Gene Association: SELENOI

UniProt Search: SELENOI (PROTEIN_CODING)
Function Description: selenoprotein I

found 26 associated metabolites with current gene based on the text mining result from the pubmed database.

L-Proline

pyrrolidine-2-carboxylic acid

C5H9NO2 (115.0633)


Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.

   

Citicoline

2-(((((((2R,3S,4R,5R)-5-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)oxy)-N,N,N-trimethylethanaminium

C14H26N4O11P2 (488.1073)


CDP-choline is a member of the class of phosphocholines that is the chloine ester of CDP. It is an intermediate obtained in the biosynthetic pathway of structural phospholipids in cell membranes. It has a role as a human metabolite, a psychotropic drug, a neuroprotective agent, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a member of phosphocholines and a member of nucleotide-(amino alcohol)s. It is functionally related to a CDP. It is a conjugate base of a CDP-choline(1+). Citicoline is a donor of choline in biosynthesis of choline-containing phosphoglycerides. It has been investigated for the treatment, supportive care, and diagnosis of Mania, Stroke, Hypomania, Cocaine Abuse, and Bipolar Disorder, among others. Citicoline is a nutritional supplement and source of choline and cytidine with potential neuroprotective and nootropic activity. Citicoline, also known as cytidine-5-diphosphocholine or CDP-choline, is hydrolyzed into cytidine and choline in the intestine. Following absorption, both cytidine and choline are dispersed, utilized in various biosynthesis pathways, and cross the blood-brain barrier for resynthesis into citicoline in the brain, which is the rate-limiting product in the synthesis of phosphatidylcholine. This agent also increases acetylcholine (Ach), norepinephrine (NE) and dopamine levels in the central nervous system (CNS). In addition, citicoline is involved in the preservation of sphingomyelin and cardiolipin and the restoration of Na+/K+-ATPase activity. Citicoline also increases glutathione synthesis and glutathione reductase activity, and exerts antiapoptotic effects. Donor of choline in biosynthesis of choline-containing phosphoglycerides. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D018697 - Nootropic Agents Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects. Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects.

   

Phosphoethanolamine

2-Aminoethyl dihydrogen phosphate (acd/name 4.0)

C2H8NO4P (141.0191)


O-Phosphoethanolamine, also known as PEA, phosphorylethanolamine, colamine phosphoric acid or ethanolamine O-phosphate, belongs to the class of organic compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. O-Phosphoethanolamine is used in the biosynthesis of two different types of phospholipids: glycerophospholipids and sphingolipids. O-Phosphoethanolamine exists in all living species, ranging from bacteria to plants to humans. Within humans, O-phosphoethanolamine participates in a number of enzymatic reactions. In particular, cytidine triphosphate and O-phosphoethanolamine can be converted into CDP-ethanolamine; which is mediated by the enzyme ethanolamine-phosphate cytidylyltransferase. In addition, O-phosphoethanolamine can be biosynthesized from ethanolamine; which is catalyzed by the enzyme choline/ethanolamine kinase. In humans, O-phosphoethanolamine is involved in phosphatidylcholine biosynthesis. O-phosphoethanolamine is also a product of the metabolism of sphingolipids. In particular, sphinglipids are metabolized in vivo to phosphorylethanolamine and a fatty aldehyde, generally palmitaldehyde. Both metabolites are ultimately converted to glycerophospholipids. The lipids are first phosphorylated by a kinase and then cleaved by the pyridoxal-dependent sphinganine-1-phosphate aldolase. Elevated urine levels of O-Phosphoethanolamine or PEA can be used to help in the diagnosis of Hypophosphatasia (HPP). Reference ranges for urinary PEA vary according to age and somewhat by diet, and follow a circadian rhythm. Outside of the human body, O-phosphoethanolamine has been detected, but not quantified in, several different foods, such as oxheart cabbages, anises, shiitakes, abalones, and teffs. Phosphoryl-ethanolamine, also known as colamine phosphoric acid or ethanolamine phosphate, is a member of the class of compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. Phosphoryl-ethanolamine is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoryl-ethanolamine can be found in a number of food items such as pepper (capsicum), black salsify, cascade huckleberry, and redcurrant, which makes phosphoryl-ethanolamine a potential biomarker for the consumption of these food products. Phosphoryl-ethanolamine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces. Phosphoryl-ethanolamine exists in all living species, ranging from bacteria to humans. In humans, phosphoryl-ethanolamine is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), phosphatidylethanolamine biosynthesis PE(14:0/20:1(11Z)), phosphatidylethanolamine biosynthesis PE(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)), and phosphatidylethanolamine biosynthesis PE(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)). Phosphoryl-ethanolamine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, phosphoryl-ethanolamine is found to be associated with traumatic brain injury. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID E009 Phosphorylethanolamine is an endogenous metabolite. Phosphorylethanolamine is an endogenous metabolite.

   

Ethanolamine

Envision conditioner PDD 9020

C2H7NO (61.0528)


Ethanolamine (MEA), also known as monoethanolamine, aminoethanol or glycinol, belongs to the class of organic compounds known as 1,2-aminoalcohols (or simply aminoalcohols). These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia. In pharmaceutical formulations, ethanolamine is used primarily for buffering or preparation of emulsions. Ethanolamine can also be used as pH regulator in cosmetics. Biologically, ethanolamine is an initial precursor for the biosynthesis of two primary phospholipid classes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In this regard, ethanolamine is the second-most-abundant head group for phospholipids. Ethanolamine serves as a precursor for a variety of N-acylethanolamines (NAEs). These are molecules that modulate several animal and plant physiological processes such as seed germination, plant–pathogen interactions, chloroplast development and flowering (PMID: 30190434). Ethanolamine, when combined with arachidonic acid (C20H32O2; 20:4, ω-6), can also form the endocannabinoid anandamide. Ethanolamine can be converted to phosphoethanolamine via the enzyme known as ethanolamine kinase. the two substrates of this enzyme are ATP and ethanolamine, whereas its two products are ADP and O-phosphoethanolamine. In most plants ethanolamine is biosynthesized by decarboxylation of serine via a pyridoxal 5-phosphate-dependent l-serine decarboxylase (SDC). Ethanolamine exists in all living species, ranging from bacteria to plants to humans. Ethanolamine has been detected, but not quantified in, several different foods, such as narrowleaf cattails, mung beans, blackcurrants, white cabbages, and bilberries. Ethanolamine, also known as aminoethanol or beta-aminoethyl alcohol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Ethanolamine can be found in a number of food items such as daikon radish, caraway, muscadine grape, and lemon grass, which makes ethanolamine a potential biomarker for the consumption of these food products. Ethanolamine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ethanolamine exists in all living species, ranging from bacteria to humans. In humans, ethanolamine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(20:4(5Z,8Z,11Z,14Z)/20:0), and phosphatidylethanolamine biosynthesis PE(11D5/9M5). Moreover, ethanolamine is found to be associated with maple syrup urine disease and propionic acidemia. Ethanolamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ethanolamine, also called 2-aminoethanol or monoethanolamine (often abbreviated as ETA or MEA), is an organic chemical compound with the formula HOCH2CH2NH2. The molecule is both a primary amine and a primary alcohol (due to a hydroxyl group). Ethanolamine is a colorless, viscous liquid with an odor reminiscent to that of ammonia. Its derivatives are widespread in nature; e.g., lipids . C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist KEIO_ID E023

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2559)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

CDP

[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H15N3O11P2 (403.0182)


Cytidine diphosphate, abbreviated CDP, and also known as 5-CDP, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. It is a cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. CDP exists in all living species, ranging from bacteria to humans. In humans, CDP is involved in cardiolipin biosynthesis. Outside of the human body, CDP has been detected, but not quantified in several different foods, such as carobs, mexican oregano, evergreen huckleberries, green vegetables, and pepper (Capsicum baccatum). Cytidine 5-(trihydrogen diphosphate). A cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. Synonyms: CRPP; cytidine pyrophosphate. [HMDB]. CDP is found in many foods, some of which are sweet cherry, hard wheat, roman camomile, and ginseng. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Glycerylphosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]

   

CDP-ethanolamine

(2-aminoethoxy)[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C11H20N4O11P2 (446.0604)


CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.

   

Selenium

Selenium ion (se2+)

Se (79.9165)


Selenium-dependent enzymes and selenoprotein P regulate immune and endothelial cell function. (PMID: 16607122). Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). (PMID: 16131327). The trace element nutrient selenium (Se) discharges its well-known nutritional antioxidant activity through the Se-dependent glutathione peroxidases. It also regulates nuclear factor activities by redox mechanisms through the selenoprotein thioredoxin reductases. Converging data from epidemiological, ecological, and clinical studies have shown that Se can decrease the risk for some types of human cancers, especially those of the prostate, lung, and colon. Mechanistic studies have indicated that the methylselenol metabolite pool has many desirable attributes of chemoprevention, targeting both cancer cells and vascular endothelial cells, whereas the hydrogen selenide pool in excess of selenoprotein synthesis can lead to DNA single strand breaks, which may be mediated by some reactive oxygen species. (PMID: 16356132). SePP (selenoprotein P) is the major transporter of Se in the serum. Moreover, in the sanctuary area of the brain, SePP was shown to play a hitherto unexpected role as a local Se storage and recycling protein that directly maintains brain Se levels. Physiologically, it exists as an ion in the body. The function of Se is important in normal brain metabolism, redox regulation, antioxidant defenses, thyroid hormone metabolism and the development of neurodegenerative conditions. (PMID: 15720294). In areas where soils are low in bioavailable selenium (Se), potential Se deficiencies cause health risks for humans. (PMID: 16028492) Dietary selenium comes from cereals, meat, fish, and eggs. The recommended dietary allowance for adults is 55 micrograms per day. D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements Essential dietary component

   

Cyclohexaneacetic acid, 4-[4-[6-(aminocarbonyl)-3,5-dimethyl-2-pyrazinyl]phenyl]-, trans-

Cyclohexaneacetic acid, 4-[4-[6-(aminocarbonyl)-3,5-dimethyl-2-pyrazinyl]phenyl]-, trans-

H2O3P+ (80.9742)


   

FA 18:1

7-(2-octylcyclopropyl)heptanoic acid

C18H34O2 (282.2559)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Gaboxadol

4,5,6,7-tetrahydro-[1,2]oxazolo[5,4-c]pyridin-3-one

C6H8N2O2 (140.0586)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].

   

Septacidin

N-({[2-(1,2-dihydroxyethyl)-4,5-dihydroxy-6-[(9H-purin-6-yl)amino]oxan-3-yl]-C-hydroxycarbonimidoyl}methyl)-14-methylpentadecanimidate

C30H51N7O7 (621.385)


   

sn-glycero-3-Phosphoethanolamine

(2-aminoethoxy)[(2S)-2,3-dihydroxypropoxy]phosphinic acid

C5H14NO6P (215.0559)


Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

O-PHOSPHORYLETHANOLAMINE

2-Aminoethyl dihydrogen phosphate

C2H8NO4P (141.0191)


Phosphorylethanolamine is an endogenous metabolite. Phosphorylethanolamine is an endogenous metabolite.

   

Cytidine diphosphate

Cytidine-5-diphosphate sodium salt hydrate,from yeast

C9H15N3O11P2 (403.0182)


   

Citicoline

2-(((((((2R,3S,4R,5R)-5-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)oxy)-N,N,N-trimethylethanaminium

C14H26N4O11P2 (488.1073)


CDP-choline is a member of the class of phosphocholines that is the chloine ester of CDP. It is an intermediate obtained in the biosynthetic pathway of structural phospholipids in cell membranes. It has a role as a human metabolite, a psychotropic drug, a neuroprotective agent, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a member of phosphocholines and a member of nucleotide-(amino alcohol)s. It is functionally related to a CDP. It is a conjugate base of a CDP-choline(1+). Citicoline is a donor of choline in biosynthesis of choline-containing phosphoglycerides. It has been investigated for the treatment, supportive care, and diagnosis of Mania, Stroke, Hypomania, Cocaine Abuse, and Bipolar Disorder, among others. Citicoline is a nutritional supplement and source of choline and cytidine with potential neuroprotective and nootropic activity. Citicoline, also known as cytidine-5-diphosphocholine or CDP-choline, is hydrolyzed into cytidine and choline in the intestine. Following absorption, both cytidine and choline are dispersed, utilized in various biosynthesis pathways, and cross the blood-brain barrier for resynthesis into citicoline in the brain, which is the rate-limiting product in the synthesis of phosphatidylcholine. This agent also increases acetylcholine (Ach), norepinephrine (NE) and dopamine levels in the central nervous system (CNS). In addition, citicoline is involved in the preservation of sphingomyelin and cardiolipin and the restoration of Na+/K+-ATPase activity. Citicoline also increases glutathione synthesis and glutathione reductase activity, and exerts antiapoptotic effects. Donor of choline in biosynthesis of choline-containing phosphoglycerides. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018697 - Nootropic Agents Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects. Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects.

   

trans-Vaccenic acid

(11E)-octadec-11-enoic acid

C18H34O2 (282.2559)


The trans- isomer of vaccenic acid. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Ethanolamine

MONOETHANOLAMINE

C2H7NO (61.0528)


A member of the class of ethanolamines that is ethane with an amino substituent at C-1 and a hydroxy substituent at C-2, making it both a primary amine and a primary alcohol. C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

CDP-ethanolamine

CDP-ethanolamine

C11H20N4O11P2 (446.0604)


A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.

   

gaboxadol

4,5,6,7-tetrahydroisoxazolo(5,4-c)Pyridin-3-ol

C6H8N2O2 (140.0586)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].

   

Olamine

Ethanolamine or ethanolamine solutions [UN2491] [Corrosive]

C2H7NO (61.0528)


C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

143-25-9

(11E)-octadec-11-enoic acid

C18H34O2 (282.2559)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Selenium

Selenium

Se (79.9165)


D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements

   

Glycerophosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)