Threonic acid (BioDeep_00000001662)

 

Secondary id: BioDeep_00000015581, BioDeep_00000173531, BioDeep_00001868443

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


2,3,4-Trihydroxy-(threo)-butanoic acid

化学式: C4H8O5 (136.0372)
中文名称: L-苏糖酸钙, 苏糖酸
谱图信息: 最多检出来源 Homo sapiens(blood) 17.6%

Reviewed

Last reviewed on 2024-07-10.

Cite this Page

Threonic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/threonic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001662). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(C(C(=O)O)O)O)O
InChI: InChI=1S/C4H8O5/c5-1-2(6)3(7)4(8)9/h2-3,5-7H,1H2,(H,8,9)/t2-,3+/m0/s1

描述信息

Threonic acid, also known as threonate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in the treatment of androgenic alopecia (PMID:21034532). Threonic acid is probably derived from glycated proteins or from degradation of ascorbic acid. It is a normal component in aqueous humour and blood (PMID:10420182). Threonic acid is a substrate of L-threonate 3-dehydrogenase (EC 1.1.1.129) in the ascorbate and aldarate metabolism pathway (KEGG). It has been found to be a microbial metabolite (PMID:20615997).
L-threonic acid, also known as L-threonate or L-threonic acid magnesium salt, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. L-threonic acid is soluble (in water) and a weakly acidic compound (based on its pKa). L-threonic acid can be found in a number of food items such as buffalo currant, yam, purslane, and bayberry, which makes L-threonic acid a potential biomarker for the consumption of these food products. L-threonic acid can be found primarily in blood. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in treatment of androgenic alopecia .

同义名列表

14 个代谢物同义名

2,3,4-Trihydroxy-(threo)-butanoic acid; (2R,3S)-2,3,4-Trihydroxybutanoic acid; (2R,3S)-2,3,4-Trihydroxybutanoate; Threonic acid, (R-(r*,s*))-isomer; L-Threonic acid hemicalcium salt; Threonic acid, (r*,r*)-isomer; 2,3,4-trihydroxybutanoic acid; 2,3,4-Trihydroxybutyric acid; L-Threonic acid; Threonic acid; L-Threonate; Threonate; Threonic acid; Threonate



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

34 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 AKR1B1, BCL2, BDNF, CAT, HIF1A, NOX4, PIK3C3, PPARG
Peripheral membrane protein 3 CYP27A1, GORASP1, HK1
Endoplasmic reticulum membrane 5 ADPGK, BCL2, NOX4, PSEN1, UGT1A1
Mitochondrion membrane 1 CYP27A1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 5 BCL2, HIF1A, NOX4, PPARG, PSEN1
autophagosome 1 PIK3C3
cytosol 9 AKR1B1, BCL2, CAT, GSR, HIF1A, HK1, IL1B, PIK3C3, PPARG
dendrite 2 BDNF, PSEN1
nuclear body 1 HIF1A
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 1 PSEN1
nucleoplasm 4 AKR1B1, HIF1A, PPARG, PSEN1
RNA polymerase II transcription regulator complex 2 HIF1A, PPARG
Cell membrane 3 NOX4, PSEN1, TNF
Cytoplasmic side 1 GORASP1
Cell projection, axon 1 PSEN1
Cell projection, growth cone 1 PSEN1
Cytoplasmic granule 1 PSEN1
Early endosome membrane 1 PSEN1
Multi-pass membrane protein 2 NOX4, PSEN1
Golgi apparatus membrane 2 GORASP1, PSEN1
Synapse 1 PSEN1
cell cortex 1 PSEN1
cell junction 1 PSEN1
cell surface 2 PSEN1, TNF
ciliary rootlet 1 PSEN1
dendritic shaft 1 PSEN1
gamma-secretase complex 1 PSEN1
glutamatergic synapse 2 PIK3C3, PSEN1
Golgi apparatus 2 GORASP1, PSEN1
Golgi membrane 3 GORASP1, INS, PSEN1
growth cone 1 PSEN1
lysosomal membrane 1 PSEN1
mitochondrial inner membrane 2 CYP27A1, PSEN1
neuromuscular junction 1 PSEN1
neuronal cell body 2 PSEN1, TNF
postsynapse 1 PSEN1
presynaptic membrane 1 PSEN1
sarcolemma 1 PSEN1
smooth endoplasmic reticulum 1 PSEN1
synaptic vesicle 2 BDNF, PSEN1
Cytoplasm, cytosol 2 HK1, IL1B
Lysosome 1 IL1B
endosome 1 PIK3C3
plasma membrane 4 NOX4, PSEN1, TNF, UGT1A1
Membrane 8 ADPGK, BCL2, BDNF, CAT, NOX4, PIK3C3, PSEN1, UGT1A1
axon 2 BDNF, PSEN1
extracellular exosome 3 AKR1B1, CAT, GSR
endoplasmic reticulum 5 ADPGK, BCL2, NOX4, PSEN1, UGT1A1
extracellular space 7 AKR1B1, BDNF, CRP, IL1B, IL24, INS, TNF
perinuclear region of cytoplasm 4 BDNF, NOX4, PPARG, UGT1A1
mitochondrion 8 AKR1B1, BCL2, CAT, CYP27A1, GSR, HK1, NOX4, PSEN1
protein-containing complex 4 BCL2, CAT, HIF1A, PSEN1
intracellular membrane-bounded organelle 2 CAT, PPARG
Secreted 6 ADPGK, BDNF, CRP, IL1B, IL24, INS
extracellular region 8 ADPGK, BDNF, CAT, CRP, IL1B, IL24, INS, TNF
Mitochondrion outer membrane 2 BCL2, HK1
Single-pass membrane protein 2 BCL2, UGT1A1
mitochondrial outer membrane 2 BCL2, HK1
mitochondrial matrix 3 CAT, CYP27A1, GSR
motile cilium 1 HIF1A
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, PSEN1
external side of plasma membrane 2 GSR, TNF
nucleolus 1 NOX4
axon cytoplasm 1 HIF1A
midbody 1 PIK3C3
Early endosome 1 PSEN1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 2 NOX4, UGT1A1
Mitochondrion inner membrane 1 CYP27A1
Membrane raft 3 HK1, PSEN1, TNF
pore complex 1 BCL2
Cell junction, focal adhesion 1 NOX4
focal adhesion 2 CAT, NOX4
GABA-ergic synapse 1 PIK3C3
cis-Golgi network 1 GORASP1
Peroxisome 2 CAT, PIK3C3
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
secretory granule 1 IL1B
axoneme 1 PIK3C3
nuclear speck 1 HIF1A
nuclear outer membrane 1 PSEN1
Late endosome 1 PIK3C3
receptor complex 1 PPARG
Cell projection, neuron projection 1 PSEN1
neuron projection 1 PSEN1
chromatin 2 HIF1A, PPARG
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
[Isoform 5]: Cytoplasm 1 NOX4
Nucleus, nucleolus 1 NOX4
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Nucleus speckle 1 HIF1A
euchromatin 1 HIF1A
myelin sheath 1 BCL2
[Isoform 3]: Cytoplasm 1 NOX4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 BDNF, INS
kinetochore 1 PSEN1
transport vesicle 1 INS
azurophil granule membrane 1 PSEN1
Secreted, extracellular exosome 1 IL1B
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
presynaptic endosome 1 PIK3C3
aggresome 1 PSEN1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
perinuclear endoplasmic reticulum 1 NOX4
Rough endoplasmic reticulum 1 PSEN1
[Isoform 4]: Nucleus 1 NOX4
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
catalase complex 1 CAT
NADPH oxidase complex 1 NOX4
endoplasmic reticulum chaperone complex 1 UGT1A1
BAD-BCL-2 complex 1 BCL2
[Isoform 6]: Cytoplasm 1 NOX4
cytochrome complex 1 UGT1A1
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yibo Guo, Ke Shen, Xinshuai Zhang, Hua Huang. In vitro characterization of alternative l-threonate and d-erythronate catabolic pathways. Biochemical and biophysical research communications. 2024 Feb; 695(?):149440. doi: 10.1016/j.bbrc.2023.149440. [PMID: 38157628]
  • Chisato Matsunaga, Naoki Kanazawa, Yuta Takatsuka, Takeshi Fujii, Shinji Ohta, Hisashi Ômura. Polyhydroxy Acids as Fabaceous Plant Components Induce Oviposition of the Common Grass Yellow Butterfly, Eurema Mandarina. Journal of chemical ecology. 2023 Feb; 49(1-2):67-76. doi: 10.1007/s10886-022-01397-9. [PMID: 36484901]
  • Paulo R Ribeiro, Rozana Dos S Teixeira, Alzenir R Souza, Tayla C S Pereira, Elisangela F Boffo, Maria G A Carosio, Antonio G Ferreira, Regina V Oliveira, Luiz E A Rodrigues, Jacqueline de J Silva, Amancio J de Souza, Ana Marice T Ladeia. Blood plasma metabolomics of children and adolescents with sickle cell anaemia treated with hydroxycarbamide: a new tool for uncovering biochemical alterations. British journal of haematology. 2021 03; 192(5):922-931. doi: 10.1111/bjh.17315. [PMID: 33476407]
  • Jia-Liang Chen, Xin Zhou, Bo-Long Liu, Xu-Hong Wei, Hong-Lu Ding, Zhi-Jun Lin, Hai-Lun Zhan, Fei Yang, Wen-Biao Li, Jun-Cong Xie, Min-Zhi Su, Xian-Guo Liu, Xiang-Fu Zhou. Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-α/NF-κB signaling in female rats. Journal of neuroinflammation. 2020 Apr; 17(1):99. doi: 10.1186/s12974-020-01786-5. [PMID: 32241292]
  • Liam E Broughton-Neiswanger, Sol M Rivera-Velez, Martin A Suarez, Jennifer E Slovak, Pablo E Piñeyro, Julianne K Hwang, Nicolas F Villarino. Urinary chemical fingerprint left behind by repeated NSAID administration: Discovery of putative biomarkers using artificial intelligence. PloS one. 2020; 15(2):e0228989. doi: 10.1371/journal.pone.0228989. [PMID: 32053695]
  • Qibo Zhang, Klaus-Peter Adam. LC-MS/MS method with chemical derivatization for quantitation of L-threonate in human plasma. Biomedical chromatography : BMC. 2019 Oct; 33(10):e4636. doi: 10.1002/bmc.4636. [PMID: 31256428]
  • Sadia Sadir, Saiqa Tabassum, Shaista Emad, Laraib Liaquat, Zehra Batool, Syeda Madiha, Sidrah Shehzad, Irfan Sajid, Saida Haider. Neurobehavioral and biochemical effects of magnesium chloride (MgCl2), magnesium sulphate (MgSO4) and magnesium-L-threonate (MgT) supplementation in rats: A dose dependent comparative study. Pakistan journal of pharmaceutical sciences. 2019 Jan; 32(1(Supplementary)):277-283. doi: . [PMID: 30829204]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • T Pallister, M A Jackson, T C Martin, C A Glastonbury, A Jennings, M Beaumont, R P Mohney, K S Small, A MacGregor, C J Steves, A Cassidy, T D Spector, C Menni, A M Valdes. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. International journal of obesity (2005). 2017 07; 41(7):1106-1113. doi: 10.1038/ijo.2017.70. [PMID: 28293020]
  • Vincent Truffault, Stephen C Fry, Rebecca G Stevens, Hélène Gautier. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. The Plant journal : for cell and molecular biology. 2017 Mar; 89(5):996-1008. doi: 10.1111/tpj.13439. [PMID: 27888536]
  • Gyu Song, Eleonora Napoli, Sarah Wong, Randi Hagerman, Siming Liu, Flora Tassone, Cecilia Giulivi. Altered redox mitochondrial biology in the neurodegenerative disorder fragile X-tremor/ataxia syndrome: use of antioxidants in precision medicine. Molecular medicine (Cambridge, Mass.). 2016 Oct; 22(?):548-559. doi: 10.2119/molmed.2016.00122. [PMID: 27385396]
  • Amaliya Amaliya, Marja L Laine, Bruno G Loos, Ubele Van der Velden. Java project on periodontal diseases: effect of vitamin C/calcium threonate/citrus flavonoids supplementation on periodontal pathogens, CRP and HbA1c. Journal of clinical periodontology. 2015 12; 42(12):1097-104. doi: 10.1111/jcpe.12478. [PMID: 26549279]
  • Hongyun Wang, Pei Hu, Ji Jiang. Calcium bioavailability of calcium L-threonate in healthy Chinese subjects measured with stable isotopes (⁴⁴Ca and ⁴²Ca). European journal of clinical pharmacology. 2013 May; 69(5):1121-6. doi: 10.1007/s00228-012-1420-5. [PMID: 23229796]
  • Eisuke Kato, Michitsugu Yama, Ryo Nakagomi, Toshiro Shibata, Keizo Hosokawa, Jun Kawabata. Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica. Bioorganic & medicinal chemistry letters. 2012 Oct; 22(20):6410-2. doi: 10.1016/j.bmcl.2012.08.055. [PMID: 22995617]
  • Hong-yun Wang, Pei Hu, Ji Jiang. Pharmacokinetics and safety of calcium L-threonate in healthy volunteers after single and multiple oral administrations. Acta pharmacologica Sinica. 2011 Dec; 32(12):1555-60. doi: 10.1038/aps.2011.138. [PMID: 21986570]
  • Vanessa J Melino, Kathleen L Soole, Christopher M Ford. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC plant biology. 2009 Dec; 9(?):145. doi: 10.1186/1471-2229-9-145. [PMID: 19995454]
  • Hongyun Wang, Ji Jiang, Pei Hu. Determination of L-threonate in human plasma and urine by high performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2006 Apr; 834(1-2):155-62. doi: 10.1016/j.jchromb.2006.02.057. [PMID: 16554191]
  • Laurent Knafo, Philippe Chessex, Thérèse Rouleau, Jean-Claude Lavoie. Association between hydrogen peroxide-dependent byproducts of ascorbic acid and increased hepatic acetyl-CoA carboxylase activity. Clinical chemistry. 2005 Aug; 51(8):1462-71. doi: 10.1373/clinchem.2005.050427. [PMID: 15951314]
  • R A Chalmers, A M Lawson, S Hauschildt, R W Watts. The urinary excretion of glycollic acid and threonic acid by xylitol-infused patients and their relationship to the possible role of 'active glycoladehyde' in the transketolase reaction in vivo. Biochemical Society transactions. 1975; 3(4):518-21. doi: 10.1042/bst0030518. [PMID: 1183712]
  • . . . . doi: . [PMID: 15608627]