D-Arabinose 5-phosphate (BioDeep_00000003354)

 

Secondary id: BioDeep_00000400400, BioDeep_00001868829

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


{[(2R,3R,4S)-2,3,4-trihydroxy-5-oxopentyl]oxy}phosphonic acid

化学式: C5H11O8P (230.0192)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 7.63%

分子结构信息

SMILES: C(=O)[C@H]([C@@H]([C@@H](COP(=O)(O)O)O)O)O
InChI: InChI=1/C5H11O8P/c6-1-3(7)5(9)4(8)2-13-14(10,11)12/h1,3-5,7-9H,2H2,(H2,10,11,12)/f/h10-11H

描述信息

D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. It is reversibly converted to D-ribulose 5-phosphate by arabinose-5-phosphate isomerase (EC 5.3.1.13).
Acquisition and generation of the data is financially supported in part by CREST/JST.
D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide.
KEIO_ID A147

同义名列表

15 个代谢物同义名

{[(2R,3R,4S)-2,3,4-trihydroxy-5-oxopentyl]oxy}phosphonic acid; Arabinose 5-phosphate, (beta-D)-isomer; arabinose-5-P;D-Arabinose 5-phosphate; D-Arabinose-5-phosphate disodium salt; Arabinose 5-phosphate, di-li salt; D-Arabinose 5-phosphoric acid; (Rel)-D-Ribose 5-phosphate; 5-O-Phosphono-D-arabinose; D-Arabinose-5-phosphate; D-Arabinose 5-phosphate; Arabinose 5-phosphate; Arabinose-5-P; Arabinose-5P; D-a-5-p; D-Arabinose 5-phosphate



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

228 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(219)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(7)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 CBS, GPI, HTT, PTPRF
Endosome membrane 1 HTT
Endoplasmic reticulum membrane 1 TKT
Nucleus 3 CBS, HTT, ZNF79
autophagosome 1 HTT
cytosol 5 CBS, FN3K, GPI, HTT, TKT
dendrite 1 HTT
nuclear body 1 TKT
nucleoplasm 3 CD2, HTT, TKT
Cell membrane 5 ASIC2, CD2, HTT, PTGDR2, TKT
Multi-pass membrane protein 3 ASIC2, HTT, PTGDR2
Synapse 1 HTT
cell surface 1 CD2
Golgi apparatus 2 CD2, HTT
neuronal cell body 2 ASIC2, PTPRF
presynaptic membrane 1 HTT
plasma membrane 6 ASIC2, CD2, HTT, PTGDR2, PTPRF, TKT
Membrane 2 GPI, PTPRF
apical plasma membrane 1 TKT
axon 1 HTT
extracellular exosome 4 GPI, LYZ, PTPRF, TKT
endoplasmic reticulum 1 HTT
extracellular space 2 GPI, LYZ
perinuclear region of cytoplasm 1 HTT
mitochondrion 1 MDP1
protein-containing complex 3 CD2, HTT, MDP1
intracellular membrane-bounded organelle 1 MDP1
Single-pass type I membrane protein 2 CD2, TKT
Secreted 1 GPI
extracellular region 3 CD2, GPI, LYZ
cytoplasmic side of plasma membrane 1 CD2
Single-pass membrane protein 1 PTPRF
mitochondrial matrix 1 MDP1
ciliary membrane 1 GPI
external side of plasma membrane 1 CD2
actin cytoskeleton 1 TKT
dendritic spine 1 ASIC2
Early endosome 1 HTT
cell-cell junction 1 CD2
vesicle 1 TKT
postsynaptic membrane 1 HTT
Membrane raft 1 HTT
Cell junction, focal adhesion 1 HTT
focal adhesion 2 HTT, TKT
mitochondrial nucleoid 1 MDP1
Peroxisome 1 TKT
Late endosome 1 HTT
receptor complex 1 TKT
Cell projection, neuron projection 1 HTT
neuron projection 3 HTT, PTGDR2, PTPRF
centriole 1 HTT
Endomembrane system 1 HTT
Cytoplasmic vesicle membrane 1 HTT
ficolin-1-rich granule lumen 1 GPI
secretory granule lumen 1 GPI
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
azurophil granule lumen 1 LYZ
postsynaptic density membrane 1 ASIC2
postsynaptic cytosol 1 HTT
presynaptic cytosol 1 HTT
inclusion body 1 HTT
serotonergic synapse 1 HTT
Mitochondrion matrix, mitochondrion nucleoid 1 MDP1
[Huntingtin]: Cytoplasm 1 HTT
[Huntingtin, myristoylated N-terminal fragment]: Cytoplasmic vesicle, autophagosome 1 HTT
gamma DNA polymerase complex 1 MDP1
mitochondrial chromosome 1 MDP1


文献列表

  • Masahiro Karikomi, Noriaki Katayama, Takashi Osanai. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption. Plant molecular biology. 2024 May; 114(3):60. doi: 10.1007/s11103-023-01401-0. [PMID: 38758412]
  • Vasilios M E Andriotis, Alison M Smith. The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2019 07; 116(30):15297-15306. doi: 10.1073/pnas.1908556116. [PMID: 31296566]
  • Stephanie C Morriss, Xiaoyi Liu, Brice E Floyd, Diane C Bassham, Gustavo C MacIntosh. Cell growth and homeostasis are disrupted in arabidopsis rns2-2 mutants missing the main vacuolar RNase activity. Annals of botany. 2017 Nov; 120(6):911-922. doi: 10.1093/aob/mcx099. [PMID: 28961890]
  • Maija Puhka, Maarit Takatalo, Maria-Elisa Nordberg, Sami Valkonen, Jatin Nandania, Maria Aatonen, Marjo Yliperttula, Saara Laitinen, Vidya Velagapudi, Tuomas Mirtti, Olli Kallioniemi, Antti Rannikko, Pia R-M Siljander, Taija Maria Af Hällström. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes. Theranostics. 2017; 7(16):3824-3841. doi: 10.7150/thno.19890. [PMID: 29109780]
  • Claudia Vanesa Piattoni, Diego Martín Bustos, Sergio Adrián Guerrero, Alberto Álvaro Iglesias. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. Plant physiology. 2011 Jul; 156(3):1337-50. doi: 10.1104/pp.111.177261. [PMID: 21546456]
  • Cyril Moccand, Markus Kaufmann, Teresa B Fitzpatrick. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase. PloS one. 2011 Jan; 6(1):e16042. doi: 10.1371/journal.pone.0016042. [PMID: 21283685]
  • Yuqing Xiong, Christopher DeFraia, Donna Williams, Xudong Zhang, Zhonglin Mou. Deficiency in a cytosolic ribose-5-phosphate isomerase causes chloroplast dysfunction, late flowering and premature cell death in Arabidopsis. Physiologia plantarum. 2009 Nov; 137(3):249-63. doi: 10.1111/j.1399-3054.2009.01276.x. [PMID: 19744161]
  • Gui-Lan Li, Xiang Liu, Jie Nan, Erik Brostromer, Lan-Fen Li, Xiao-Dong Su. Open-closed conformational change revealed by the crystal structures of 3-keto-L-gulonate 6-phosphate decarboxylase from Streptococcus mutans. Biochemical and biophysical research communications. 2009 Apr; 381(3):429-33. doi: 10.1016/j.bbrc.2009.02.049. [PMID: 19222992]
  • Thomas Raschle, Davide Speziga, Wolfgang Kress, Cyril Moccand, Peter Gehrig, Nikolaus Amrhein, Eilika Weber-Ban, Teresa B Fitzpatrick. Intersubunit cross-talk in pyridoxal 5'-phosphate synthase, coordinated by the C terminus of the synthase subunit. The Journal of biological chemistry. 2009 Mar; 284(12):7706-18. doi: 10.1074/jbc.m804728200. [PMID: 19074821]
  • Thomas Raschle, Duilio Arigoni, René Brunisholz, Helene Rechsteiner, Nikolaus Amrhein, Teresa B Fitzpatrick. Reaction mechanism of pyridoxal 5'-phosphate synthase. Detection of an enzyme-bound chromophoric intermediate. The Journal of biological chemistry. 2007 Mar; 282(9):6098-105. doi: 10.1074/jbc.m610614200. [PMID: 17189272]
  • Hairong Huang, Michael S Scherman, Wim D'Haeze, Danny Vereecke, Marcelle Holsters, Dean C Crick, Michael R McNeil. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. The Journal of biological chemistry. 2005 Jul; 280(26):24539-43. doi: 10.1074/jbc.m504068200. [PMID: 15878857]
  • Sergio Esposito, Graziella Massaro, Vincenza Vona, Vittoria Di Martino Rigano, Simona Carfagna. Glutamate synthesis in barley roots: the role of the plastidic glucose-6-phosphate dehydrogenase. Planta. 2003 Feb; 216(4):639-47. doi: 10.1007/s00425-002-0892-4. [PMID: 12569406]
  • K K Arora, J F Williams. Introduction and metabolism of pentose and hexose phosphates in permeabilized Morris hepatoma 5123TC cells. Cell biochemistry and function. 1987 Oct; 5(4):289-300. doi: 10.1002/cbf.290050408. [PMID: 2445500]
  • P Horton, C Foyer. Relationships between protein phosphorylation and electron transport in the reconstituted chloroplast system. The Biochemical journal. 1983 Feb; 210(2):517-21. doi: 10.1042/bj2100517. [PMID: 6344866]
  • P D Rick, D A Young. Relationship between cell death and altered lipid A synthesis in a temperature-sensitive lethal mutant of Salmonella typhimurium that is conditionally defective in 3-deoxy-D-manno-octulosonate-8-phosphate synthesis. Journal of bacteriology. 1982 May; 150(2):456-64. doi: 10.1128/jb.150.2.456-464.1982. [PMID: 7040336]