CDP (BioDeep_00000003515)

 

Secondary id: BioDeep_00000400230

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

化学式: C9H15N3O11P2 (403.0182)
中文名称: 胞苷5-二磷酸酯, 胞苷-5'-二磷酸, 胞苷 5'-二磷酸
谱图信息: 最多检出来源 Homo sapiens(blood) 17.86%

分子结构信息

SMILES: C1=CN(C(=O)N=C1N)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)O)O)O
InChI: InChI=1S/C9H15N3O11P2/c10-5-1-2-12(9(15)11-5)8-7(14)6(13)4(22-8)3-21-25(19,20)23-24(16,17)18/h1-2,4,6-8,13-14H,3H2,(H,19,20)(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1

描述信息

Cytidine diphosphate, abbreviated CDP, and also known as 5-CDP, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. It is a cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. CDP exists in all living species, ranging from bacteria to humans. In humans, CDP is involved in cardiolipin biosynthesis. Outside of the human body, CDP has been detected, but not quantified in several different foods, such as carobs, mexican oregano, evergreen huckleberries, green vegetables, and pepper (Capsicum baccatum).
Cytidine 5-(trihydrogen diphosphate). A cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. Synonyms: CRPP; cytidine pyrophosphate. [HMDB]. CDP is found in many foods, some of which are sweet cherry, hard wheat, roman camomile, and ginseng.
Acquisition and generation of the data is financially supported in part by CREST/JST.

同义名列表

19 个代谢物同义名

[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid; Cytidine-5-diphosphate sodium salt hydrate,from yeast; Cytidine, 5-(trihydrogen pyrophosphoric acid); Cytidine, 5-(trihydrogen pyrophosphate); Cytidine 5-pyrophosphoric acid; CYTIDINE-5-diphosphoric acid; Cytidine 5-diphosphoric acid; Cytidine diphosphoric acid; Cytidine diphosphate (CDP); Cytidine 5-pyrophosphate; Cytidine 5-diphosphate; Cytidine-5-diphosphate; Diphosphate, cytidine; Cytidine diphosphate; Cytidine-diphosphate; 5-CDP; CDP; Cytidine 5'-diphosphate(CDP); CDP



数据库引用编号

40 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

376 个相关的代谢反应过程信息。

Reactome(12)

BioCyc(11)

WikiPathways(1)

Plant Reactome(0)

INOH(3)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(348)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ACE, CCND1, CDS1, DAG1, FKRP, FKTN, ITPR3
Peripheral membrane protein 1 HSD17B6
Endoplasmic reticulum membrane 7 CDIPT, CDS1, CDS2, HSP90B1, ITPR3, PEMT, SELENOI
Mitochondrion membrane 1 PEMT
Nucleus 5 CCND1, CDS1, FKTN, HSP90B1, PLCZ1
cytosol 8 CCND1, CDS2, DAG1, FKRP, HSP90B1, PEMT, PLCZ1, PRKCQ
dendrite 1 PSD2
mitochondrial membrane 1 PEMT
centrosome 1 CCND1
nucleoplasm 6 CCND1, CDS1, DAG1, FKRP, ITPR3, PLCZ1
Cell membrane 5 ACE, CDIPT, PSD, PSD2, TNF
Cleavage furrow 2 PSD, PSD2
lamellipodium 1 DAG1
ruffle membrane 2 PSD, PSD2
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 6 CDIPT, CDS1, CDS2, ITPR3, PEMT, SELENOI
Golgi apparatus membrane 2 FKRP, FKTN
cell surface 1 TNF
glutamatergic synapse 2 DAG1, PSD2
Golgi apparatus 5 CDIPT, CDS1, FKRP, FKTN, SELENOI
Golgi membrane 2 FKRP, FKTN
lysosomal membrane 1 EGF
mitochondrial inner membrane 1 CDS2
neuronal cell body 3 ITPR3, PSD2, TNF
postsynapse 1 PSD2
sarcolemma 2 DAG1, FKRP
smooth endoplasmic reticulum 1 HSP90B1
Lysosome 1 ACE
endosome 1 ACE
plasma membrane 8 ACE, CDIPT, DAG1, EGF, ITPR3, PRKCQ, REN, TNF
Membrane 13 ACE, CDIPT, CDS1, CDS2, DAG1, EGF, FKRP, FKTN, HSP90B1, ITPR3, PEMT, REN, SELENOI
basolateral plasma membrane 1 DAG1
brush border 1 ITPR3
extracellular exosome 4 ACE, DAG1, EGF, HSP90B1
Lumenal side 1 HSD17B6
endoplasmic reticulum 7 CDS1, CDS2, FKTN, HSD17B6, HSP90B1, ITPR3, PEMT
extracellular space 7 ACE, DAG1, EGF, FKRP, FKTN, REN, TNF
perinuclear region of cytoplasm 2 HSP90B1, PLCZ1
adherens junction 1 DAG1
bicellular tight junction 1 CCND1
mitochondrion 1 PEMT
protein-containing complex 2 CDS2, HSP90B1
intracellular membrane-bounded organelle 3 DAG1, HSD17B6, PEMT
Microsome membrane 1 HSD17B6
filopodium 1 DAG1
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 ACE
Secreted 3 ACE, FKRP, REN
extracellular region 6 ACE, DAG1, EGF, HSP90B1, REN, TNF
Single-pass membrane protein 1 PSD2
centriolar satellite 1 PRKCQ
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 3 ACE, DAG1, TNF
dendritic spine 1 PSD
nucleolus 2 ITPR3, PLCZ1
midbody 1 HSP90B1
apical part of cell 2 ITPR3, REN
recycling endosome 1 TNF
Single-pass type II membrane protein 3 FKRP, FKTN, TNF
postsynaptic membrane 1 DAG1
Cell membrane, sarcolemma 2 DAG1, FKRP
Cell projection, ruffle membrane 2 PSD, PSD2
Cytoplasm, perinuclear region 1 PLCZ1
Membrane raft 1 TNF
focal adhesion 2 DAG1, HSP90B1
GABA-ergic synapse 1 DAG1
cis-Golgi network 1 FKTN
basement membrane 1 DAG1
sarcoplasmic reticulum 1 ITPR3
PML body 1 CDS1
collagen-containing extracellular matrix 2 DAG1, HSP90B1
nuclear outer membrane 1 ITPR3
Postsynaptic cell membrane 1 DAG1
receptor complex 1 ITPR3
phagocytic cup 1 TNF
cytoskeleton 1 DAG1
brush border membrane 1 ACE
sperm midpiece 1 ACE
postsynaptic density, intracellular component 1 PSD
[Isoform 1]: Endoplasmic reticulum membrane 1 PEMT
Nucleus, nucleoplasm 1 DAG1
Melanosome 1 HSP90B1
sperm plasma membrane 1 HSP90B1
basal plasma membrane 1 ACE
plasma membrane raft 1 DAG1
secretory granule membrane 1 ITPR3
Golgi lumen 1 DAG1
endoplasmic reticulum lumen 2 DAG1, HSP90B1
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 EGF
node of Ranvier 1 DAG1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
clathrin-coated endocytic vesicle membrane 1 EGF
Sarcoplasmic reticulum lumen 1 HSP90B1
platelet dense tubular network membrane 1 ITPR3
costamere 1 DAG1
dystrophin-associated glycoprotein complex 1 DAG1
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
Rough endoplasmic reticulum 1 FKRP
contractile ring 1 DAG1
postsynaptic cytosol 1 DAG1
[Isoform 2]: Endoplasmic reticulum membrane 1 PEMT
nuclear periphery 1 DAG1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
transport vesicle membrane 1 ITPR3
sperm head 1 PLCZ1
endoplasmic reticulum chaperone complex 1 HSP90B1
photoreceptor ribbon synapse 1 DAG1
cyclin D1-CDK4 complex 1 CCND1
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
cyclin D1-CDK6 complex 1 CCND1
[Beta-dystroglycan]: Cell membrane 1 DAG1
dystroglycan complex 1 DAG1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
skeletal muscle myofibril 1 FKRP


文献列表

  • Xiaoman You, Yuese Ning, Guo-Liang Wang. Editing a rice CDP-DAG synthase confers broad-spectrum resistance. Trends in plant science. 2023 Aug; ?(?):. doi: 10.1016/j.tplants.2023.08.011. [PMID: 37648632]
  • Qiyue Zhang, Nikabou Batigma Boundjou, Lijun Jia, Xinliang Wang, Ling Zhou, Helga Peisker, Qing Li, Liang Guo, Peter Dörmann, Dianqiu Lyu, Yonghong Zhou. A Cytidinediphosphate Diacylglycerol Synthase is essential for mitochondrial structure and energy production in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2023 Feb; ?(?):. doi: 10.1111/tpj.16139. [PMID: 36789486]
  • Alexandra Polyansky, Oren Shatz, Milana Fraiberg, Eyal Shimoni, Tali Dadosh, Muriel Mari, Fulvio M Reggiori, Chao Qin, Xianlin Han, Zvulun Elazar. Phospholipid imbalance impairs autophagosome completion. The EMBO journal. 2022 12; 41(23):e110771. doi: 10.15252/embj.2022110771. [PMID: 36300838]
  • Lance G A Nunes, Matthew W Pitts, Peter R Hoffmann. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Archives of biochemistry and biophysics. 2022 10; 729(?):109376. doi: 10.1016/j.abb.2022.109376. [PMID: 36007576]
  • Lin Zheng, Ting Zhou, Hui Liu, Zuying Zhou, Mingyan Chi, Yueting Li, Zipeng Gong, Yong Huang. Pharmacokinetics Study of Jin-Gu-Lian Prescription and Its Core Drug Pair (Sargentodoxa cuneata (Oliv.) Rehd. et W and Alangium chinense (Lour.) Harms) by UPLC-MS/MS. Molecules (Basel, Switzerland). 2022 Jun; 27(13):. doi: 10.3390/molecules27134025. [PMID: 35807271]
  • Fangzhou Zhu, Zhiqin Dong, Xinfu Li, Qiang Xiong. Microbial Inactivation Property of Pulsed Corona Discharge Plasma and Its Effect on Chilled Pork Preservation. Foodborne pathogens and disease. 2022 02; 19(2):159-167. doi: 10.1089/fpd.2021.0035. [PMID: 34898276]
  • Guotong Fu, Clifford S Guy, Nicole M Chapman, Gustavo Palacios, Jun Wei, Peipei Zhou, Lingyun Long, Yong-Dong Wang, Chenxi Qian, Yogesh Dhungana, Hongling Huang, Anil Kc, Hao Shi, Sherri Rankin, Scott A Brown, Amanda Johnson, Randall Wakefield, Camenzind G Robinson, Xueyan Liu, Anthony Sheyn, Jiyang Yu, Suzanne Jackowski, Hongbo Chi. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature. 2021 07; 595(7869):724-729. doi: 10.1038/s41586-021-03692-z. [PMID: 34234346]
  • Haifang Zhao, Tao Wang. PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila. PLoS genetics. 2020 10; 16(10):e1009070. doi: 10.1371/journal.pgen.1009070. [PMID: 33064773]
  • Yi Wu, Keshi Chen, Guangsuo Xing, Linpeng Li, Bochao Ma, Zhijuan Hu, Lifan Duan, Xingguo Liu. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Science advances. 2019 11; 5(11):eaax7525. doi: 10.1126/sciadv.aax7525. [PMID: 31807705]
  • Elizabeth Calzada, Ouma Onguka, Steven M Claypool. Phosphatidylethanolamine Metabolism in Health and Disease. International review of cell and molecular biology. 2016; 321(?):29-88. doi: 10.1016/bs.ircmb.2015.10.001. [PMID: 26811286]
  • Carla D Jorge, Nuno Borges, Helena Santos. A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environmental microbiology. 2015 Jul; 17(7):2492-504. doi: 10.1111/1462-2920.12734. [PMID: 25472423]
  • Ahrathy Selathurai, Greg M Kowalski, Micah L Burch, Patricio Sepulveda, Steve Risis, Robert S Lee-Young, Severine Lamon, Peter J Meikle, Amanda J Genders, Sean L McGee, Matthew J Watt, Aaron P Russell, Matthew Frank, Suzanne Jackowski, Mark A Febbraio, Clinton R Bruce. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell metabolism. 2015 May; 21(5):718-30. doi: 10.1016/j.cmet.2015.04.001. [PMID: 25955207]
  • Alison C Lilley, Louise Major, Simon Young, Michael J R Stark, Terry K Smith. The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form Trypanosoma brucei. Molecular microbiology. 2014 May; 92(3):453-70. doi: 10.1111/mmi.12553. [PMID: 24533860]
  • Anne Hartmann, Maria Hellmund, Richard Lucius, Dennis R Voelker, Nishith Gupta. Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for efficient growth but dispensable for survival of Toxoplasma gondii. The Journal of biological chemistry. 2014 Mar; 289(10):6809-6824. doi: 10.1074/jbc.m113.509406. [PMID: 24429285]
  • Jean E Vance, Guergana Tasseva. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et biophysica acta. 2013 Mar; 1831(3):543-54. doi: 10.1016/j.bbalip.2012.08.016. [PMID: 22960354]
  • Mark G Waugh, Shane Minogue, Emma L Clayton, J Justin Hsuan. CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum. Journal of lipid research. 2011 Dec; 52(12):2148-2158. doi: 10.1194/jlr.m017814. [PMID: 21937673]
  • Fred Y Peng, Randall J Weselake. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC genomics. 2011 Jun; 12(?):286. doi: 10.1186/1471-2164-12-286. [PMID: 21635767]
  • Danni Cheng, Andrew M Jenner, Guanghou Shui, Wei Fun Cheong, Todd W Mitchell, Jessica R Nealon, Woojin S Kim, Heather McCann, Markus R Wenk, Glenda M Halliday, Brett Garner. Lipid pathway alterations in Parkinson's disease primary visual cortex. PloS one. 2011 Feb; 6(2):e17299. doi: 10.1371/journal.pone.0017299. [PMID: 21387008]
  • Sujung J Yoon, In Kyoon Lyoo, Hengjun J Kim, Tae-Suk Kim, Young Hoon Sung, Namkug Kim, Scott E Lukas, Perry F Renshaw. Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5'-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2010 Apr; 35(5):1165-73. doi: 10.1038/npp.2009.221. [PMID: 20043005]
  • Marwa A Aboukhatwa, Ashiwel S Undieh. Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition. BMC neuroscience. 2010 Jan; 11(?):10. doi: 10.1186/1471-2202-11-10. [PMID: 20105322]
  • Roberta Leonardi, Matthew W Frank, Pamela D Jackson, Charles O Rock, Suzanne Jackowski. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. The Journal of biological chemistry. 2009 Oct; 284(40):27077-89. doi: 10.1074/jbc.m109.031336. [PMID: 19666474]
  • Morgan D Fullerton, Fatima Hakimuddin, Arend Bonen, Marica Bakovic. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice. The Journal of biological chemistry. 2009 Sep; 284(38):25704-13. doi: 10.1074/jbc.m109.023846. [PMID: 19625253]
  • Yesim Ozarda Ilcol, Zeki Yilmaz, Mehmet Cansev, Ismail H Ulus. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: involvement of the peripheral nicotinic acetylcholine receptors. Shock (Augusta, Ga.). 2009 Sep; 32(3):286-94. doi: 10.1097/shk.0b013e3181971b02. [PMID: 19060783]
  • Edward W C Sewell, Mark P Pereira, Eric D Brown. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. The Journal of biological chemistry. 2009 Aug; 284(32):21132-8. doi: 10.1074/jbc.m109.010215. [PMID: 19520862]
  • Harjot K Saini-Chohan, Michael G Holmes, Adam J Chicco, William A Taylor, Russell L Moore, Sylvia A McCune, Diane L Hickson-Bick, Grant M Hatch, Genevieve C Sparagna. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. Journal of lipid research. 2009 Aug; 50(8):1600-8. doi: 10.1194/jlr.m800561-jlr200. [PMID: 19001357]
  • Jean E Vance. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. Journal of lipid research. 2008 Jul; 49(7):1377-87. doi: 10.1194/jlr.r700020-jlr200. [PMID: 18204094]
  • Y O Ilcol, M Cansev, M S Yilmaz, E Hamurtekin, I H Ulus. Intraperitoneal administration of CDP-choline and its cholinergic and pyrimidinergic metabolites induce hyperglycemia in rats: involvement of the sympathoadrenal system. Archives of physiology and biochemistry. 2007 Oct; 113(4-5):186-201. doi: 10.1080/13813450701531243. [PMID: 17917852]
  • Pedro Besada, Dae Hong Shin, Stefano Costanzi, Hyojin Ko, Christophe Mathé, Julien Gagneron, Gilles Gosselin, Savitri Maddileti, T Kendall Harden, Kenneth A Jacobson. Structure-activity relationships of uridine 5'-diphosphate analogues at the human P2Y6 receptor. Journal of medicinal chemistry. 2006 Sep; 49(18):5532-43. doi: 10.1021/jm060485n. [PMID: 16942026]
  • Maria José Caballero, Germán Gallardo, Lidia Robaina, Daniel Montero, Antonio Fernández, Marisol Izquierdo. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). The British journal of nutrition. 2006 Mar; 95(3):448-54. doi: 10.1079/bjn20051529. [PMID: 16512929]
  • C J R Loewen, M L Gaspar, S A Jesch, C Delon, N T Ktistakis, S A Henry, T P Levine. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science (New York, N.Y.). 2004 Jun; 304(5677):1644-7. doi: 10.1126/science.1096083. [PMID: 15192221]
  • Wendy M Iwanyshyn, Gil-Soo Han, George M Carman. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc. The Journal of biological chemistry. 2004 May; 279(21):21976-83. doi: 10.1074/jbc.m402047200. [PMID: 15028711]
  • Sinan Cavun, Vahide Savci, Ismail H Ulus. Centrally injected CDP-choline increases plasma vasopressin levels by central cholinergic activation. Fundamental & clinical pharmacology. 2004 Feb; 18(1):71-7. doi: 10.1046/j.0767-3981.2003.00213.x. [PMID: 14748757]
  • W K Born, M Vollmer, C Reardon, E Matsuura, D R Voelker, P C Giclas, R L O'Brien. Hybridomas expressing gammadelta T-cell receptors respond to cardiolipin and beta2-glycoprotein 1 (apolipoprotein H). Scandinavian journal of immunology. 2003 Sep; 58(3):374-81. doi: 10.1046/j.1365-3083.2003.01315.x. [PMID: 12950685]
  • Vladimir I Lodyato, Irina L Yurkova, Viktor L Sorokin, Oleg I Shadyro, Vladimir I Dolgopalets, Mikhail A Kisel. Synthesis and properties of 11-(3,5-di-tert-butyl-2-hydroxyphenylcarbamoyl)undecanoic acid, a new amphiphilic antioxidant. Bioorganic & medicinal chemistry letters. 2003 Mar; 13(6):1179-82. doi: 10.1016/s0960-894x(03)00041-6. [PMID: 12643938]
  • A Matiach, S Schröder-Köhne. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism. Molecular genetics and genomics : MGG. 2001 Nov; 266(3):481-96. doi: 10.1007/s004380100570. [PMID: 11713678]
  • M Nyako, C Marks, J Sherma, E R Reynolds. Tissue-specific and developmental effects of the easily shocked mutation on ethanolamine kinase activity and phospholipid composition in Drosophila melanogaster. Biochemical genetics. 2001 Oct; 39(9-10):339-49. doi: 10.1023/a:1012209030803. [PMID: 11758729]
  • S B Richard, M E Bowman, W Kwiatkowski, I Kang, C Chow, A M Lillo, D E Cane, J P Noel. Structure of 4-diphosphocytidyl-2-C- methylerythritol synthetase involved in mevalonate- independent isoprenoid biosynthesis. Nature structural biology. 2001 Jul; 8(7):641-8. doi: 10.1038/89691. [PMID: 11427897]
  • S Sauge-Merle, D Falconet, M Fontecave. An active ribonucleotide reductase from Arabidopsis thaliana cloning, expression and characterization of the large subunit. European journal of biochemistry. 1999 Nov; 266(1):62-9. doi: 10.1046/j.1432-1327.1999.00814.x. [PMID: 10542051]
  • G M Carman, S A Henry. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Progress in lipid research. 1999 Sep; 38(5-6):361-99. doi: 10.1016/s0163-7827(99)00010-7. [PMID: 10793889]
  • M P Rivas, B G Kearns, Z Xie, S Guo, M C Sekar, K Hosaka, S Kagiwada, J D York, V A Bankaitis. Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to "bypass Sec14p" and inositol auxotrophy. Molecular biology of the cell. 1999 Jul; 10(7):2235-50. doi: 10.1091/mbc.10.7.2235. [PMID: 10397762]
  • S Carstensen, G Pliska-Matyshak, N Bhuvarahamurthy, K M Robbins, P P Murthy. Biosynthesis and localization of phosphatidyl-scyllo-inositol in barley aleurone cells. Lipids. 1999 Jan; 34(1):67-73. doi: 10.1007/s11745-999-339-y. [PMID: 10188599]
  • S J Stone, Z Cui, J E Vance. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. The Journal of biological chemistry. 1998 Mar; 273(13):7293-302. doi: 10.1074/jbc.273.13.7293. [PMID: 9516423]
  • R A Igal, R A Coleman. Neutral lipid storage disease: a genetic disorder with abnormalities in the regulation of phospholipid metabolism. Journal of lipid research. 1998 Jan; 39(1):31-43. doi: 10.1016/s0022-2275(20)34200-0. [PMID: 9469583]
  • H Brachwitz, U Lachmann, Y Thomas, J Bergmann, W E Berdel, P Langen. Synthesis and antiproliferative activity of cytidine-5'-alkylphosphonophosphates and structurally related compounds. Chemistry and physics of lipids. 1996 Sep; 83(1):77-85. doi: 10.1016/0009-3084(96)02599-6. [PMID: 8858834]
  • S Manzella, S Ananth, T R Oegema, L Rodén, L C Rosenberg, E Meezan. Inhibition of glycogenin-catalyzed glucosyl and xylosyl transfer by cytidine 5'-diphosphate and related compounds. Archives of biochemistry and biophysics. 1995 Jul; 320(2):361-8. doi: 10.1016/0003-9861(95)90020-9. [PMID: 7625844]
  • A K Menon, M Eppinger, S Mayor, R T Schwarz. Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. The EMBO journal. 1993 May; 12(5):1907-14. doi: 10.1002/j.1460-2075.1993.tb05839.x. [PMID: 8491183]
  • M Houweling, L B Tijburg, W J Vaartjes, L M van Golde. Phosphatidylethanolamine metabolism in rat liver after partial hepatectomy. Control of biosynthesis of phosphatidylethanolamine by the availability of ethanolamine. The Biochemical journal. 1992 Apr; 283 ( Pt 1)(?):55-61. doi: 10.1042/bj2830055. [PMID: 1314569]
  • H Yoshimura. [Our drug metabolism studies during the last four decades]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1991 Dec; 111(12):737-55. doi: 10.1248/yakushi1947.111.12_737. [PMID: 1806656]
  • J C Standefer, R C Backer. Drug screening with EMIT reagents: a quantitative approach to quality control. Clinical chemistry. 1991 May; 37(5):733-8. doi: 10.1093/clinchem/37.5.733. [PMID: 2032329]
  • G Arthur, L Page. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. The Biochemical journal. 1991 Jan; 273(Pt 1)(?):121-5. doi: 10.1042/bj2730121. [PMID: 1989575]
  • J E Vance. Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine. Biochimica et biophysica acta. 1990 Jul; 1045(2):128-34. doi: 10.1016/0005-2760(90)90141-j. [PMID: 2116174]
  • N Marku, L Corazzi, G L Piccinin, G Arienti. Cerebellar metabolism of phosphatidylethanolamine and its water-soluble precursors during bicuculline-induced convulsive seizures. Neurochemical research. 1987 Apr; 12(4):341-4. doi: 10.1007/bf00993242. [PMID: 3600961]
  • M Imoto, K Umezawa, K Komuro, T Sawa, T Takeuchi, H Umezawa. Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor. Japanese journal of cancer research : Gann. 1987 Apr; 78(4):329-32. doi: . [PMID: 3108212]
  • T Aoyagi, T Wada, H Iinuma, K Ogawa, F Kojima, M Nagai, H Kuroda, A Obayashi, H Umezawa. Influence of angiotensin-converting enzyme inhibitor, foroxymithine, on dynamic equilibrium around the renin-angiotensin system in vivo. Journal of applied biochemistry. 1985 Dec; 7(6):388-95. doi: . [PMID: 3007425]
  • D R Narine, S Bacchetti, W W Chan. An assay for ribonucleotide reductase based on ion-exchange chromatography of the reaction product. Analytical biochemistry. 1985 Mar; 145(2):331-8. doi: 10.1016/0003-2697(85)90370-7. [PMID: 2990252]
  • D R Averett, P A Furman, T Spector. Ribonucleotide reductase of herpes simplex virus type 2 resembles that of herpes simplex virus type 1. Journal of virology. 1984 Dec; 52(3):981-3. doi: 10.1128/jvi.52.3.981-983.1984. [PMID: 6092726]
  • M B Slabaugh, C K Mathews. Vaccinia virus-induced ribonucleotide reductase can be distinguished from host cell activity. Journal of virology. 1984 Nov; 52(2):501-6. doi: 10.1128/jvi.52.2.501-506.1984. [PMID: 6387174]
  • D R Averett, C Lubbers, G B Elion, T Spector. Ribonucleotide reductase induced by herpes simplex type 1 virus. Characterization of a distinct enzyme. The Journal of biological chemistry. 1983 Aug; 258(16):9831-8. doi: . [PMID: 6309786]
  • R V Dorman, Z Dabrowiecki, L A Horrocks. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. Journal of neurochemistry. 1983 Jan; 40(1):276-9. doi: 10.1111/j.1471-4159.1983.tb12682.x. [PMID: 6848664]
  • E Takeda, G Weber. Role of ribonucleotide reductase in expression in the neoplastic program. Life sciences. 1981 Mar; 28(9):1007-14. doi: 10.1016/0024-3205(81)90746-3. [PMID: 7012518]
  • L A Horrocks, R V Dorman, Z Dabrowiecki, G Goracci, G Porcellati. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Progress in lipid research. 1981; 20(?):531-4. doi: 10.1016/0163-7827(81)90093-x. [PMID: 7342106]
  • A Gaiti, D Sitkievicz, M Brunetti, G Porcellati. Phospholipid metabolism in neuronal and glial cells during aging. Neurochemical research. 1981 Jan; 6(1):13-22. doi: 10.1007/bf00963901. [PMID: 7219663]
  • R Roberti, L Binaglia, G Porcellati. Synthesis of molecular species of glycerophospholipids from diglyceride-labeled brain microsomes. Journal of lipid research. 1980 May; 21(4):449-54. doi: . [PMID: 6247410]
  • K Christiansen. Utilization of endogenous diacylglycerol for the synthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine by lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochimica et biophysica acta. 1979 Sep; 574(3):448-60. doi: 10.1016/0005-2760(79)90241-8. [PMID: 226157]
  • . . . . doi: . [PMID: 17132865]
  • . . . . doi: . [PMID: 22345606]
  • . . . . doi: . [PMID: 7994181]
  • . . . . doi: . [PMID: 11741606]
  • . . . . doi: . [PMID: 18583706]