetamidobutanal is part of the Amine and polyamine metabolism, and Peroxisome pathways. It is a substrate for: Peroxisomal N(1)-acetyl-spermine/spermidine oxidase.

   

3,4-Epoxynonanal

2-(3-pentyloxiran-2-yl)acetaldehyde

C9H16O2 (156.1150236)


This compound belongs to the family of Epoxides. These are compounds containing a cyclic ether with three ring atoms(one oxygen and two carbon atoms)Volume 18, Issue 17, 4 September 2007, Pages 2001-2010) ; [2] A. Trabocchi, D. Scarpi, and A. Guarna. 2007. Structural diversity of bicyclic amino acids. Amino Acids (2008) 34: 1-24. DOI 10.1007/s00726-007-0588-y

   

3-amino-propanal

3-oxopropan-1-aminium

C3H8NO+ (74.0605858)


3-amino-propanal is also known as 3-Ammoniopropanal(1+). 3-amino-propanal is considered to be soluble (in water) and relatively neutral

   

2-Methylglutaraldehyde

2-Methylglutaraldehyde

C6H10O2 (114.068076)


   

3-Methylpentanedial

glutaraldehyde, 3-methyl-

C6H10O2 (114.068076)


   
   

hydroxypropyl

hydroxypropyl

C3H5O (57.034038)


   

2-(Hydroxymethyl)pentanedial

2-(Hydroxymethyl)pentanedial

C6H10O3 (130.062991)


   

Amino 6-oxohexanoate

Amino 6-oxohexanoic acid

C6H11NO3 (145.0738896)


   

6,8-Bis(sulfanyl)octanal

6,8-Bis(sulphanyl)octanal

C8H16OS2 (192.0642526)


   

3-dimethylsulfoniopropionaldehyde

3-Dimethylsulphoniopropionaldehyde

C5H11OS (119.0530576)


3-dimethylsulfoniopropionaldehyde, also known as dmsp-aldehyde, is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-dimethylsulfoniopropionaldehyde is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). 3-dimethylsulfoniopropionaldehyde can be found in a number of food items such as chinese chestnut, welsh onion, dandelion, and parsnip, which makes 3-dimethylsulfoniopropionaldehyde a potential biomarker for the consumption of these food products.