Arachidonic acid (BioDeep_00000002208)
Secondary id: BioDeep_00000229599, BioDeep_00000281383, BioDeep_00000860564
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C20H32O2 (304.24021719999996)
中文名称: 花生四希酸, 花生四烯酸(AA), 花生四烯酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.09%
Last reviewed on 2024-07-15.
Cite this Page
Arachidonic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/arachidonic_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000002208). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC/C=C\C/C=C\C/C=C\C/C=C\CCCCC)C(=O)O
InChI: InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-15-
描述信息
Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351).
Essential fatty acid. Constituent of many animal phospholipids
Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
同义名列表
53 个代谢物同义名
Arachidonic acid, (all-Z)-isomer, 1-(14)C-labeled; Arachidonic acid, potassium salt, (all-Z)-isomer; 5-cis,8-cis,11-cis,14-cis-Eicosatetraenoic acid; Arachidonic acid, ammonium salt, (all-Z)-isomer; (5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid; (5Z,8Z,11Z,14Z)-5,8,11,14-Icosatetraenoic acid; Arachidonic acid, lithium salt, (all-Z)-isomer; Arachidonic acid, cesium salt, (all-Z)-isomer; Arachidonic acid, sodium salt, (all-Z)-isomer; Arachidonic acid, cerium salt, (all-Z)-isomer; Arachidonic acid, (all-Z)-isomer, 3H-labeled; Arachidonic acid, zinc salt, (all-Z)-isomer; 5-cis,8-cis,11-cis,14-cis-Eicosatetraenoate; (5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoate; (5Z,8Z,11Z,14Z)-5,8,11,14-Icosatetraenoate; cis-Delta(5,8,11,14)-Eicosatetraenoic acid; all-cis-5,8,11,14-Eicosatetraenoic acid; 5,8,11,14-all-cis-Eicosatetraenoic acid; (all-Z)-5,8,11,14-Eicosatetraenoic acid; cis-delta(5,8,11,14)-Eicosatetraenoate; cis-Δ(5,8,11,14)-eicosatetraenoic acid; (5Z,8Z,11Z,14Z)-Icosatetraenoic acid; cis-D5,8,11,14-Eicosatetraenoic acid; (all-Z)-5,8,11,14-Eicosatetraenoate; 5Z,8Z,11Z,14Z-eicosatetraenoic acid; cis-5,8,11,14-Eicosatetraenoic acid; 5,8,11,14-all-cis-Eicosatetraenoate; all-cis-5,8,11,14-Eicosatetraenoate; 5Z,8Z,11Z,14Z-icosatetraenoic acid; cis-Δ(5,8,11,14)-eicosatetraenoate; Arachidonic Acid (peroxide free); (5Z,8Z,11Z,14Z)-Icosatetraenoate; cis-D5,8,11,14-Eicosatetraenoate; cis-5,8,11,14-Eicosatetraenoate; 5Z,8Z,11Z,14Z-Eicosatetraenoate; 5,8,11,14-Eicosatetraenoic acid; Arachidonic acid, sodium salt; 5,8,11,14-Eicosatetraenoate; FA(20:4(5Z,8Z,11Z,14Z)); Arachidonate, sodium; Sodium arachidonate; arachidonic acid; Immunocytophyte; Arachidonsaeure; Arachidonate; FA(20:4n6); VITAMIN F; Ara; AA; Arachidonic acid; Immunocytophyt; Arachidonate; Arachidonic acid
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:137828
- ChEBI: CHEBI:15843
- KEGG: C00219
- PubChem: 444899
- HMDB: HMDB0001043
- Metlin: METLIN193
- DrugBank: DB04557
- ChEMBL: CHEMBL15594
- Wikipedia: Arachidonic_acid
- MeSH: Arachidonic Acid
- MetaCyc: ARACHIDONIC_ACID
- KNApSAcK: C00000388
- foodb: FDB011872
- chemspider: 392692
- CAS: 506-32-1
- PMhub: MS000002128
- LipidMAPS: LMFA01030001
- PDB-CCD: ACD
- 3DMET: B00061
- NIKKAJI: J12.228I
- RefMet: Arachidonic acid
- medchemexpress: HY-109590
- LOTUS: LTS0126780
- wikidata: Q105369558
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-891
- PubChem: 3519
- KNApSAcK: 15843
- LOTUS: LTS0241153
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
168 个相关的代谢反应过程信息。
Reactome(91)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 12-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 12R-HpETE
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of 12-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 12R-HpETE
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of very long-chain fatty acyl-CoAs:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Synthesis of Hepoxilins (HX) and Trioxilins (TrX):
AA + Oxygen ⟶ HXA3/B3
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE):
ARA + H+ + Oxygen + TPNH ⟶ 19-HETE + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Fatty acids:
ARA + H+ + Oxygen + TPNH ⟶ 12-HETE + H2O + TPN
- Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- Fcgamma receptor (FCGR) dependent phagocytosis:
H2O + PC ⟶ Cho + PA
- Role of phospholipids in phagocytosis:
H2O + PC ⟶ Cho + PA
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- Effects of PIP2 hydrolysis:
2AG + H2O ⟶ AA + Glycerol + H+
- Arachidonate production from DAG:
2AG + H2O ⟶ AA + Glycerol + H+
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of very long-chain fatty acyl-CoAs:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + Oxygen ⟶ 15S-HpETE
- Synthesis of Hepoxilins (HX) and Trioxilins (TrX):
AA + Oxygen ⟶ HXA3/B3
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE):
ARA + H+ + Oxygen + TPNH ⟶ 19-HETE + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Fatty acids:
ARA + H+ + Oxygen + TPNH ⟶ 12-HETE + H2O + TPN
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Effects of PIP2 hydrolysis:
2AG + H2O ⟶ AA + Glycerol + H+
- Arachidonate production from DAG:
2AG + H2O ⟶ AA + Glycerol + H+
- Immune System:
ATP + Mg2+ ⟶ AMP + E1 bound ubiquitin + Mg2+ + PPi
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- Fcgamma receptor (FCGR) dependent phagocytosis:
H2O + PC ⟶ Cho + PA
- Role of phospholipids in phagocytosis:
H2O + PC ⟶ Cho + PA
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- Fcgamma receptor (FCGR) dependent phagocytosis:
H2O + PC ⟶ ARA + LPC
- Role of phospholipids in phagocytosis:
H2O + PC ⟶ ARA + LPC
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Opioid Signalling:
H2O + cAMP ⟶ AMP
- G-protein mediated events:
H2O + cAMP ⟶ AMP
- PLC beta mediated events:
H2O + cAMP ⟶ AMP
- Ca-dependent events:
H2O + cAMP ⟶ AMP
- phospho-PLA2 pathway:
ATP + H0YZ31 ⟶ ADP + phospho-p-S505,S727-PLA2G4A
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Effects of PIP2 hydrolysis:
2AG + H2O ⟶ AA + Glycerol + H+
- Arachidonate production from DAG:
2AG + H2O ⟶ AA + Glycerol + H+
- Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Innate Immune System:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- Fcgamma receptor (FCGR) dependent phagocytosis:
ATP + Mother filament:branching complex:daughter filament + Myosin-X dimer + PI(3,4)P2 ⟶ Actin filament bound Myosin-X + Pi
- Role of phospholipids in phagocytosis:
ATP + Homologues of PRKCD ⟶ ADP + Homologues of p-T507,S645,S664-PRKCD(1-676)
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of very long-chain fatty acyl-CoAs:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
GSH + leukotriene A4 ⟶ leukotriene C4
- Synthesis of 5-eicosatetraenoic acids:
5-HETEL + H2O ⟶ 5-HETE
- Synthesis of 15-eicosatetraenoic acid derivatives:
AA + H+ + Oxygen + TPNH ⟶ 15R-HETE + H2O + TPN
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE):
ARA + H+ + Oxygen + TPNH ⟶ 16/17/18-HETE + H2O + TPN
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Fatty acids:
ARA + H+ + Oxygen + TPNH ⟶ 12-HETE + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- COX reactions:
ARA + Oxygen ⟶ prostaglandin G2
BioCyc(0)
WikiPathways(20)
- Eicosanoid metabolism via lipoxygenases (LOX):
Arachidonic acid ⟶ 12-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Metabolism of alpha-linolenic acid:
12-HPEPE ⟶ 12-HEPE
- Arachidonic acid (AA, ARA) oxylipin metabolism:
HXB3 ⟶ Trioxilin B3
- Elongation of (very) long chain fatty acids:
C18:3 ⟶ C20:3
- Eicosanoid lipid synthesis map:
PGH2 ⟶ PGE2
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- PDGF pathway:
Phospholipid (containing arachidonic acid) ⟶ Arachidonic acid
- Endothelin pathways:
ATP ⟶ cAMP
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Selenium micronutrient network:
Ascorbic acid ⟶ Dehydroascorbic acid
- Endothelin pathways:
ATP ⟶ cAMP
- PDGF pathway:
Phospholipid (containing arachidonic acid) ⟶ Arachidonic acid
- Cannabinoid receptor signaling:
ATP ⟶ cAMP
- Blood clotting and drug effects:
Fibrinogen ⟶ Fibrin
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Eicosanoid metabolism via lipooxygenases (LOX):
Arachidonic acid ⟶ 12-HETE
- Leukotriene metabolic pathway:
16-COOH-tetranor-LTE3 ⟶ 14-COOH-hexanor-LTE4
- Mitochondrial beta oxidation:
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
- Prostaglandin and leukotriene metabolism in senescence:
Arachidonic acid ⟶ PGG2
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(56)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Fc Epsilon Receptor I Signaling in Mast Cells:
Cytosolic phospholipase A2 ⟶ Arachidonic acid
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
- Fc Epsilon Receptor I Signaling in Mast Cells:
Unknown ⟶ Arachidonic acid
PharmGKB(0)
336 个相关的物种来源信息
- 3319 - Abies: LTS0241153
- 56046 - Abies pinsapo: LTS0241153
- 928731 - Abies pinsapo var. marocana: 10.1016/S0031-9422(00)94835-0
- 928731 - Abies pinsapo var. marocana: LTS0241153
- 3808 - Acacia: LTS0241153
- 5339 - Agaricaceae: LTS0241153
- 155619 - Agaricomycetes: LTS0241153
- 5340 - Agaricus: LTS0241153
- 79798 - Agaricus blazei: 10.1248/YAKUSHI1947.114.5_342
- 79798 - Agaricus blazei: LTS0241153
- 2887 - Alariaceae: LTS0241153
- 40678 - Alcyoniidae: LTS0241153
- 4678 - Allium: LTS0241153
- 4682 - Allium sativum: 10.1271/BBB1961.49.1187
- 4682 - Allium sativum: LTS0241153
- 25641 - Aloe: LTS0241153
- 34199 - Aloe vera:
- 34199 - Aloe vera: 10.1055/S-2006-960012
- 34199 - Aloe vera: LTS0241153
- 4668 - Amaryllidaceae: LTS0241153
- 52997 - Amblystegiaceae: LTS0241153
- 40674 - Animals: -
- 6101 - Anthozoa: LTS0241153
- 4890 - Ascomycota: LTS0241153
- 51383 - Asphodelaceae: LTS0241153
- 4210 - Asteraceae: LTS0241153
- 52975 - Bartramia: LTS0241153
- 52976 - Bartramia pomiformis: 10.1016/0031-9422(91)83188-Q
- 52976 - Bartramia pomiformis: LTS0241153
- 52974 - Bartramiaceae: LTS0241153
- 5204 - Basidiomycota: LTS0241153
- 121095 - Brachystegia: LTS0241153
- 2879473 - Brachystegia nigerica: LTS0241153
- 37421 - Brachytheciaceae: LTS0241153
- 53004 - Brachythecium: LTS0241153
- 184619 - Brachythecium buchananii: 10.1016/0031-9422(91)83188-Q
- 184619 - Brachythecium buchananii: LTS0241153
- 3700 - Brassicaceae: LTS0241153
- 13800 - Brotherella: LTS0241153
- 98356 - Brotherella henonii: 10.1016/0031-9422(91)83188-Q
- 98356 - Brotherella henonii: LTS0241153
- 3208 - Bryophyta: LTS0241153
- 3214 - Bryopsida: LTS0241153
- 2676333 - Callicladiaceae: LTS0241153
- 306427 - Callicladium: LTS0241153
- 455284 - Callicladium fujiyamae: 10.1016/0031-9422(91)83188-Q
- 455284 - Callicladium fujiyamae: LTS0241153
- 94682 - Campylopus: LTS0241153
- 193026 - Campylopus richardii: 10.1016/0031-9422(91)83188-Q
- 193026 - Campylopus richardii: LTS0241153
- 3568 - Caryophyllaceae: LTS0241153
- 53851 - Cassia: LTS0241153
- 53852 - Cassia fistula:
- 53852 - Cassia fistula: 10.21608/BFSA.1985.75705
- 53852 - Cassia fistula: 10.5962/BHL.TITLE.108605
- 53852 - Cassia fistula: LTS0241153
- 508996 - Cassia javanica: 10.21608/BFSA.1985.75705
- 508996 - Cassia javanica: LTS0241153
- 31377 - Ceramiaceae: LTS0241153
- 7711 - Chordata: LTS0241153
- 6073 - Cnidaria: LTS0241153
- 69982 - Cratoneuron: LTS0241153
- 99398 - Cratoneuron filicinum: 10.1016/0031-9422(91)83188-Q
- 99398 - Cratoneuron filicinum: LTS0241153
- 90308 - Ctenidium: LTS0241153
- 455261 - Ctenidium percrassum: 10.1016/0031-9422(91)83188-Q
- 455261 - Ctenidium percrassum: LTS0241153
- 31412 - Cystocloniaceae: LTS0241153
- 257570 - Cystoclonium: LTS0241153
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 257571 - Cystoclonium purpureum: LTS0241153
- 46246 - Delphinium: LTS0241153
- 3220 - Dicranaceae: LTS0241153
- 3221 - Dicranum: LTS0241153
- 1385677 - Dicranum japonicum: 10.1016/0031-9422(91)83188-Q
- 1385677 - Dicranum japonicum: LTS0241153
- 4672 - Dioscorea: 10.19026/AJFST.11.2408
- 4672 - Dioscorea: LTS0241153
- 4671 - Dioscoreaceae: LTS0241153
- 3731 - Diplotaxis: LTS0241153
- 308281 - Diplotaxis harra: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 308281 - Diplotaxis harra: LTS0241153
- 53872 - Dipteryx: LTS0241153
- 1079072 - Dipteryx lacunifera: 10.1016/S0031-9422(00)86884-3
- 1079072 - Dipteryx lacunifera: LTS0241153
- 195669 - Dolichomitra: LTS0241153
- 195670 - Dolichomitra cymbifolia: 10.1016/0031-9422(91)83188-Q
- 195670 - Dolichomitra cymbifolia: LTS0241153
- 13054 - Epilobium: LTS0241153
- 33136 - Epilobium dodonaei: 10.1007/BF00579976
- 644182 - Epilobium parviflorum: 10.1007/978-0-85729-323-7_2078
- 644182 - Epilobium parviflorum: LTS0241153
- 308316 - Erucaria: LTS0241153
- 1078594 - Erucaria microcarpa: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 1078594 - Erucaria microcarpa: LTS0241153
- 2759 - Eukaryota: LTS0241153
- 37422 - Eurhynchium: LTS0241153
- 113274 - Eurhynchium striatum: 10.1016/0031-9422(91)85024-T
- 113274 - Eurhynchium striatum: LTS0241153
- 5747 - Eustigmatophyceae: LTS0241153
- 3803 - Fabaceae: LTS0241153
- 3616 - Fagopyrum: LTS0241153
- 3617 - Fagopyrum esculentum: 10.1007/BF00579976
- 3617 - Fagopyrum esculentum: LTS0241153
- 52982 - Fissidens: LTS0241153
- 2008595 - Fissidens nobilis: 10.1016/0031-9422(91)83188-Q
- 2008595 - Fissidens nobilis: LTS0241153
- 52981 - Fissidentaceae: LTS0241153
- 2806 - Florideophyceae: LTS0241153
- 4751 - Fungi: LTS0241153
- 3633 - Gossypium: LTS0241153
- 3635 - Gossypium hirsutum: 10.1016/S0031-9422(97)00265-3
- 3635 - Gossypium hirsutum: LTS0241153
- 115593 - Grimmia: LTS0241153
- 254107 - Grimmia pilifera: 10.1016/0031-9422(91)83188-Q
- 254107 - Grimmia pilifera: LTS0241153
- 65550 - Grimmiaceae: LTS0241153
- 2666035 - Hedlundia: LTS0241153
- 1775740 - Hedlundia hybrida: 10.1021/JF071791S
- 1775740 - Hedlundia hybrida: LTS0241153
- 52987 - Hedwigia: LTS0241153
- 52988 - Hedwigia ciliata: 10.1016/0031-9422(91)83188-Q
- 52988 - Hedwigia ciliata: LTS0241153
- 52986 - Hedwigiaceae: LTS0241153
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 28466 - Hylocomiaceae: LTS0241153
- 53009 - Hypnaceae: LTS0241153
- 49761 - Hypnum: LTS0241153
- 4136 - Lamiaceae: LTS0241153
- 147547 - Lecanoromycetes: LTS0241153
- 85451 - Lembophyllaceae: LTS0241153
- 100865 - Leptomitus: LTS0241153
- 100866 - Leptomitus lacteus: 10.1007/S11745-000-0490-5
- 100866 - Leptomitus lacteus: LTS0241153
- 80887 - Leucobryaceae: LTS0241153
- 80888 - Leucobryum: LTS0241153
- 4447 - Liliopsida: LTS0241153
- 90278 - Loeskeobryum: LTS0241153
- 94452 - Loeskeobryum brevirostre: 10.1016/0031-9422(91)83188-Q
- 94452 - Loeskeobryum brevirostre: LTS0241153
- 3398 - Magnoliopsida: LTS0241153
- 3629 - Malvaceae: LTS0241153
- 40674 - Mammalia: LTS0241153
- 3196 - Marchantia: LTS0241153
- 3197 - Marchantia polymorpha: 10.1016/0031-9422(91)83188-Q
- 3197 - Marchantia polymorpha: LTS0241153
- 29585 - Marchantiaceae: LTS0241153
- 3195 - Marchantiophyta: LTS0241153
- 186770 - Marchantiopsida: LTS0241153
- 33208 - Metazoa: LTS0241153
- 3227 - Mniaceae: LTS0241153
- 425072 - Monodopsidaceae: LTS0241153
- 4855 - Mortierella: 10.1007/BF00252518
- 4855 - Mortierella: LTS0241153
- 64518 - Mortierella alpina:
- 64518 - Mortierella alpina: 10.1007/BF02536452
- 64518 - Mortierella alpina: LTS0241153
- 979708 - Mortierella hygrophila: 10.1007/BF00252518
- 979708 - Mortierella hygrophila: LTS0241153
- 4854 - Mortierellaceae: LTS0241153
- 2212732 - Mortierellomycetes: LTS0241153
- 1913637 - Mucoromycota: LTS0241153
- 10066 - Muridae: LTS0241153
- 10088 - Mus: LTS0241153
- 10090 - Mus musculus: LTS0241153
- 10090 - Mus musculus: NA
- 94550 - Myuriaceae: LTS0241153
- 98945 - Myuroclada: LTS0241153
- 98946 - Myuroclada maximowiczii: 10.1016/0031-9422(91)83188-Q
- 98946 - Myuroclada maximowiczii: LTS0241153
- 5748 - Nannochloropsis: 10.1016/S0271-5317(05)80784-5
- 5748 - Nannochloropsis: LTS0241153
- 67442 - Neckeraceae: LTS0241153
- 3443 - Nigella: LTS0241153
- 555479 - Nigella sativa: 10.5962/BHL.TITLE.108605
- 555479 - Nigella sativa: LTS0241153
- 657340 - Niphotrichum: LTS0241153
- 95767 - Niphotrichum canescens: 10.1016/0031-9422(91)83188-Q
- 95767 - Niphotrichum canescens: LTS0241153
- 2696291 - Ochrophyta: LTS0241153
- 3934 - Onagraceae: LTS0241153
- 96533 - Oncophorus: LTS0241153
- 1852632 - Oncophorus crispifolius: 10.1016/0031-9422(91)83188-Q
- 4762 - Oomycota: LTS0241153
- 52989 - Orthotrichaceae: LTS0241153
- 4054 - Panax Ginseng C. A. Mey.: -
- 4180 - Pedaliaceae: LTS0241153
- 2870 - Phaeophyceae: LTS0241153
- 218619 - Phlebodium: LTS0241153
- 218620 - Phlebodium aureum: 10.1016/S0944-7113(98)80026-3
- 218620 - Phlebodium aureum: LTS0241153
- 449869 - Phlebodium decumanum: 10.1016/S0944-7113(98)80026-3
- 449869 - Phlebodium decumanum: LTS0241153
- 50934 - Physciaceae: LTS0241153
- 3328 - Picea: LTS0241153
- 67778 - Picea jezoensis: LTS0241153
- 689841 - Picea jezoensis var. jezoensis: 10.1007/BF00601287
- 689841 - Picea jezoensis var. jezoensis: LTS0241153
- 3318 - Pinaceae: LTS0241153
- 58019 - Pinopsida: LTS0241153
- 3230 - Plagiomnium: LTS0241153
- 417139 - Plagiomnium maximoviczii: 10.1016/0031-9422(91)83188-Q
- 417139 - Plagiomnium maximoviczii: LTS0241153
- 53001 - Plagiotheciaceae: LTS0241153
- 53002 - Plagiothecium: LTS0241153
- 90297 - Plagiothecium euryphyllum: 10.1016/0031-9422(91)83188-Q
- 90297 - Plagiothecium euryphyllum: LTS0241153
- 111663 - Pogonatum: LTS0241153
- 185755 - Pogonatum inflexum: 10.1016/0031-9422(91)83188-Q
- 185755 - Pogonatum inflexum: LTS0241153
- 3615 - Polygonaceae: LTS0241153
- 3275 - Polypodiaceae: LTS0241153
- 241806 - Polypodiopsida: LTS0241153
- 38352 - Polypodium: LTS0241153
- 49545 - Polypodium aureum: 10.1016/S0944-7113(98)80026-3
- 49545 - Polypodium aureum: LTS0241153
- 3211 - Polytrichaceae: LTS0241153
- 113509 - Polytrichopsida: LTS0241153
- 3689 - Populus: LTS0241153
- 73824 - Populus balsamifera:
- 73824 - Populus balsamifera: 10.1007/BF00597798
- 73824 - Populus balsamifera: 10.1016/0031-9422(90)83062-6
- 73824 - Populus balsamifera: LTS0241153
- 1616482 - Populus candicans:
- 1616482 - Populus candicans: 10.1016/0031-9422(90)83062-6
- 3582 - Portulaca: LTS0241153
- 46147 - Portulaca oleracea: 10.1111/JPHP.12315
- 46147 - Portulaca oleracea: LTS0241153
- 1150913 - Portulaca oleracea subsp. oleracea: 10.1111/JPHP.12315
- 1150913 - Portulaca oleracea subsp. oleracea: LTS0241153
- 3581 - Portulacaceae: LTS0241153
- 38586 - Pottiaceae: LTS0241153
- 110474 - Ptilota: LTS0241153
- 153248 - Ptilota filicina: 10.1021/BI00255A002
- 153248 - Ptilota filicina: LTS0241153
- 2231517 - Pylaisiaceae: LTS0241153
- 404319 - Pylaisiadelphaceae: LTS0241153
- 67398 - Pyrrhobryum: LTS0241153
- 67399 - Pyrrhobryum spiniforme: 10.1016/0031-9422(91)83188-Q
- 67399 - Pyrrhobryum spiniforme: LTS0241153
- 70137 - Racomitrium: LTS0241153
- 3440 - Ranunculaceae: LTS0241153
- 61530 - Rhabdoweisiaceae: LTS0241153
- 67392 - Rhizogoniaceae: LTS0241153
- 187991 - Rhizomnium: LTS0241153
- 2006508 - Rhizomnium tuomikoskii: 10.1016/0031-9422(91)83188-Q
- 2006508 - Rhizomnium tuomikoskii: LTS0241153
- 2763 - Rhodophyta: LTS0241153
- 28467 - Rhytidiadelphus: LTS0241153
- 53008 - Rhytidiadelphus squarrosus: 10.1016/0031-9422(91)85024-T
- 53008 - Rhytidiadelphus squarrosus: LTS0241153
- 3745 - Rosaceae: LTS0241153
- 3688 - Salicaceae: LTS0241153
- 21880 - Salvia: LTS0241153
- 268906 - Salvia fruticosa: 10.1016/S0367-326X(01)00327-6
- 268906 - Salvia fruticosa: LTS0241153
- 51812 - Sarcophyton: LTS0241153
- 358797 - Sarcophyton crassocaule: 10.1021/NP990205P
- 358797 - Sarcophyton crassocaule: LTS0241153
- 205097 - Sarcophyton trocheliophorum: 10.1016/S0040-4020(01)00853-5
- 205097 - Sarcophyton trocheliophorum: LTS0241153
- 61510 - Schlotheimia: LTS0241153
- 408846 - Schlotheimia grevilleana: 10.1016/0031-9422(91)83188-Q
- 408846 - Schlotheimia grevilleana: LTS0241153
- 146585 - Scopelophila: LTS0241153
- 146586 - Scopelophila cataractae: 10.1016/0031-9422(91)83188-Q
- 146586 - Scopelophila cataractae: LTS0241153
- 13799 - Sematophyllaceae: LTS0241153
- 468156 - Senegalia: LTS0241153
- 138017 - Senegalia catechu: 10.5962/BHL.TITLE.108605
- 875646 - Senegalia polyacantha: 10.5962/BHL.TITLE.108605
- 875646 - Senegalia polyacantha: LTS0241153
- 53922 - Senna: LTS0241153
- 72401 - Senna didymobotrya: 10.21608/BFSA.1985.75705
- 72401 - Senna didymobotrya: LTS0241153
- 346999 - Senna siamea: 10.21608/BFSA.1985.75705
- 346999 - Senna siamea: LTS0241153
- 352372 - Serpocaulon: LTS0241153
- 463349 - Serpocaulon loriceum: 10.1016/S0944-7113(98)80026-3
- 463349 - Serpocaulon loriceum: LTS0241153
- 253793 - Serpocaulon triseriale: 10.1016/S0944-7113(98)80026-3
- 253793 - Serpocaulon triseriale: LTS0241153
- 4181 - Sesamum: LTS0241153
- 4182 - Sesamum indicum: 10.3109/10915819309140647
- 4182 - Sesamum indicum: LTS0241153
- 13803 - Sphagnaceae: LTS0241153
- 113508 - Sphagnopsida: LTS0241153
- 13804 - Sphagnum: LTS0241153
- 13805 - Sphagnum palustre: 10.1016/0031-9422(91)83188-Q
- 13805 - Sphagnum palustre: LTS0241153
- 104301 - Staphisagria macrosperma: 10.3109/13880208509070678
- 13273 - Stellaria: LTS0241153
- 1826902 - Stellaria dichotoma:
- 1826902 - Stellaria dichotoma: 10.1021/NP040080A
- 35493 - Streptophyta: LTS0241153
- 49743 - Taraxacum: LTS0241153
- 1301465 - Taraxacum lapponicum: LTS0241153
- 50225 - Taraxacum officinale: 10.1007/BF00579976
- 50225 - Taraxacum officinale: LTS0241153
- 67443 - Thamnobryum: LTS0241153
- 390907 - Thamnobryum plicatulum: 10.1016/0031-9422(91)83188-Q
- 390907 - Thamnobryum plicatulum: LTS0241153
- 61526 - Thuidiaceae: LTS0241153
- 67427 - Thuidium: LTS0241153
- 173666 - Thuidium glaucinum: 10.1016/0031-9422(91)83188-Q
- 173666 - Thuidium glaucinum: LTS0241153
- 171374 - Thuidium pristocalyx: 10.1016/0031-9422(91)83188-Q
- 171374 - Thuidium pristocalyx: LTS0241153
- 84223 - Thuidium recognitum: 10.1016/0031-9422(91)83188-Q
- 84223 - Thuidium recognitum: LTS0241153
- 67428 - Thuidium tamariscinum: 10.1016/0031-9422(91)83188-Q
- 67428 - Thuidium tamariscinum: LTS0241153
- 205646 - Tornabea: LTS0241153
- 205647 - Tornabea scutellifera: 10.1002/CHIN.199517179
- 205647 - Tornabea scutellifera: LTS0241153
- 58023 - Tracheophyta: LTS0241153
- 3898 - Trifolium: LTS0241153
- 57577 - Trifolium pratense: 10.1007/BF00579976
- 57577 - Trifolium pratense: LTS0241153
- 59011 - Typha angustifolia L: -
- 644748 - Typha orientalis Presl: -
- 61518 - Ulota: LTS0241153
- 140636 - Ulota crispa: 10.1016/0031-9422(91)83188-Q
- 140636 - Ulota crispa: LTS0241153
- 74380 - Undaria: LTS0241153
- 74381 - Undaria pinnatifida: 10.1021/JF071791S
- 74381 - Undaria pinnatifida: LTS0241153
- 246680 - Vesicularia: LTS0241153
- 455291 - Vesicularia ferriei: 10.1016/0031-9422(91)83188-Q
- 455291 - Vesicularia ferriei: LTS0241153
- 33090 - Viridiplantae: LTS0241153
- 98947 - Wijkia: LTS0241153
- 213177 - Wijkia concavifolia: 10.1016/0031-9422(91)83188-Q
- 213177 - Wijkia concavifolia: LTS0241153
- 756396 - Wrangeliaceae: LTS0241153
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qian Liu, Yan Liu, Junying Zhao, Weicang Qiao, Juncai Hou, Yaling Wang, Minghui Zhang, Ge Jia, Yan Liu, Xiaofei Fan, Ziqi Li, Haidong Jia, Xiaojiang Zhao, Lijun Chen. Impact of manufacturing processes on glycerolipid and polar lipid composition and ultrastructure in infant formula.
Food chemistry.
2024 Jun; 444(?):138623. doi:
10.1016/j.foodchem.2024.138623
. [PMID: 38309081] - David Gonçalves, Carla S S Gouveia, Maria J Ferreira, José F T Ganança, Diana C G Pinto, Miguel A A Pinheiro de Carvalho. Comparative analysis of antioxidant and fatty acid composition in avocado (Persea americana Mill.) fruits: Exploring regional and commercial varieties.
Food chemistry.
2024 Jun; 442(?):138403. doi:
10.1016/j.foodchem.2024.138403
. [PMID: 38224668] - Tingwen Zhang, Yue Zhong, Yan Shi, Chengcheng Feng, Lu Xu, Zheng Chen, Xin Sun, Yan Zhao, Xialin Sun. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155550. doi:
10.1016/j.phymed.2024.155550
. [PMID: 38522313] - Na Zhang, Baisong An, Liangyou Zhao, Dapeng Zhao, Bochuan Lv, Shumin Liu. Investigation of the mechanism of nephrotoxicity of nux-vomica by PTGS2/CYP2C9-mediated arachidonic acid pathway and Jian Pi Tong Luo compound's protective effect.
Biomedical chromatography : BMC.
2024 Jun; 38(6):e5859. doi:
10.1002/bmc.5859
. [PMID: 38618996] - Baoyu He, Qingli Bie, Rou Zhao, Yugang Yan, Guanjun Dong, Baogui Zhang, Sen Wang, Wenrong Xu, Dongxing Tian, Yujun Hao, Yanhua Zhang, Mingsheng Zhao, Huabao Xiong, Bin Zhang. Arachidonic acid released by PIK3CA mutant tumor cells triggers malignant transformation of colonic epithelium by inducing chromatin remodeling.
Cell reports. Medicine.
2024 May; 5(5):101510. doi:
10.1016/j.xcrm.2024.101510
. [PMID: 38614093] - Assamae Chabni, Blanca Pardo de Donlebún, Marina Romero, Carlos F Torres. Predigested Mixture of Arachidonic and Docosahexaenoic Acids for Better Bio-Accessibility.
Marine drugs.
2024 May; 22(5):. doi:
10.3390/md22050224
. [PMID: 38786615] - Zoe I Day, Alyce J Mayfosh, Amy A Baxter, Scott A Williams, Joanne M Hildebrand, Thomas F Rau, Ivan K H Poon, Mark D Hulett. Defining a Water-Soluble Formulation of Arachidonic Acid as a Novel Ferroptosis Inducer in Cancer Cells.
Biomolecules.
2024 May; 14(5):. doi:
10.3390/biom14050555
. [PMID: 38785962] - You Mee Ahn, Jeeyoun Jung, So Min Lee. Integrated Omics Analysis Uncovers the Culprit behind Exacerbated Atopic Dermatitis in a Diet-Induced Obesity Model.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084143
. [PMID: 38673730] - Hongwei Song, Junling Ren, Le Yang, Hui Sun, Guangli Yan, Ying Han, Xijun Wang. Elucidation for the pharmacological effects and mechanism of Shen Bai formula in treating myocardial injury based on energy metabolism and serum metabolomic approaches.
Journal of ethnopharmacology.
2024 Apr; 323(?):117670. doi:
10.1016/j.jep.2023.117670
. [PMID: 38160867] - Jianqing Zhao, Qianruo Wang, Zhenkun Liu, Mai Zhang, Jinquan Li, Zhen F Fu, Ling Zhao, Ming Zhou. Neuroinvasive virus facilitates viral replication by employing lipid droplets to reduce arachidonic acid-induced ferroptosis.
The Journal of biological chemistry.
2024 Apr; 300(4):107168. doi:
10.1016/j.jbc.2024.107168
. [PMID: 38490434] - Renata de Souza Sampaio, Anita Oliveira Brito Pereira Bezerra Martins, Lucas Yure Santos da Silva, Dra Renata Torres Pessoa, Jaime Ribeiro-Filho, Gyllyandeson de Araújo Delmondes, Cícero Francisco Bezerra Felipe, Irwin Rose Alencar de Menezes, Marta Regina Kerntopf. Topical Antiedematogenic Activity of the Essential Oil of Psidium brownianum Mart. (OEPB) in Murine Ear Edema Models.
Chemistry & biodiversity.
2024 Apr; 21(4):e202400187. doi:
10.1002/cbdv.202400187
. [PMID: 38429232] - M Sternak, M Stojak, T Banasik, A Kij, A Bar, M Z Pacia, K Wojnar-Lason, N Chorazy, T Mohaissen, B Marczyk, I Czyzynska-Cichon, Z Berkimbayeva, A Mika, S Chlopicki. Vascular ATGL-dependent lipolysis and the activation of cPLA2-PGI2 pathway protect against postprandial endothelial dysfunction.
Cellular and molecular life sciences : CMLS.
2024 Mar; 81(1):125. doi:
10.1007/s00018-024-05167-6
. [PMID: 38467757] - Jianming Xu, Changzhen Fu, Yaru Sun, Xin Wen, Chong-Bo Chen, Chukai Huang, Tsz Kin Ng, Qingping Liu, Mingzhi Zhang. Untargeted and Oxylipin-Targeted Metabolomics Study on the Plasma Samples of Primary Open-Angle Glaucoma Patients.
Biomolecules.
2024 Mar; 14(3):. doi:
10.3390/biom14030307
. [PMID: 38540727] - Barrett M Welch, Paige A Bommarito, David E Cantonwine, Ginger L Milne, Alison Motsinger-Reif, Matthew L Edin, Darryl C Zeldin, John D Meeker, Thomas F McElrath, Kelly K Ferguson. Predictors of upstream inflammation and oxidative stress pathways during early pregnancy.
Free radical biology & medicine.
2024 03; 213(?):222-232. doi:
10.1016/j.freeradbiomed.2024.01.022
. [PMID: 38262546] - Kadabagere Narayanaswamy Hemavathi, Sinosh Skariyachan, Rajesh Raju, Thottethodi Subramanya Keshava Prasad, Chandran S Abhinand. Computational screening of potential anti-inflammatory leads from Jeevaneeya Rasayana plants targeting COX-2 and 5- LOX by molecular docking and dynamic simulation approaches.
Computers in biology and medicine.
2024 Mar; 171(?):108164. doi:
10.1016/j.compbiomed.2024.108164
. [PMID: 38412690] - Shu-Tao Chen, Shuang Ji, Mei-Na Guo, Li-Hong Chen. [Research advances of prostaglandin E2 receptor 1 (EP1)].
Sheng li xue bao : [Acta physiologica Sinica].
2024 Feb; 76(1):105-118. doi:
"
. [PMID: 38444136] - Chang Chen, Huan Wu, Xiaojie Fu, Ruijuan Li, Hui Cheng, Meng Wang, An Zhou, Mei Zhang, Qinglin Li. A UPLC-QTOF/MS-based hepatic tissue metabolomics approach deciphers the mechanism of Huachansu tablets-based intervention against hepatocellular carcinoma.
Journal of pharmaceutical and biomedical analysis.
2024 Feb; 239(?):115875. doi:
10.1016/j.jpba.2023.115875
. [PMID: 38061172] - Hui Ren, Wenxing Wu, Jiangyan Chen, Quan Li, Hengbin Wang, Dawei Qian, Sheng Guo, Jin-Ao Duan. Integrated serum metabolomics and network pharmacology analysis on the bioactive metabolites and mechanism exploration of Bufei huoxue capsule on chronic obstructive pulmonary disease rats.
Journal of ethnopharmacology.
2024 Jan; 324(?):117816. doi:
10.1016/j.jep.2024.117816
. [PMID: 38286154] - Jia-Cheng Zhang, Hao-Lin Zhang, Xi-Yan Xin, Yu-Tian Zhu, Xin Mao, Hang-Qi Hu, Yu-Xin Jin, Rui-Wen Fan, Xiao-Hui Zhang, Yang Ye, Dong Li. Mechanisms of Bushen Tiaoxue Granules against controlled ovarian hyperstimulation-induced abnormal morphology of endometrium based on network pharmacology.
Journal of ovarian research.
2024 Jan; 17(1):25. doi:
10.1186/s13048-023-01339-3
. [PMID: 38279186] - Milton Pereira, Jonathan Liang, Joy Edwards-Hicks, Allison M Meadows, Christine Hinz, Sonia Liggi, Matthias Hepprich, Jonathan Mudry, Kim Han, Julian L Griffin, Iain Fraser, Michael N Sack, Christoph Hess, Clare E Bryant. Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting.
Cell reports.
2024 Jan; 43(2):113700. doi:
10.1016/j.celrep.2024.113700
. [PMID: 38265935] - Rui Zeng, Yuefan Zhang, Shengtong Shi, Xianqin Long, Haixia Zhang, Min Wang, Jianfeng Shi, Ye Jiang, Bin Chen. Study on the mechanism of Panax notoginseng-Salvia miltiorrhiza herb pair on invigorating blood circulation and eliminating blood stasis by blocking the conversion of arachidonic acid to prostaglandin.
Journal of natural medicines.
2024 Jan; ?(?):. doi:
10.1007/s11418-023-01773-z
. [PMID: 38261160] - Qin Fan, Xinhong Liu, Yanying Zhang, Wanrong Kang, Shanshan Si, Hongmei Zhang. Integration of metabolomics and network pharmacology technology to explain the effect mechanisms of Danggui Buxue decoction in vascular dementia.
Biomedical chromatography : BMC.
2024 Jan; ?(?):e5822. doi:
10.1002/bmc.5822
. [PMID: 38237172] - Jelle Y Broos, Rianne T M van der Burgt, Julia Konings, Merel Rijnsburger, Oliver Werz, Helga E de Vries, Martin Giera, Gijs Kooij. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression?.
Journal of neuroinflammation.
2024 Jan; 21(1):21. doi:
10.1186/s12974-023-02981-w
. [PMID: 38233951] - Xiaoli Yang, Chenglin Chi, Wenjing Li, Yanyan Zhang, Shufang Yang, Ruoxuan Xu, Rongxia Liu. Metabolomics and lipidomics combined with serum pharmacochemistry uncover the potential mechanism of Huang-Lian-Jie-Du decoction alleviates atherosclerosis in ApoE-/- mice.
Journal of ethnopharmacology.
2024 Jan; 324(?):117748. doi:
10.1016/j.jep.2024.117748
. [PMID: 38216103] - Keke Luo, Haiyu Zhao, Mengxiao Wang, Mengyao Tian, Nan Si, Wen Xia, Jianfang Song, Yunqin Chen, Linna Wang, Yan Zhang, Xiaolu Wei, Xing Li, Guangyuan Qin, Jiaying Yang, Hongjie Wang, Baolin Bian, Yanyan Zhou. Huanglian Jiedu Wan intervened with 'Shi-Re Shanghuo' syndrome through regulating immune balance mediated by biomarker succinate.
Clinical immunology (Orlando, Fla.).
2024 01; 258(?):109861. doi:
10.1016/j.clim.2023.109861
. [PMID: 38065370] - Gahyeon Jin, Yonggyun Kim. Screening of insect immune suppressors using a recombinant phospholipase A2 of a lepidopteran insect.
Archives of insect biochemistry and physiology.
2024 Jan; 115(1):e22081. doi:
10.1002/arch.22081
. [PMID: 38288493] - Hai-Tao Yu, Jia-Yu Gong, Wen-Hui Xu, Yi-Ru Chen, Yue-Ting Li, Yi-Fei Chen, Guo-Liang Liu, Hai-Ying Zhang, Lin Xie. Gestational Diabetes Mellitus Remodels the Fetal Brain Fatty Acid Profile Through Placenta-Brain Lipid Axis in C57BL/6J Mice.
The Journal of nutrition.
2023 Dec; ?(?):. doi:
10.1016/j.tjnut.2023.12.045
. [PMID: 38159812] - Jinyan Qiu, Guanlin Xiao, Minjuan Yang, Xuejun Huang, Dake Cai, Canhui Xie, Zhao Chen, Xiaoli Bi, Aili Xu. Integrated network pharmacology and metabolomics reveal the mechanisms of Jasminum elongatum in anti-ulcerative colitis.
Scientific reports.
2023 12; 13(1):22449. doi:
10.1038/s41598-023-49792-w
. [PMID: 38105335] - Zhibo Zhao, Xinyi Liu, Yue Xiang, Zhengping Hou, Kun He, Guochao Zhong, Jiejun Hu, Dong Cai, Yan Liu, Jihua Ren, Jianping Gong, Lei Zhao. Inhibiting cholesterol de novo synthesis promotes hepatocellular carcinoma progression by upregulating prostaglandin E synthase 2-mediated arachidonic acid metabolism under high fatty acid conditions.
Cancer science.
2023 Dec; ?(?):. doi:
10.1111/cas.16035
. [PMID: 38081591] - Xiaochao Wang, Wanling Cai, Yihan Liu, Yaoming Lu, Mange Liu, Xuewei Cao, Da Guo. Exploring biomarkers associated with severity of knee osteoarthritis in Southern China using widely targeted metabolomics.
BMC musculoskeletal disorders.
2023 Dec; 24(1):953. doi:
10.1186/s12891-023-07084-4
. [PMID: 38066443] - Qian Sun, Jiawen Yang, Ming Zhang, Yongsheng Zhang, Hongyu Ma, Ngoc Tuan Tran, Xiuli Chen, Yueling Zhang, Kok-Gan Chan, Shengkang Li. Exosomes drive ferroptosis by stimulating iron accumulation to inhibit bacterial infection in crustaceans.
The Journal of biological chemistry.
2023 Dec; 299(12):105463. doi:
10.1016/j.jbc.2023.105463
. [PMID: 37977221] - Nere Peña, Javier Amézaga, Gerard Marrugat, Alba Landaluce, Toscana Viar, Julen Arce, Jon Larruskain, Josean Lekue, Carla Ferreri, José María Ordovás, Itziar Tueros. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players.
Journal of the International Society of Sports Nutrition.
2023 Dec; 20(1):2245386. doi:
10.1080/15502783.2023.2245386
. [PMID: 37605439] - Shun-Hong Luo, Jia-Ming Tian, Yi Chu, Hong-Yi Zhu, Jiang-Dong Ni, Jun Huang. The BRD4-SRPK2-SRSF2 signal modulates the splicing efficiency of ACSL3 pre-mRNA and influences erastin-induced ferroptosis in osteosarcoma cells.
Cell death & disease.
2023 11; 14(11):760. doi:
10.1038/s41419-023-06273-2
. [PMID: 37993451] - Paulina Oyarzún, Jonathan Carrasco, Darlene Peterssen, Gonzalo Tereucan, Mario Aranda, Karem Henríquez-Aedo. A high throughput method for detection of cyclooxygenase-2 enzyme inhibitors by effect-directed analysis applying high performance thin layer chromatography-bioassay-mass spectrometry.
Journal of chromatography. A.
2023 Nov; 1711(?):464426. doi:
10.1016/j.chroma.2023.464426
. [PMID: 37862751] - Leandro Gastón Parra, Luciana Cecilia Erjavec, Cecilia Irene Casali, Andrea Zerpa Velazquez, Karen Weber, Clara Patricia Setton-Avruj, María Del Carmen Fernández Tome. Cytosolic phospholipase A2 regulates lipid homeostasis under osmotic stress through PPARγ.
The FEBS journal.
2023 Nov; ?(?):. doi:
10.1111/febs.16998
. [PMID: 37947039] - Wei Chen, Jinhao Su, Yubin Liu, Tianmei Gao, Xiaohui Ji, Hanzhou Li, Huajun Li, Yuansong Wang, Hui Zhang, Shuquan Lv. Crocin Ameliorates Diabetic Nephropathy through Regulating Metabolism, CYP4A11/PPARγ, and TGF-β/Smad Pathways in Mice.
Current drug metabolism.
2023 Nov; ?(?):. doi:
10.2174/0113892002257928231031113337
. [PMID: 37936469] - Mirielle L Pauline, Caitlin Huynh, Pamela R Wizzard, Patrick N Nation, Catherine J Field, Paul W Wales, Justine M Turner. In parenteral nutrition-fed piglets, fatty acids vary by lipid emulsion and tissue sampled.
JPEN. Journal of parenteral and enteral nutrition.
2023 11; 47(8):1038-1046. doi:
10.1002/jpen.2547
. [PMID: 37416983] - Dmitry V Chistyakov, Nadezhda V Azbukina, Alexander V Lopachev, Sergei V Goriainov, Alina A Astakhova, Elena V Ptitsyna, Anna S Klimenko, Vsevolod V Poleshuk, Rogneda B Kazanskaya, Tatiana N Fedorova, Marina G Sergeeva. Plasma oxylipin profiles reflect Parkinson's disease stage.
Prostaglandins & other lipid mediators.
2023 Oct; ?(?):106788. doi:
10.1016/j.prostaglandins.2023.106788
. [PMID: 37866654] - Yu Zhang, Guotong Lin, Na Xue, Yi Wang, Tingting Du, Huihui Liu, Wei Xiong, Wei Shang, Hao Wu, Lei Song. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2023 10; 37(10):e23167. doi:
10.1096/fj.202300457rr
. [PMID: 37651093] - Ty Shitanaka, Lauren Higa, Abigail E Bryson, Conor Bertucci, Natalie Vande Pol, Ben Lucker, Samir Kumar Khanal, Gregory Bonito, Zhi-Yan Du. Flocculation of oleaginous green algae with Mortierella alpina fungi.
Bioresource technology.
2023 Oct; 385(?):129391. doi:
10.1016/j.biortech.2023.129391
. [PMID: 37364649] - Kunio Yui, George Imataka, Tadashi Shiohama. Lipid Peroxidation of the Docosahexaenoic Acid/Arachidonic Acid Ratio Relating to the Social Behaviors of Individuals with Autism Spectrum Disorder: The Relationship with Ferroptosis.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914796
. [PMID: 37834244] - Zhen Shen, Tao Cui, Yao Liu, Shuai Wu, Cong Han, Jie Li. Astragalus membranaceus and Salvia miltiorrhiza ameliorate diabetic kidney disease via the "gut-kidney axis".
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Sep; 121(?):155129. doi:
10.1016/j.phymed.2023.155129
. [PMID: 37804821] - Sophie Morin, Andréa Tremblay, Elizabeth Dumais, Pierre Julien, Nicolas Flamand, Roxane Pouliot. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells.
Biomolecules.
2023 09; 13(9):. doi:
10.3390/biom13091413
. [PMID: 37759812] - Noelle Reimers, Quynh Do, Rutan Zhang, Angela Guo, Ryan Ostrander, Alyson Shoji, Chau Vuong, Libin Xu. Tracking the Metabolic Fate of Exogenous Arachidonic Acid in Ferroptosis Using Dual-Isotope Labeling Lipidomics.
Journal of the American Society for Mass Spectrometry.
2023 Sep; 34(9):2016-2024. doi:
10.1021/jasms.3c00181
. [PMID: 37523294] - Yahui Dong, Yang Liu, Jie Tang, Jiahui Du, Xuzhen Zhuang, Song Tan, Ye Yang, Dengke Yin. Zhisou powder displays therapeutic effect on chronic bronchitis through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway and reprograming metabolic pathway of arachidonic acid.
Journal of ethnopharmacology.
2023 Sep; 319(Pt 1):117110. doi:
10.1016/j.jep.2023.117110
. [PMID: 37673198] - Muhammad Nihad, Utsav Sen, Debajit Chaudhury, Undurti N Das, Sudheer Shenoy P, Bipasha Bose. Arachidonic acid modulates the cellular energetics of human pluripotent stem cells and protects the embryoid bodies from embryotoxicity effects in vitro.
Reproductive toxicology (Elmsford, N.Y.).
2023 09; 120(?):108438. doi:
10.1016/j.reprotox.2023.108438
. [PMID: 37454977] - Xiaochen Sun, Shuyue Wang, Huagang Sheng, Xiyu Lv, Jingna Li, Bing Han, Shuai Wang, Kunlin Liu, Chao Zhang, Wenhuan Zhang, Fei Guo. Study on the mechanism of stir-fried Fructus Tribuli in enhancing the essential hypertension treatment by an integrated 'spectrum-effect relationship-network pharmacology-metabolomics' strategy.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Sep; 165(?):115160. doi:
10.1016/j.biopha.2023.115160
. [PMID: 37459662] - Huidan Zhang, Weijian Wan, Qiu Cui, Xiaojin Song. Modular Metabolic Engineering of Mortierella alpina by the 2A Peptide Platform to Improve Arachidonic Acid Production.
Journal of agricultural and food chemistry.
2023 Aug; 71(33):12519-12527. doi:
10.1021/acs.jafc.3c03016
. [PMID: 37561084] - Wei Shi, Hu Zhang, Ying Zhang, Lu Lu, Qian Zhou, Yucheng Wang, Yuepu Pu, Lihong Yin. Co-exposure to Fe, Zn, and Cu induced neuronal ferroptosis with associated lipid metabolism disorder via the ERK/cPLA2/AA pathway.
Environmental pollution (Barking, Essex : 1987).
2023 Aug; ?(?):122438. doi:
10.1016/j.envpol.2023.122438
. [PMID: 37625769] - Zhihui Sun, Yan Tie, Xinyi Tong, Mingchang Cheng, Yushan Wu, Pingxiang Xu, Ming Xue, Liping Xu, Xuelin Zhou. Multi-omics approaches revealed the therapeutic mechanisms of Suo-Quan-Wan for treating overactive bladder in spontaneously hypertensive rats.
Journal of ethnopharmacology.
2023 Aug; 318(Pt B):117066. doi:
10.1016/j.jep.2023.117066
. [PMID: 37604331] - Bruno Anderson Fernandes da Silva, Renata Torres Pessoa, Roger Henrique Sousa da Costa, Maria Rayane Correia de Oliveira, Andreza Guedes Barbosa Ramos, Maria Gabriely de Lima Silva, Lucas Yure Santos da Silva, Cassio Rocha Medeiros, Sloana Giesta Lemos Florencio, Jaime Ribeiro-Filho, Henrique Douglas Melo Coutinho, António Raposo, Sunghoon Yoo, Heesup Han, Irwin Rose Alencar de Menezes, Lucindo José Quintans Júnior. Evaluation of the antiedematogenic and anti-inflammatory properties of Ximenia americana L. (Olacaceae) bark extract in experimental models of inflammation.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Aug; 166(?):115249. doi:
10.1016/j.biopha.2023.115249
. [PMID: 37597323] - Alba Couto-Rodriguez, Alma Villaseñor, Carmela Pablo-Torres, David Obeso, María Fernanda Rey-Stolle, Héctor Peinado, José Luis Bueno, Mar Reaño-Martos, Alfredo Iglesias Cadarso, Cristina Gomez-Casado, Coral Barbas, Domingo Barber, María M Escribese, Elena Izquierdo. Platelet-Derived Extracellular Vesicles as Lipid Carriers in Severe Allergic Inflammation.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612714
. [PMID: 37628895] - Klaudia Sztolsztener, Wiktor Bzdęga, Karolina Konstantynowicz-Nowicka, Adrian Chabowski, Ewa Harasim-Symbor. Therapeutic effect of cannabidiol on myocardial arachidonic acid content in various lipid fractions in a rat model of obesity.
Prostaglandins & other lipid mediators.
2023 Aug; 169(?):106767. doi:
10.1016/j.prostaglandins.2023.106767
. [PMID: 37541613] - Naoya Inoue, Shuji Morikawa, Toyoaki Murohara. Role of serum n-6 polyunsaturated fatty acids in the development of acute coronary syndromes.
Nagoya journal of medical science.
2023 Aug; 85(3):592-601. doi:
10.18999/nagjms.85.3.592
. [PMID: 37829479] - Yusuke Hirata, Carla Ferreri, Yuto Yamada, Aya Inoue, Anna Sansone, Fabrizio Vetica, Wakana Suzuki, Saya Takano, Takuya Noguchi, Atsushi Matsuzawa, Chryssostomos Chatgilialoglu. Geometrical isomerization of arachidonic acid during lipid peroxidation interferes with ferroptosis.
Free radical biology & medicine.
2023 08; 204(?):374-384. doi:
10.1016/j.freeradbiomed.2023.05.026
. [PMID: 37257700] - Dóra Kovács, Emanuela Camera, Szilárd Póliska, Alessia Cavallo, Miriam Maiellaro, Katalin Dull, Florian Gruber, Christos C Zouboulis, Andrea Szegedi, Dániel Törőcsik. Linoleic Acid Induced Changes in SZ95 Sebocytes-Comparison with Palmitic Acid and Arachidonic Acid.
Nutrients.
2023 Jul; 15(15):. doi:
10.3390/nu15153315
. [PMID: 37571253] - Fang-Lin Liu, Ying Rong, Hui Zhou, Tong Yu, Luyao Liu, Qianwen Cao, Zhaolong Qin, Lingbo Qu, Xinglin Liao, Qiman Jiang, Nan Zhang, Xia Xu. Cineole inhibits the biosynthesis of leukotrienes and prostaglandins to alleviate allergic rhinitis: Insights from metabolomics.
Journal of pharmaceutical and biomedical analysis.
2023 Jul; 234(?):115574. doi:
10.1016/j.jpba.2023.115574
. [PMID: 37481900] - Svetlana Vasilieva, Alexandr Lukyanov, Christina Antipova, Timofei Grigoriev, Elena Lobakova, Olga Chivkunova, Pavel Scherbakov, Petr Zaytsev, Olga Gorelova, Tatiana Fedorenko, Dmitry Kochkin, Alexei Solovchenko. Interactive Effects of Ceftriaxone and Chitosan Immobilization on the Production of Arachidonic Acid by and the Microbiome of the Chlorophyte Lobosphaera sp. IPPAS C-2047.
International journal of molecular sciences.
2023 Jul; 24(13):. doi:
10.3390/ijms241310988
. [PMID: 37446166] - Adrien Paquot, Juan Bestard-Escalas, Giulio G Muccioli. Set up and validation of a sensitive method to quantify prostaglandins, prostaglandin-glycerol esters and prostaglandin-ethanolamides, as well as their respective precursors.
Prostaglandins & other lipid mediators.
2023 Jun; ?(?):106763. doi:
10.1016/j.prostaglandins.2023.106763
. [PMID: 37391027] - Maggie E Phillips, Oluwabori Adekanye, Abdolsamad Borazjani, J Allen Crow, Matthew K Ross. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE2/IL-1β Production.
ACS chemical biology.
2023 Jun; ?(?):. doi:
10.1021/acschembio.3c00194
. [PMID: 37348046] - Dunfang Wang, Chen Pan, Jiayin Han, Yong Zhao, Suyan Liu, Chunying Li, Yan Yi, Yushi Zhang, Xuan Tang, Aihua Liang. Involvement of p38 MAPK/cPLA2 and arachidonic acid metabolic pathway in Shengmai injection-induced pseudo-allergic reactions.
Journal of ethnopharmacology.
2023 Jun; 309(?):116357. doi:
10.1016/j.jep.2023.116357
. [PMID: 36906156] - Jelle Y Broos, Floor C Loonstra, Lodewijk R J de Ruiter, Mariam M T E E Gouda, Wing Hee Fung, Menno M Schoonheim, Marieke Heijink, Eva M M Strijbis, Charlotte Teunissen, Joep Killestein, Helga E de Vries, Martin A Giera, Bernard M J Uitdehaag, Gijs Kooij. Association of Arachidonic Acid-Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis.
Neurology.
2023 Jun; ?(?):. doi:
10.1212/wnl.0000000000207459
. [PMID: 37290971] - Dhruvesh Patel, Jaqueline Munhoz, Susan Goruk, Caroline Richard, Catherine J Field. The programming effect of plant-based DHA, along with equivalent ARA, on immune system and oral tolerance development in 6-week allergy prone BALB/c pups.
The Journal of nutrition.
2023 Jun; ?(?):. doi:
10.1016/j.tjnut.2023.06.002
. [PMID: 37276938] - Ting Gao, Jia-Wen Zhong, Ling Qin, Xue-Yi Wang, Xiao-Rong Li, Yu-Xue Luo. [Mechanism of Liuwei Dihuang Pills in treatment of mice with diminished ovarian reserve based on proteomics].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jun; 48(12):3224-3234. doi:
10.19540/j.cnki.cjcmm.20230202.704
. [PMID: 37382006] - Domonique C Lewis, Timo van der Zwan, Andrew Richards, Holly Little, Gitta L Coaker, Richard M Bostock. The Oomycete Microbe-Associated Molecular Pattern, Arachidonic Acid, and an Ascophyllum nodosum-Derived Plant Biostimulant Induce Defense Metabolome Remodeling in Tomato.
Phytopathology.
2023 Jun; 113(6):1084-1092. doi:
10.1094/phyto-10-22-0368-r
. [PMID: 36598344] - Takanori Honda, Sanmei Chen, Jun Hata, Mao Shibata, Yoshihiko Furuta, Emi Oishi, Satoko Sakata, Takanari Kitazono, Toshiharu Ninomiya. Changes in the Eicosapentaenoic Acid to Arachidonic Acid Ratio in Serum over 10 Years in a Japanese Community: The Hisayama Study.
Journal of atherosclerosis and thrombosis.
2023 Jun; 30(6):589-600. doi:
10.5551/jat.63727
. [PMID: 36089395] - Cándido Ortiz-Placín, Alba Castillejo-Rufo, Matías Estarás, Antonio González. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology.
Molecules (Basel, Switzerland).
2023 May; 28(11):. doi:
10.3390/molecules28114316
. [PMID: 37298790] - Espen Bariås, Martin Jakubec, Elise Førsund, Linda Veke Hjørnevik, Aurélia E Lewis, Øyvind Halskau. Contrasting the phospholipid profiles of two neoplastic cell lines reveal a high PC:PE ratio for SH-SY5Y cells relative to A431 cells.
Biochemical and biophysical research communications.
2023 05; 656(?):23-29. doi:
10.1016/j.bbrc.2023.03.017
. [PMID: 36947963] - Lulu Chang, Hanqin Chen, Bo Yang, Haiqin Chen, Wei Chen. Redistributing Carbon Flux by Impairing Saccharide Synthesis to Enhance Lipid Yield in Oleaginous Fungus Mortierella alpina.
ACS synthetic biology.
2023 May; ?(?):. doi:
10.1021/acssynbio.3c00046
. [PMID: 37166287] - Dongdong Cao, Le Yang, Xin Gao, Danna Huang, Xiaoning Zhan, Shi Qiu, Hui Sun, Guangli Yan, Xijun Wang. A Non-targeted Metabolomics Reveals Therapeutical Effect and Mechanism of Sanmiao Pill on Adjuvant-induced Arthritis Rats.
Current pharmaceutical design.
2023 May; ?(?):. doi:
10.2174/1381612829666230511161308
. [PMID: 37171005] - Canrong Wu, Youwei Xu, Qian He, Dianrong Li, Jia Duan, Changyao Li, Chongzhao You, Han Chen, Weiliang Fan, Yi Jiang, H Eric Xu. Ligand-induced activation and G protein coupling of prostaglandin F2α receptor.
Nature communications.
2023 May; 14(1):2668. doi:
10.1038/s41467-023-38411-x
. [PMID: 37160891] - Zhuosi Yu, Lin Ye, Yating He, Xinhong Lu, Le Chen, Shiqin Dong, Xiaole Xiang. Study on the formation pathways of characteristic volatiles in preserved egg yolk caused by lipid species during pickling.
Food chemistry.
2023 May; 424(?):136310. doi:
10.1016/j.foodchem.2023.136310
. [PMID: 37229895] - Jing Dai, Qiqing Li, Jun Quan, Gunther Webb, Juan Liu, Kai Gao. Construction of a lipid metabolism-related and immune-associated prognostic score for gastric cancer.
BMC medical genomics.
2023 May; 16(1):93. doi:
10.1186/s12920-023-01515-w
. [PMID: 37138287] - Maurice Zaoui, Mehdi Morel, Lila Louadj, Nathalie Ferrand, Antonin Lamazière, Catherine Uzan, Geoffroy Canlorbe, Michael Atlan, Michèle Sabbah. Adipocytes secretome from normal and tumor breast favor breast cancer invasion by metabolic reprogramming.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.
2023 May; 25(5):1389-1401. doi:
10.1007/s12094-022-03035-y
. [PMID: 36520383] - Rachel E Walker, Chesney K Richter, Ann C Skulas-Ray, Michael R Flock, Brian A Harsch, Carmen E Annevelink, Penny M Kris-Etherton, Gordon L Jensen, Gregory C Shearer. Effect of omega-3 ethyl esters on the triglyceride-rich lipoprotein response to endotoxin challenge in healthy young men.
Journal of lipid research.
2023 05; 64(5):100353. doi:
10.1016/j.jlr.2023.100353
. [PMID: 36907552] - Kristina Wendel, Gunnthorunn Gunnarsdottir, Marlen Fossan Aas, Åsbjørn Schumacher Westvik, Are Hugo Pripp, Drude Fugelseth, Tom Stiris, Sissel Jennifer Moltu. Essential Fatty Acid Supplementation and Early Inflammation in Preterm Infants: Secondary Analysis of a Randomized Clinical Trial.
Neonatology.
2023 Apr; ?(?):1-8. doi:
10.1159/000530129
. [PMID: 37121228] - Dhruvesh Patel, Jaqueline Munhoz, Susan Goruk, Sue Tsai, Caroline Richard, Catherine J Field. Maternal diet supplementation with high-docosahexaenoic-acid canola oil, along with arachidonic acid, promotes immune system development in allergy-prone BALB/c mouse offspring at 3 weeks of age.
European journal of nutrition.
2023 Apr; ?(?):. doi:
10.1007/s00394-023-03160-6
. [PMID: 37106253] - Yang Liu, Rui Niu, Ruiping Deng, Shuyan Song, Yinghui Wang, Hongjie Zhang. Multi-enzyme Co-expressed Dual-Atom Nanozymes Induce Cascade Immunogenic Ferroptosis via Activating Interferon-γ and Targeting Arachidonic Acid Metabolism.
Journal of the American Chemical Society.
2023 Apr; 145(16):8965-8978. doi:
10.1021/jacs.2c13689
. [PMID: 37058189] - Pinaki Chaudhuri, Priya Putta, Michael A Rosenbaum, Linda M Graham. p38 MAPK activation and STIM1-Orai3 association mediate TRPC6 externalization.
American journal of physiology. Cell physiology.
2023 Apr; ?(?):. doi:
10.1152/ajpcell.00425.2022
. [PMID: 37093037] - Jianyang Liu, Bing Peng, Julia Steinmetz-Späh, Helena Idborg, Marina Korotkova, Per-Johan Jakobsson. Microsomal prostaglandin E synthase-1 inhibition promotes shunting in arachidonic acid metabolism during inflammatory responses in vitro.
Prostaglandins & other lipid mediators.
2023 Apr; 167(?):106738. doi:
10.1016/j.prostaglandins.2023.106738
. [PMID: 37094780] - Ulrika Sjöbom, Mats X Andersson, Aldina Pivodic, Anna-My Lund, Mireille Vanpee, Ingrid Hansen-Pupp, David Ley, Dirk Wackernagel, Karin Sävman, Lois E H Smith, Chatarina Löfqvist, Ann Hellström, Anders K Nilsson. Modification of serum fatty acids in preterm infants by parenteral lipids and enteral docosahexaenoic acid/arachidonic acid: A secondary analysis of the Mega Donna Mega trial.
Clinical nutrition (Edinburgh, Scotland).
2023 Apr; 42(6):962-971. doi:
10.1016/j.clnu.2023.04.020
. [PMID: 37120902] - Fumie Nakashima, Juan A Giménez-Bastida, Paula B Luis, Sai H Presley, Robert E Boer, Manuel Chiusa, Takahiro Shibata, Gary A Sulikowski, Ambra Pozzi, Claus Schneider. The 5-lipoxygenase/cyclooxygenase-2 cross-over metabolite, hemiketal E2, enhances VEGFR2 activation and promotes angiogenesis.
The Journal of biological chemistry.
2023 04; 299(4):103050. doi:
10.1016/j.jbc.2023.103050
. [PMID: 36813233] - Fadumo Ahmed Isse, Ahmad H Alammari, Ahmed A El-Sherbeni, Dion R Brocks, Ayman O S El-Kadi. The enantioselective separation and quantitation of the hydroxy-metabolites of arachidonic acid by liquid chromatography - tandem mass spectrometry.
Prostaglandins & other lipid mediators.
2023 04; 165(?):106701. doi:
10.1016/j.prostaglandins.2022.106701
. [PMID: 36528330] - Bizhi Tu, Run Fang, Zheng Zhu, Guang Chen, Cheng Peng, Rende Ning. Comprehensive analysis of arachidonic acid metabolism-related genes in diagnosis and synovial immune in osteoarthritis: based on bulk and single-cell RNA sequencing data.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2023 Mar; ?(?):. doi:
10.1007/s00011-023-01720-4
. [PMID: 36995411] - Jian Wang, Yingying Zeng, Juan Song, Mengchan Zhu, Guiping Zhu, Hui Cai, Cuicui Chen, Meiling Jin, Yuanlin Song. Perturbation of arachidonic acid and glycerolipid metabolism promoted particulate matter-induced inflammatory responses in human bronchial epithelial cells.
Ecotoxicology and environmental safety.
2023 Mar; 256(?):114839. doi:
10.1016/j.ecoenv.2023.114839
. [PMID: 36989558] - Teruo Sekimoto, Shinji Koba, Hiroyoshi Mori, Taito Arai, Myong Hwa Yamamoto, Takuya Mizukami, Naoki Matsukawa, Rikuo Sakai, Yuya Yokota, Shunya Sato, Hideaki Tanaka, Ryota Masaki, Yosuke Oishi, Kunihiro Ogura, Ken Arai, Kosuke Nomura, Koshiro Sakai, Hiroaki Tsujita, Seita Kondo, Shigeto Tsukamoto, Hiroshi Suzuki, Toshiro Shinke. Association between Eicosapentaenoic Acid to Arachidonic Acid Ratio and Characteristics of Plaque Rupture.
Journal of atherosclerosis and thrombosis.
2023 Mar; ?(?):. doi:
10.5551/jat.63806
. [PMID: 36967129] - Takumi Udo, Yuta Matsuoka, Masatomo Takahashi, Yoshihiro Izumi, Kota Saito, Kaho Tazoe, Moe Tanaka, Hideto Naka, Takeshi Bamba, Ken-Ichi Yamada. Structural Analysis of Intracellular Lipid Radicals by LC/MS/MS Using a BODIPY-Based Profluorescent Nitroxide Probe.
Analytical chemistry.
2023 03; 95(10):4585-4591. doi:
10.1021/acs.analchem.2c04950
. [PMID: 36847588] - Mauro Maccarrone. Deciphering Complex Interactions in Bioactive Lipid Signaling.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062622
. [PMID: 36985594] - Astrid S Kahnt, Nils Helge Schebb, Dieter Steinhilber. Formation of Lipoxins and Resolvins in Human Leukocytes.
Prostaglandins & other lipid mediators.
2023 Mar; ?(?):106726. doi:
10.1016/j.prostaglandins.2023.106726
. [PMID: 36878381] - Olga V Galkina, Oleg V Vetrovoy, Irina E Krasovskaya, Nataliya D Eschenko. Role of Lipids in Regulation of Neuroglial Interactions.
Biochemistry. Biokhimiia.
2023 Mar; 88(3):337-352. doi:
10.1134/s0006297923030045
. [PMID: 37076281] - Esther S Kim, Lauren J Lee, Tahmineh Romero, Kara L Calkins. Outcomes in preterm infants who received a lipid emulsion with fish oil: An observational study.
JPEN. Journal of parenteral and enteral nutrition.
2023 03; 47(3):354-363. doi:
10.1002/jpen.2464
. [PMID: 36398422] - Marine Leroux, Hana Bouazizi-Ben Messaoud, Céline Luquain-Costaz, Lars P Jordheim, Pauline Le Faouder, Marie-Paule Gustin, Karim Aoun, Philippe Lawton, Samira Azzouz-Maache, Isabelle Delton. Enriched PUFA environment of Leishmania infantum promastigotes promotes the accumulation of lipid mediators and favors parasite infectivity towards J774 murine macrophages.
Lipids.
2023 03; 58(2):81-92. doi:
10.1002/lipd.12365
. [PMID: 36544247] - Liyun Zhao, Liyuan Yao, Rui Chen, Jiani He, Tingting Lin, Silin Qiu, Guohua Chen, Hongfeng Chen, Sheng-Xiang Qiu. Pinosrtobin from plants and propolis against human coronavirus HCoV-OC43 by modulating host AHR/CYP1A1 pathway and lipid metabolism.
Antiviral research.
2023 Mar; 212(?):105570. doi:
10.1016/j.antiviral.2023.105570
. [PMID: 36863496] - Tomoyasu Kadoguchi, Kazunori Shimada, Naoshi Fukui, Nobuho Tanaka, Hirotaka Tsuno, Tomoyuki Shiozawa, Kosuke Fukao, Miho Nishitani-Yokoyama, Kikuo Isoda, Satoshi Matsushita, Norihiko Yokoyama, Hiroyuki Daida. Accumulation of polyunsaturated fatty acid-derived metabolites in the sarcopenic muscle of aging mice.
Geriatrics & gerontology international.
2023 Feb; ?(?):. doi:
10.1111/ggi.14561
. [PMID: 36811314] - William J Massey, Venkateshwari Varadharajan, Rakhee Banerjee, Amanda L Brown, Anthony J Horak, Rachel C Hohe, Bryan M Jung, Yunguang Qiu, E Ricky Chan, Calvin Pan, Renliang Zhang, Daniela S Allende, Belinda Willard, Feixiong Cheng, Aldons J Lusis, J Mark Brown. MBOAT7-Driven Lysophosphatidylinositol Acylation in Adipocytes Contributes to Systemic Glucose Homeostasis.
Journal of lipid research.
2023 Feb; ?(?):100349. doi:
10.1016/j.jlr.2023.100349
. [PMID: 36806709] - Md Afroz Bakht, Thangaiyan Pooventhiran, Renjith Thomas, Mehnaz Kamal, Israf Ud Din, Najeeb Ur Rehman, Imtiaz Ali, Noushin Ajmal, Mohamed Jawed Ahsan. Synthesis and Biological Evaluation of Octahydroquinazolinones as Phospholipase A2, and Protease Inhibitors: Experimental and Theoretical Exploration.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041944
. [PMID: 36838935] - Michael A Crawford, Andrew J Sinclair, Barbara Hall, Enitan Ogundipe, Yiqun Wang, Dimitrios Bitsanis, Ovrang B Djahanbakhch, Laurence Harbige, Ivan Golfetto, Therishnee Moodley, Ahmed Hassam, AnnieBelle Sassine, Mark Johnson. The imperative of arachidonic acid in human reproduction.
Progress in lipid research.
2023 Feb; ?(?):101222. doi:
10.1016/j.plipres.2023.101222
. [PMID: 36746351] - Baiyang Xu, Zhitong Yang, Xue Zhang, Zilu Liu, Yu Huang, Ximeng Ding, Jijun Chu, Tangyi Peng, Deling Wu, Chuanshan Jin, Weidong Li, Baochang Cai, Xiaoli Wang. 16S rDNA sequencing combined with metabolomics profiling with multi-index scoring method reveals the mechanism of salt-processed Semen Cuscuta in Bushen Antai mixture on kidney yang deficiency syndrome.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2023 Feb; 1216(?):123602. doi:
10.1016/j.jchromb.2023.123602
. [PMID: 36652816] - Yanan Ma, King Lam Hui, Zaza Gelashvili, Philipp Niethammer. Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish.
Cell reports.
2023 01; 42(1):111974. doi:
10.1016/j.celrep.2022.111974
. [PMID: 36640321]