3-Hydroxyaspartic acid (BioDeep_00000003203)

 

Secondary id: BioDeep_00001869687


代谢物信息卡片


D-Aspartic acid,3-hydroxy-, (3S)-rel-

化学式: C4H7NO5 (149.0324)
中文名称: (2R,3S)-2-氨基-3-羟基琥珀酸, (2S,3R)-2-氨基-3-羟基琥珀酸, DL-苏-beta-羟基天冬氨酸, 3-羟基天冬氨酸, ERYTHRO-Β-羟基-L-天冬氨酸
谱图信息: 最多检出来源 Viridiplantae(plant) 19.47%

分子结构信息

SMILES: C(C(C(=O)O)O)(C(=O)O)N
InChI: InChI=1S/C4H7NO5/c5-1(3(7)8)2(6)4(9)10/h1-2,6H,5H2,(H,7,8)(H,9,10)

描述信息

A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group.
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids
KEIO_ID H086

同义名列表

11 个代谢物同义名

D-Aspartic acid,3-hydroxy-, (3S)-rel-; DL-Threo-beta-Hydroxyaspartic Acid; D-Aspartic acid,3-hydroxy-, (3S)-; 3-Hydroxyaspartic acid; 2-amino-3-hydroxy-butanedioic acid; erythro-3-Hydroxy-Ls-aspartic acid; erythro-3-Hydroxy-L-aspartic acid; erythro-3-Hydroxy-Ls-aspartate; (3R)-3-hydroxy-L-aspartic acid; erythro-3-Hydroxy-L-aspartate; threo-b-Hydroxyaspartate



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ANPEP, DAO, F10, FTO, HPS1
Peripheral membrane protein 1 DAO
Endosome membrane 1 LDLR
Endoplasmic reticulum membrane 1 PROS1
Nucleus 2 F10, FTO
cytosol 5 ASPG, DAO, F10, FTO, HPS1
centrosome 1 F10
nucleoplasm 2 FTO, SLC3A2
Cell membrane 5 ANPEP, DAO, LDLR, SLC1A6, SLC3A2
Multi-pass membrane protein 2 SLC1A6, SLC1A7
Synapse 1 SLC3A2
cell cortex 1 F10
cell junction 1 SLC3A2
cell surface 3 LDLR, SLC3A2, THBD
glutamatergic synapse 1 SLC1A6
Golgi apparatus 3 LDLR, PROC, SLC1A6
Golgi membrane 1 PROS1
lysosomal membrane 3 ANPEP, EGF, SLC3A2
postsynapse 1 SLC1A7
presynaptic membrane 1 SLC1A6
Cytoplasm, cytosol 1 DAO
Lysosome 2 HPS1, LDLR
plasma membrane 16 ANPEP, DAO, EGF, F10, F2, F5, F7, F9, FTO, LDLR, OMG, PROS1, SLC1A6, SLC1A7, SLC3A2, THBD
presynaptic active zone 1 DAO
Membrane 6 EGF, F5, LDLR, SLC1A6, SLC1A7, SLC3A2
apical plasma membrane 1 SLC3A2
basolateral plasma membrane 2 LDLR, SLC3A2
extracellular exosome 8 ANPEP, C1R, DAO, EGF, F2, F9, PROS1, SLC3A2
Lysosome membrane 1 SLC3A2
endoplasmic reticulum 3 F10, PROC, PROS1
extracellular space 12 ANPEP, C1R, DAO, EGF, F10, F2, F5, F7, F9, PROC, PROS1, THBD
apicolateral plasma membrane 1 THBD
bicellular tight junction 1 DAO
intracellular membrane-bounded organelle 1 FTO
Single-pass type I membrane protein 1 LDLR
Secreted 9 C1R, DAO, F10, F2, F5, F7, F9, PROC, PROS1
extracellular region 10 C1R, DAO, EGF, F10, F2, F5, F7, F9, PROC, PROS1
Single-pass membrane protein 1 LDLR
Extracellular side 1 DAO
anchoring junction 1 SLC3A2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 F10
external side of plasma membrane 4 ANPEP, F10, LDLR, THBD
Extracellular vesicle 1 F5
low-density lipoprotein particle 1 LDLR
cytoplasmic vesicle 1 HPS1
Early endosome 1 LDLR
Membrane, clathrin-coated pit 1 LDLR
apical part of cell 1 LDLR
clathrin-coated pit 1 LDLR
COPII-coated ER to Golgi transport vesicle 1 F5
Single-pass type II membrane protein 2 ANPEP, SLC3A2
vesicle 1 F7
Apical cell membrane 1 SLC3A2
Peroxisome 1 DAO
Peroxisome matrix 1 DAO
peroxisomal matrix 1 DAO
collagen-containing extracellular matrix 3 F2, F7, F9
nuclear speck 1 FTO
Late endosome 1 LDLR
receptor complex 1 LDLR
cell projection 1 DAO
Secreted, extracellular space 1 DAO
spindle pole 1 F10
blood microparticle 3 C1R, F2, PROS1
Basolateral cell membrane 1 SLC3A2
Cytoplasm, cytoskeleton, spindle pole 1 F10
Endomembrane system 1 LDLR
sorting endosome 1 LDLR
Melanosome 1 SLC3A2
Nucleus speckle 1 FTO
side of membrane 1 OMG
intermediate filament cytoskeleton 1 SLC1A6
basal plasma membrane 1 SLC3A2
Synaptic cell membrane 1 SLC1A7
synaptic membrane 1 SLC1A7
platelet alpha granule 1 F5
secretory granule membrane 1 ANPEP
Golgi lumen 6 F10, F2, F7, F9, PROC, PROS1
endoplasmic reticulum lumen 6 F10, F2, F5, F7, F9, PROC
platelet alpha granule lumen 3 EGF, F5, PROS1
Photoreceptor inner segment membrane 1 SLC1A7
specific granule lumen 1 DAO
serine-type endopeptidase complex 1 THBD
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 F5
clathrin-coated endocytic vesicle membrane 2 EGF, LDLR
endoplasmic reticulum-Golgi intermediate compartment 1 ANPEP
spindle microtubule 1 F10
endolysosome membrane 1 LDLR
somatodendritic compartment 1 LDLR
PCSK9-LDLR complex 1 LDLR
vacuolar membrane 1 THBD
amino acid transport complex 1 SLC3A2
apical pole of neuron 1 SLC3A2
serine-type peptidase complex 1 F7
membrane protein complex 1 SLC1A6
BLOC-3 complex 1 HPS1


文献列表

  • Mingxia Liu, Lixia Chen, Xiangjun Li, Jinghua Meng, Yu Bai, Huwei Liu. Separation and determination of 3-hydroxyaspartate by online concentration capillary electrophoresis/laser-induced fluorescence with microwave-assisted derivatization. Journal of separation science. 2021 Oct; 44(19):3646-3653. doi: 10.1002/jssc.202100398. [PMID: 34350710]
  • Marlyn P Langford, Thomas B Redens, Chanping Liang, A Scott Kavanaugh, Donald E Texada. EAAT and Xc⁻ Exchanger Inhibition Depletes Glutathione in the Transformed Human Lens Epithelial Cell Line SRA 01/04. Current eye research. 2016; 41(3):357-66. doi: 10.3109/02713683.2015.1017651. [PMID: 25897760]
  • Juhua Gao, Xiaoping Gao, Suyue Pan. Effect of minocycline on carotid atherosclerotic plaques. Neurological research. 2013 Oct; 35(8):844-50. doi: 10.1179/1743132813y.0000000223. [PMID: 23676309]
  • Yoshikatsu Kanai, Benjamin Clémençon, Alexandre Simonin, Michele Leuenberger, Martin Lochner, Martin Weisstanner, Matthias A Hediger. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Molecular aspects of medicine. 2013 Apr; 34(2-3):108-20. doi: 10.1016/j.mam.2013.01.001. [PMID: 23506861]
  • Z Kawakami, H Kanno, T Ueki, K Terawaki, M Tabuchi, Y Ikarashi, Y Kase. Neuroprotective effects of yokukansan, a traditional Japanese medicine, on glutamate-mediated excitotoxicity in cultured cells. Neuroscience. 2009 Apr; 159(4):1397-407. doi: 10.1016/j.neuroscience.2009.02.004. [PMID: 19409210]
  • Jixu Yu, Yansu Guo, Mengmeng Sun, Bin Li, Yuesheng Zhang, Chunyan Li. Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain research. 2009 Feb; 1257(?):102-7. doi: 10.1016/j.brainres.2008.12.030. [PMID: 19135430]
  • Francis J Castellino, Victoria A Ploplis, Li Zhang. gamma-Glutamate and beta-hydroxyaspartate in proteins. Methods in molecular biology (Clifton, N.J.). 2008; 446(?):85-94. doi: 10.1007/978-1-60327-084-7_6. [PMID: 18373251]
  • Aye Mu Myint, Yong-Ku Kim, Robert Verkerk, Sun Hwa Park, Simon Scharpé, Harry W M Steinbusch, Brian E Leonard. Tryptophan breakdown pathway in bipolar mania. Journal of affective disorders. 2007 Sep; 102(1-3):65-72. doi: 10.1016/j.jad.2006.12.008. [PMID: 17270276]
  • Tatiana Borisova, Ludmila Kasatkina. Glutamate transporters of blood platelets as potential peripheral markers to analyze changes of glutamate transport activity in brain under altered gravity conditions. Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology. 2007 Jul; 14(1):P81-2. doi: NULL. [PMID: 18372710]
  • Andrea Scaloni, Mauro Dalla Serra, Pietro Amodeo, Luisa Mannina, Rosa Maria Vitale, Anna Laura Segre, Oscar Cruciani, Francesca Lodovichetti, Maria Luigia Greco, Alberto Fiore, Monica Gallo, Chiara D'Ambrosio, Manuela Coraiola, Gianfranco Menestrina, Antonio Graniti, Vincenzo Fogliano. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A. The Biochemical journal. 2004 Nov; 384(Pt 1):25-36. doi: 10.1042/bj20040422. [PMID: 15196052]
  • Jia-hua Hu, Na Yang, Ying-hua Ma, Jie Jiang, Jin-fu Zhang, Jian Fei, Li-he Guo. Identification of glutamate transporters and receptors in mouse testis. Acta pharmacologica Sinica. 2004 Mar; 25(3):366-71. doi: NULL. [PMID: 15000892]
  • Hui Zhang, David Sulzer. Glutamate spillover in the striatum depresses dopaminergic transmission by activating group I metabotropic glutamate receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003 Nov; 23(33):10585-92. doi: 10.1523/jneurosci.23-33-10585.2003. [PMID: 14627643]
  • Zhiqing Wang, Wei Li, Cheryl K Mitchell, Louvenia Carter-Dawson. Activation of protein kinase C reduces GLAST in the plasma membrane of rat Müller cells in primary culture. Visual neuroscience. 2003 Nov; 20(6):611-9. doi: 10.1017/s0952523803206039. [PMID: 15088714]
  • Yongmei Chen, Raymond A Swanson. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. Journal of neurochemistry. 2003 Mar; 84(6):1332-9. doi: 10.1046/j.1471-4159.2003.01630.x. [PMID: 12614333]
  • Claudio Frank, Anna Maria Giammarioli, Loredana Falzano, Carla Fiorentini, Stefano Rufini. Glutamate-induced calcium increase in myotubes depends on up-regulation of a sodium-dependent transporter. FEBS letters. 2002 Sep; 527(1-3):269-73. doi: 10.1016/s0014-5793(02)03200-3. [PMID: 12220672]
  • Y Shigeri, K Shimamoto, Y Yasuda-Kamatani, R P Seal, N Yumoto, T Nakajima, S G Amara. Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5). Journal of neurochemistry. 2001 Oct; 79(2):297-302. doi: 10.1046/j.1471-4159.2001.00588.x. [PMID: 11677257]
  • T Welbourne, I Nissim. Regulation of mitochondrial glutamine/glutamate metabolism by glutamate transport: studies with (15)N. American journal of physiology. Cell physiology. 2001 May; 280(5):C1151-9. doi: 10.1152/ajpcell.2001.280.5.c1151. [PMID: 11287328]
  • S Gaillet, C Plachez, F Malaval, M F Bézine, M Récasens. Transient increase in the high affinity [3H]-L-glutamate uptake activity during in vitro development of hippocampal neurons in culture. Neurochemistry international. 2001 Apr; 38(4):293-301. doi: 10.1016/s0197-0186(00)00098-x. [PMID: 11137623]
  • A Kawasaki, Y Otori, C J Barnstable. Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Investigative ophthalmology & visual science. 2000 Oct; 41(11):3444-50. doi: NULL. [PMID: 11006237]
  • A C Rimaniol, S Haïk, M Martin, R Le Grand, F D Boussin, N Dereuddre-Bosquet, G Gras, D Dormont. Na+-dependent high-affinity glutamate transport in macrophages. Journal of immunology (Baltimore, Md. : 1950). 2000 May; 164(10):5430-8. doi: 10.4049/jimmunol.164.10.5430. [PMID: 10799909]
  • O Bar-Peled, M Knudson, S J Korsmeyer, J D Rothstein. Motor neuron degeneration is attenuated in bax-deficient neurons in vitro. Journal of neuroscience research. 1999 Mar; 55(5):542-56. doi: 10.1002/(sici)1097-4547(19990301)55:5<542::aid-jnr2>3.0.co;2-7. [PMID: 10082077]
  • T S Otis, M P Kavanaugh, C E Jahr. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science (New York, N.Y.). 1997 Sep; 277(5331):1515-8. doi: 10.1126/science.277.5331.1515. [PMID: 9278516]
  • M Demestre, M Boutelle, M Fillenz. Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. The Journal of physiology. 1997 Mar; 499 ( Pt 3)(?):825-32. doi: 10.1113/jphysiol.1997.sp021971. [PMID: 9130175]
  • M P Langford, M E Berg, J H Mack, J P Ganley, T C Welbourne. Inhibition of glutamate uptake causes an acute increase in aqueous humor protein. Experimental eye research. 1997 Feb; 64(2):157-65. doi: 10.1006/exer.1996.0180. [PMID: 9176048]
  • T C Welbourne, D Chevalier, X Mu. Glutamate transport modulation of paracellular permeability across LLC-PK1-F+ monolayers. The American journal of physiology. 1996 Nov; 271(5 Pt 1):E889-95. doi: 10.1152/ajpendo.1996.271.5.e889. [PMID: 8944677]
  • H P Larsson, S A Picaud, F S Werblin, H Lecar. Noise analysis of the glutamate-activated current in photoreceptors. Biophysical journal. 1996 Feb; 70(2):733-42. doi: 10.1016/s0006-3495(96)79613-3. [PMID: 8789090]
  • D J Kim, A Girolami, H L James. Characterization of recombinant human coagulation factor XFriuli. Thrombosis and haemostasis. 1996 Feb; 75(2):313-7. doi: . [PMID: 8815583]
  • C Thomsen, L Hansen, P D Suzdak. L-glutamate uptake inhibitors may stimulate phosphoinositide hydrolysis in baby hamster kidney cells expressing mGluR1a via heteroexchange with L-glutamate without direct activation of mGluR1a. Journal of neurochemistry. 1994 Dec; 63(6):2038-47. doi: 10.1046/j.1471-4159.1994.63062038.x. [PMID: 7964721]
  • R M Nelson, G L Long. Binding of protein S to C4b-binding protein. Mutagenesis of protein S. The Journal of biological chemistry. 1992 Apr; 267(12):8140-5. doi: . [PMID: 1533219]
  • R M Nelson, W J VanDusen, P A Friedman, G L Long. beta-Hydroxyaspartic acid and beta-hydroxyasparagine residues in recombinant human protein S are not required for anticoagulant cofactor activity or for binding to C4b-binding protein. The Journal of biological chemistry. 1991 Nov; 266(31):20586-9. doi: . [PMID: 1834648]
  • A K Ohlin, G Landes, P Bourdon, C Oppenheimer, R Wydro, J Stenflo. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. The Journal of biological chemistry. 1988 Dec; 263(35):19240-8. doi: . [PMID: 2461936]
  • D J Rees, I M Jones, P A Handford, S J Walter, M P Esnouf, K J Smith, G G Brownlee. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. The EMBO journal. 1988 Jul; 7(7):2053-61. doi: 10.1002/j.1460-2075.1988.tb03045.x. [PMID: 3262057]
  • J Stenflo, A K Ohlin, W G Owen, W J Schneider. beta-Hydroxyaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin. The Journal of biological chemistry. 1988 Jan; 263(1):21-4. doi: . [PMID: 2826439]
  • C T Przysiecki, J E Staggers, H G Ramjit, D G Musson, A M Stern, C D Bennett, P A Friedman. Occurrence of beta-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Proceedings of the National Academy of Sciences of the United States of America. 1987 Nov; 84(22):7856-60. doi: 10.1073/pnas.84.22.7856. [PMID: 2825166]
  • N C Danbolt, J Storm-Mathisen. Na+-dependent 'binding' of D-aspartate in brain membranes is largely due to uptake into membrane-bounded saccules. Journal of neurochemistry. 1986 Sep; 47(3):819-24. doi: 10.1111/j.1471-4159.1986.tb00684.x. [PMID: 2874193]
  • T Sugo, U Persson, J Stenflo. Protein C in bovine plasma after warfarin treatment. Purification, partial characterization, and beta-hydroxyaspartic acid content. The Journal of biological chemistry. 1985 Sep; 260(19):10453-7. doi: . [PMID: 3839792]
  • J Stenflo, P Fernlund. Beta-hydroxyaspartic acid in vitamin K-dependent plasma proteins from scorbutic and warfarin-treated guinea pigs. FEBS letters. 1984 Mar; 168(2):287-92. doi: 10.1016/0014-5793(84)80264-1. [PMID: 6723952]
  • B A McMullen, K Fujikawa, W Kisiel. The occurrence of beta-hydroxyaspartic acid in the vitamin K-dependent blood coagulation zymogens. Biochemical and biophysical research communications. 1983 Aug; 115(1):8-14. doi: 10.1016/0006-291x(83)90961-0. [PMID: 6688526]
  • H Brauman, E Dupont, J Valsamis, P Vereestraeten, C Toussaint, J van Geertruyden. [beta2-Microglobulin in renal transplanted patients (author's transl)]. Pathologie-biologie. 1978 Sep; 26(6):313-6. doi: NULL. [PMID: 83571]