NCBI Taxonomy: 756396

Wrangeliaceae (ncbi_taxid: 756396)

found 34 associated metabolites at family taxonomy rank level.

Ancestor: Ceramiales

Child Taxonomies: Halurus, Bornetia, Plumaria, Haloplegma, Tiffaniella, Ptilothamnion, Lophothamnion, Diplothamnion, Medeiothamnion, Ptilothamnionopsis, unclassified Wrangeliaceae

Hordenine

4-[2-(dimethylamino)ethyl]phenol

C10H15NO (165.115358)


Hordenine is a potent phenylethylamine alkaloid with antibacterial and antibiotic properties produced in nature by several varieties of plants in the family Cactacea. The major source of hordenine in humans is beer brewed from barley. Hordenine in urine interferes with tests for morphine, heroin and other opioid drugs. Hordenine is a biomarker for the consumption of beer Hordenine is a phenethylamine alkaloid. It has a role as a human metabolite and a mouse metabolite. Hordenine is a natural product found in Cereus peruvianus, Mus musculus, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). Alkaloid from Hordeum vulgare (barley) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2289 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=539-15-1 (retrieved 2024-10-24) (CAS RN: 539-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Eicosapentaenoic acid

cis, cis, cis, cis, cis-Eicosa-5,8,11,14,17-pentaenoic acid

C20H30O2 (302.224568)


Icosapent, also known as icosapentaenoate or (5z,8z,11z,14z,17z)-eicosapentaenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, icosapent is considered to be a fatty acid lipid molecule. Icosapent is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Icosapent can be found in a number of food items such as barley, sacred lotus, white lupine, and rape, which makes icosapent a potential biomarker for the consumption of these food products. Icosapent can be found primarily in blood, feces, sweat, and urine, as well as throughout most human tissues. In humans, icosapent is involved in the alpha linolenic acid and linoleic acid metabolism. Moreover, icosapent is found to be associated with essential hypertension and hypertension. Ethyl eicosapentaenoic acid (E-EPA, icosapent ethyl) is a derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA) that is used in combination with changes in diet to lower triglyceride levels in adults with severe (≥ 500 mg/dL) hypertriglyceridemia. This was the second class of fish oil-based drug to be approved for use as a drug and was approved by the FDA in 2012. These fish oil drugs are similar to fish oil dietary supplements but the ingredients are better controlled and have been tested in clinical trials . The anti-inflammatory, antithrombotic and immunomodulatory actions of EPA is probably due to its role in eicosanoid physiology and biochemistry. Most eicosanoids are produced by the metabolism of omega-3 fatty acids, specifically, arachidonic acid. These eicosanoids, leukotriene B4 (LTB4) and thromboxane A2 (TXA2) stimulate leukocyte chemotaxis, platelet aggregation and vasoconstriction. They are thrombogenic and artherogenic. On the other hand, EPA is metabolized to leukotriene B5 (LTB5) and thromboxane A3 (TXA3), which are eicosanoids that promote vasodilation, inhibit platelet aggregation and leukocyte chemotaxis and are anti-artherogenic and anti-thrombotic. The triglyceride-lowering effect of EPA results from inhibition of lipogenesis and stimulation of fatty acid oxidation. Fatty acid oxidation of EPA occurs mainly in the mitochondria. EPA is a substrate for Prostaglandin-endoperoxide synthase 1 and 2. It also appears to affect the function and bind to the Carbohydrate responsive element binding protein (ChREBP) and to a fatty acid receptor (G-coupled receptor) known as GP40 (DrugBank). Eicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia). Chemical was purchased from CAY 90110 (Lot. 0443819-6); Diagnostic ions: 301.2, 257.1, 202.9 CONFIDENCE standard compound; INTERNAL_ID 305 Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3]. Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].

   

Arachidonic acid

(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C20H32O2 (304.24021719999996)


Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Choline

(2-hydroxyethyl)trimethylazanium

[C5H14NO]+ (104.10753340000001)


Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stachydrine

(2S)-1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946238)


Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. Proline betaine, also known as stachydrine, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline betaine exists in all living organisms, ranging from bacteria to humans. Proline betaine is found, on average, in the highest concentration within capers (Capparis spinosa). Proline betaine has also been detected, but not quantified in, several different foods, such as soy beans (Glycine max), crosnes (Stachys affinis), domestic pigs (Sus scrofa domestica), limes (Citrus aurantiifolia), and triticales (X Triticosecale rimpaui). This could make proline betaine a potential biomarker for the consumption of these foods. Proline betaine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on Proline betaine. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Homarine

1-Methylpyridin-1-ium-2-carboxylic acid

C7H7NO2 (137.0476762)


   

Choline

Choline

[C5H14NO]+ (104.10753340000001)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Stachydrine

Pyrrolidinium, 2-carboxy-1,1-dimethyl-, inner salt, (2S)-

C7H13NO2 (143.0946238)


L-proline betaine is an amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. It has a role as a food component, a plant metabolite and a human blood serum metabolite. It is a N-methyl-L-alpha-amino acid, an alkaloid and an amino-acid betaine. It is functionally related to a L-prolinium. It is a conjugate base of a N,N-dimethyl-L-prolinium. It is an enantiomer of a D-proline betaine. Stachydrine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Stachydrine is a natural product found in Teucrium polium, Halopithys incurva, and other organisms with data available. Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. An amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Betaine

2-(trimethylazaniumyl)acetate

C5H11NO2 (117.0789746)


Betaine or trimethylglycine is a methylated derivative of glycine. It functions as a methyl donor in that it carries and donates methyl functional groups to facilitate necessary chemical processes. The donation of methyl groups is important to proper liver function, cellular replication, and detoxification reactions. Betaine also plays a role in the manufacture of carnitine and serves to protect the kidneys from damage. Betaine has also been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th Ed, p1341). Betaine is found in many foods, some of which are potato puffs, poppy, hazelnut, and garden cress. Betaine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-43-7 (retrieved 2024-06-28) (CAS RN: 107-43-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Arachidonic acid

arachidonic acid

C20H32O2 (304.2402172)


A long-chain fatty acid that is a C20, polyunsaturated fatty acid having four (Z)-double bonds at positions 5, 8, 11 and 14. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.

   

Choline

Choline chloride

[C5H14NO]+ (104.10753340000001)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OEYIOHPDSNJKLS_STSL_0152_Choline_0125fmol_180430_S2_LC02_MS02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents IPB_RECORD: 922; CONFIDENCE confident structure D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Hordenine

N,N-Dimethyl-2-(4-hydroxyphenyl)ethylamine

C10H15NO (165.115358)


Annotation level-1 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1].

   

Eicosapentaenoic acid

Eicosanoids_EPA_C20H30O2

C20H30O2 (302.224568)


Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3]. Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].

   

Choline

Choline Hydroxide

C5H14NO+ (104.10753340000001)


A choline that is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   
   

Homarine

Homarine-d3

C7H7NO2 (137.0476762)


   
   

6-amino-6-carboxy-2-(trimethylammonio)hexanoate

6-amino-6-carboxy-2-(trimethylammonio)hexanoate

C10H20N2O4 (232.1423)


   

(5z,8z,11r,12e,14z,17e)-11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

(5z,8z,11r,12e,14z,17e)-11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

C20H28O4 (332.19874880000003)


   

(5z,8z,11r,12e,14e,17e)-11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

(5z,8z,11r,12e,14e,17e)-11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

C20H28O4 (332.19874880000003)


   

11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

11-hydroxy-16-oxoicosa-5,8,12,14,17-pentaenoic acid

C20H28O4 (332.19874880000003)


   

1,1-dimethylpyrrolidin-1-ium-2-carboxylate

1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946238)