Indoleacetic acid (BioDeep_00000001353)

 

Secondary id: BioDeep_00000229682, BioDeep_00000399994, BioDeep_00000405214, BioDeep_00000860911

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019


代谢物信息卡片


2-Amino-3-(2-amino-2-carboxy-ethyl)disulfanyl-propanoic acid

化学式: C10H9NO2 (175.0633254)
中文名称: 3-吲哚乙酸(IAA), 3-吲哚乙酸, 吲哚-3-乙酸, 吲哚乙酸, 吲哚乙酸(IAA)
谱图信息: 最多检出来源 Homo sapiens(blood) 0.02%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Indoleacetic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/indoleacetic_acid (retrieved 2024-11-08) (BioDeep RN: BioDeep_00000001353). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CC(=O)O
InChI: InChI=1S/C10H9NO2/c12-10(13)5-7-6-11-9-4-2-1-3-8(7)9/h1-4,6,11H,5H2,(H,12,13)

描述信息

Indoleacetic acid (IAA) is a breakdown product of tryptophan metabolism and is often produced by the action of bacteria in the mammalian gut. Higher levels of IAA are associated with bacteria from Clostridium species including C. stricklandii, C. lituseburense, C. subterminale, and C. putrefaciens (PMID: 12173102). IAA can be found in Agrobacterium, Azospirillum, Bacillus, Bradyrhizobium, Clostridium, Enterobacter, Pantoea, Pseudomonas, Rhizobium (PMID: 12173102, PMID: 17555270, PMID: 12147474, PMID: 19400643, PMID: 9450337, PMID: 21397014) (https://link.springer.com/chapter/10.1007/978-1-4612-3084-7_7) (https://escholarship.org/uc/item/1bf1b5m3). Some endogenous production of IAA in mammalian tissues also occurs. It may be produced by the decarboxylation of tryptamine or the oxidative deamination of tryptophan. IAA frequently occurs at low levels in urine and has been found in elevated levels in the urine of patients with phenylketonuria (PMID: 13610897). IAA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Using material extracted from human urine, it was discovered by Kogl in 1933 that indoleacetic acid is also an important plant hormone (PMID: 13610897). Specifically, IAA is a member of the group of phytohormones called auxins. IAA is generally considered to be the most important native auxin. Plant cells synthesize IAA from tryptophan (Wikipedia). IAA and some derivatives can be oxidized by horseradish peroxidase (HRP) into cytotoxic species. IAA is only toxic after oxidative decarboxylation; the effect of IAA/HRP is thought to be due in part to the formation of methylene-oxindole, which may conjugate with DNA bases and protein thiols. IAA/HRP could be used as the basis for targeted cancer, a potential new role for plant auxins in cancer therapy (PMID: 11163327).
1h-indol-3-ylacetic acid, also known as (indol-3-yl)acetate or heteroauxin, belongs to indole-3-acetic acid derivatives class of compounds. Those are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 1h-indol-3-ylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 1h-indol-3-ylacetic acid is a mild, odorless, and sour tasting compound and can be found in a number of food items such as sweet bay, chinese bayberry, winter squash, and linden, which makes 1h-indol-3-ylacetic acid a potential biomarker for the consumption of these food products. 1h-indol-3-ylacetic acid can be found primarily in most biofluids, including blood, feces, saliva, and urine, as well as throughout most human tissues. 1h-indol-3-ylacetic acid exists in all living species, ranging from bacteria to humans. In humans, 1h-indol-3-ylacetic acid is involved in the tryptophan metabolism. Moreover, 1h-indol-3-ylacetic acid is found to be associated with appendicitis and irritable bowel syndrome. 1h-indol-3-ylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored.
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3375; ORIGINAL_PRECURSOR_SCAN_NO 3371
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3361
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3395; ORIGINAL_PRECURSOR_SCAN_NO 3391
DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3369; ORIGINAL_PRECURSOR_SCAN_NO 3366
CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3385; ORIGINAL_PRECURSOR_SCAN_NO 3380
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
Acquisition and generation of the data is financially supported in part by CREST/JST.
IPB_RECORD: 275; CONFIDENCE confident structure
CONFIDENCE standard compound; INTERNAL_ID 2796
CONFIDENCE standard compound; INTERNAL_ID 166
COVID info from COVID-19 Disease Map
Corona-virus
KEIO_ID I038
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.

同义名列表

275 个代谢物同义名

2-Amino-3-(2-amino-2-carboxy-ethyl)disulfanyl-propanoic acid; 2-Amino-3-(2-amino-2-carboxy-ethyl)disulfanyl-propanoate; 2-Amino-3-[(2-amino-2-carboxyethyl)dithio]propanoic acid; beta,Beta-diamino-beta,beta-dicarboxydiethyl disulphide; beta,Beta-diamino-beta,beta-dicarboxydiethyl disulfide; 1,9-Dihydro-9-beta-delta-ribofuranosyl-6H-purin-6-one; 2-Amino-3-[(2-amino-2-carboxyethyl)dithio]propanoate; 1,9-Dihydro-9-beta-D-ribofuranosyl-6H-purin-6-one; Β,beta-diamino-β,beta-dicarboxydiethyl disulphide; b,Beta-diamino-b,beta-dicarboxydiethyl disulphide; 3,3-Dithiobis[2-amino-[R-(r*,r*)]-propanoic acid; Β,beta-diamino-β,beta-dicarboxydiethyl disulfide; (R-(R*,r*))-3,3-dithiobis(2-aminopropanoic acid); b,Beta-diamino-b,beta-dicarboxydiethyl disulfide; 1,9-dihydro-9-b-D-ribofuranosyl-6H-Purin-6-one; 3,3-Dithiobis[2-amino-[R-(r*,r*)]-propanoate; (R-(R*,r*))-3,3-dithiobis(2-aminopropanoate); Bis(beta-amino-beta-carboxyethyl) disulphide; Bis(beta-amino-beta-carboxyethyl) disulfide; (R,R)-3,3-Dithiobis(2-aminopropanoic acid); b,B-diamino-b,b-dicarboxydiethyl disulfide; (2S)-6-(Acetylamino)-2-aminohexanoic acid; Hypoxanthine-9-beta-delta-ribofuranoside; D(+)-3,3-Dithiobis(2-aminopropanoic acid; Bis(b-amino-beta-carboxyethyl) disulfide; hypoxanthine-9 beta-delta-Ribofuranoside; Hypoxanthine 9-beta-delta-ribofuranoside; beta-delta-Ribofuranoside hypoxanthine-9; 9-beta-delta-ribofuranosyl-Hypoxanthine; 9-beta-delta-Ribofuranosylhypoxanthine; Bis(β-amino-β-carboxyethyl) disulphide; Bis(b-amino-b-carboxyethyl) disulphide; L-alpha-Diamino-beta-dithiolactic acid; (R,R)-3,3-Dithiobis(2-aminopropanoate); Indoleacetic acid, alpha-(14)C-labeled; (2S)-6-(Acetylamino)-2-aminohexanoate; Bis(β-amino-β-carboxyethyl) disulfide; Indoleacetic acid, monopotassium salt; 9beta-delta-Ribofuranosylhypoxanthine; Bis(b-amino-b-carboxyethyl) disulfide; beta-Alanyl-N(pai)-methyl-L-histidine; Hypoxanthine 9-beta-D-ribofuranoside; 9-beta-D-ribofuranosyl-9H-purin-6-ol; hypoxanthine-9 beta-D-Ribofuranoside; D(+)-3,3-Dithiobis(2-aminopropanoate; beta-D-Ribofuranoside hypoxanthine-9; Hypoxanthine-9-beta-D-ribofuranoside; 9-beta-D-ribofuranosyl-Hypoxanthine; Hypoxanthine-9-delta-ribofuranoside; Β-alanyl-N(pai)-methyl-L-histidine; N-beta-Alanyl-3-methyl-L-histidine; 9-beta-D-Ribofuranosylhypoxanthine; L-N-beta-Alanyl-3-methyl-histidine; Indoleacetic acid, monosodium salt; b-Alanyl-N(pai)-methyl-L-histidine; L-alpha-Diamino-beta-dithiolactate; 1-Hydroxyethane 1-carboxylic acid; L-(+)-alpha-Hydroxypropionic acid; 9-b-D-Ribofuranosyl-9H-purin-6-ol; 9beta-D-Ribofuranosylhypoxanthine; 9-Β-D-ribofuranosyl-9H-purin-6-ol; 9-b-D-ribofuranosyl-Hypoxanthine; beta-alanyl-3-methyl-L-histidine; Indoleacetic acid, calcium salt; Hypoxanthine-9-D-ribofuranoside; L-a-Diamino-b-dithiolactic acid; 9-Β-D-ribofuranosylhypoxanthine; L-N-b-Alanyl-3-methyl-histidine; 9-b-D-Ribofuranosylhypoxanthine; N-b-Alanyl-3-methyl-L-histidine; (S)-(+)-2-Hydroxypropanoic acid; L-Α-diamino-β-dithiolactic acid; 1-Hydroxyethanecarboxylic acid; 3-Indolylmethylcarboxylic acid; Β-alanyl-3-methyl-L-histidine; L-(+)-alpha-Hydroxypropionate; 1-Hydroxyethane 1-carboxylate; L-(+)-a-Hydroxypropionic acid; Beta-Alanyl-3-methylhistidine; L-(+)-Α-hydroxypropionic acid; b-Alanyl-3-methyl-L-histidine; Beta Alanyl 3 methylhistidine; (S)-2-Hydroxy-propanoic acid; alpha-indol-3-yl-Acetic acid; 2-(1H-indol-3-yl)Acetic acid; 2-(indol-3-yl)Ethanoic acid; Hypoxanthine ribonucleoside; alpha-Hydroxypropanoic acid; alpha-Hydroxypropionic acid; (S)-2-Hydroxypropionic acid; (S)-2-Hydroxypropanoic acid; (S)-(+)-2-Hydroxypropanoate; (1H-indol-3-yl)-Acetic acid; 3-(Carboxymethyl)-1H-indole; L-a-Diamino-b-dithiolactate; L-Α-diamino-β-dithiolactate; N(epsilon)-Acetyl-L-lysine; (1H-indol-3-yl)Acetic acid; 1-Hydroxyethanecarboxylate; beta,Beta-dithiobisalanine; [R-(R*,r*)]-3,3-dithiobis; epsilon-N-Acetyl-L-lysine; L-(+)-a-Hydroxypropionate; (R-(R*,r*))-3,3-dithiobis; L-(+)-Α-hydroxypropionate; N-epsilon-Acetyl-L-lysine; beta-Indole-3-acetic acid; beta,Beta-dithiodialanine; L-2-Hydroxypropanoic acid; Kyselina 3-indolyloctova; 2-(1H-indol-3-yl)Acetate; L-epsilon-N-Acetyllysine; (S)-2-Hydroxy-propanoate; 1H-Indol-3-ylacetic acid; 2-(3-Indolyl)acetic acid; 2 Hydroxypropanoic acid; 2 Hydroxypropionic acid; 1H-Indole-3-acetic acid; 2-(indol-3-yl)Ethanoate; alpha-Hydroxypropionate; Hypoxanthine D-riboside; 2-hydroxypropionic acid; (S)-2-Hydroxypropionate; 3,3-Dithiobis-L-alanine; a-Hydroxypropanoic acid; (S)-2-Hydroxypropanoate; 3-(Carboxymethyl)indole; Omega-N-acetyl-L-lysine; Indole-3-carboxaldehyde; Hypoxanthine nucleoside; 2-Hydroxypropanoic acid; beta-Indolylacetic acid; Skatole carboxylic acid; alpha-Hydroxypropanoate; epsilon-Acetyl-L-lysine; (1H-indol-3-yl)-Acetate; (indol-3-yl)Acetic acid; a-Hydroxypropionic acid; N(zeta)-Acetyl-L-lysine; b,Beta-dithiodialanine; β-indole-3-acetic acid; Β,beta-dithiodialanine; beta-Indoleacetic acid; (1H-indol-3-yl)Acetate; epsilon-N-Acetyllysine; N-Epsilon-Acetyllysine; indol-3-Ylacetic acid; Hypoxanthine riboside; Indolyl-3-acetic acid; L-2-Hydroxypropanoate; Indole-3-acetic acid; 3-Indolylessigsaeure; N(zeta)-Acetyllysine; 3-Indole-acetic acid; L-Cysteine disulfide; N(Z)-Acetyl-L-lysine; 1H-indol-3-Ylacetate; b-Indolylacetic acid; 2-(3-Indolyl)acetate; N(Ζ)-acetyl-L-lysine; 3-Indolylacetic acid; 3,3-Dithiodialanine; a-Hydroxypropionate; hypoxanthine-ribose; W-N-Acetyl-L-lysine; e-N-Acetyl-L-lysine; a-Hydroxypropanoate; Skatole carboxylate; N-e-Acetyl-L-lysine; (indol-3-yl)Acetate; Oxidized L-cysteine; 2-Hydroxypropionate; beta-Indolylacetate; (S)-(+)-Lactic acid; 2-Hydroxypropanoate; 1H-Indole-3-acetate; (alpha)-Lactic acid; b,B-dithiodialanine; b-Indoleacetic acid; 3-Indoleacetic acid; β-Indoleacetic acid; beta-Indoleacetate; L-(+)- Lactic acid; Indolylacetic acid; L-e-N-Acetyllysine; Cysteine disulfide; Ne-acetyl-L-lysine; Indole acetic acid; Lactate, ammonium; N(6)-ACETYLLYSINE; N(Z)-Acetyllysine; indol-3-Ylacetate; N(Ζ)-acetyllysine; L-(+)-Lactic acid; Omega-acetyllsine; Indoleacetic acid; e-Acetyl-L-lysine; Indolyl-3-acetate; Indole-3-acetate; Indolacetic acid; Sarcolactic acid; N-e-Acetyllysine; Copper cystinate; 3-Indolylacetate; b-Indolylacetate; N(6)-Acetyllsine; e-N-Acetyllysine; Ammonium lactate; N6-Acetyllysine; (S)-(+)-Lactate; Ne-acetyllysine; b-Indoleacetate; (+)-Lactic acid; (alpha)-Lactate; (S)-Lactic acid; 3-Indoleacetate; Hypoxanthosine; Indolylacetate; L-(+)-Lactate; D-Lactic acid; iso-prinosine; L-Milchsaeure; Indoleacetate; L Lactic acid; 3,3-Dithiobis; D Lactic acid; L-(-)-Cystine; Trophicardyl; beta-Inosine; L-Dicysteine; Cystine acid; Gelucystine; lactic acid; (S)-Lactate; (+)-Lactate; (-)-Cystine; (-)-Inosine; Heteroauxin; Pantholic-L; Panholic-L; Rhizopon a; Dicysteine; L-Anserine; Ribonosine; Milk acid; L Cystine; alpha-IAA; L-Lactate; Balanine; beta-IAA; Inosinum; L-Cystin; Rhizopin; Ophidine; Inosina; Oxiamin; Lactate; Cystine; IES CPD; Inosie; Inosin; Inotin; Cystin; Atorel; Selfer; β-IAA; 3-IAA; α-IAA; e921; HXR; IES; INO; IAA; I; Indoleacetic acid



数据库引用编号

62 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(8)

代谢反应

1552 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(772)

INOH(1)

PlantCyc(772)

COVID-19 Disease Map(1)

PathBank(5)

PharmGKB(0)

73 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Sareeka Kumari, Anil Kumar, Ayush Lepcha, Rakshak Kumar. Cold-adapted Exiguobacterium sibiricum K1 as a potential bioinoculant in cold regions: Physiological and genomic elucidation of biocontrol and plant growth promotion. Gene. 2024 Jul; 916(?):148439. doi: 10.1016/j.gene.2024.148439. [PMID: 38583819]
  • Zhikai Wang, Ruihua Wang, Huanran Yuan, Fengfeng Fan, Shaoqing Li, Mingxing Cheng, Zhihong Tian. Comprehensive identification and analysis of DUF640 genes associated with rice growth. Gene. 2024 Jul; 914(?):148404. doi: 10.1016/j.gene.2024.148404. [PMID: 38521113]
  • Yanling Wang, Qi Wang, Fanhang Zhang, Chenyang Han, Wen Li, Mei Ren, Yueyang Wang, Kaijie Qi, Zhihua Xie, Shaoling Zhang, Shutian Tao. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. Plant science : an international journal of experimental plant biology. 2024 Jul; 344(?):112103. doi: 10.1016/j.plantsci.2024.112103. [PMID: 38657909]
  • Rajkumar Vasanthkumar, Venkidasamy Baskar, Sathasivam Vinoth, Kattilaparambil Roshna, Thomas Nancy Mary, Raman Alagupandi, Krishnagowdu Saravanan, Ramalingam Radhakrishnan, Muthukrishnan Arun, Packiaraj Gurusaravanan. Biogenic carbon quantum dots from marine endophytic fungi (Aspergillus flavus) to enhance the curcumin production and growth in Curcuma longa L. Plant physiology and biochemistry : PPB. 2024 Jun; 211(?):108644. doi: 10.1016/j.plaphy.2024.108644. [PMID: 38710114]
  • Xi-Tao Wang, Kai Yan, Tian-Hua Yu, Zhan-Nan Yang, Shi-Qiong Luo. A Single Latent Plant Growth-Promoting Endophyte BH46 Enhances Houttuynia cordata Thunb. Yield and Quality. Journal of agricultural and food chemistry. 2024 May; 72(21):12057-12071. doi: 10.1021/acs.jafc.3c08177. [PMID: 38753758]
  • Khammool Khamsuk, Bernard Dell, Wasu Pathom-Aree, Wanwarang Pathaichindachote, Nungruthai Suphrom, Nareeluk Nakaew, Juangjun Jumpathong. Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice. Journal of microbiology and biotechnology. 2024 May; 34(5):1029-1039. doi: 10.4014/jmb.2402.02008. [PMID: 38563101]
  • Craig L Cowling, Arielle L Homayouni, Jodi B Callwood, Maxwell R McReynolds, Jasper Khor, Haiyan Ke, Melissa A Draves, Katayoon Dehesh, Justin W Walley, Lucia C Strader, Dior R Kelley. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2024 May; 121(22):e2313216121. doi: 10.1073/pnas.2313216121. [PMID: 38781209]
  • Jin Wang, Lei Liu, Haiyan Zhang, Dilian Zhang, Zhen Dai, Xian Luo, Xiaoli Zhang, Hui Xia, Dong Liang, Xiulan Lv, Lijin Lin. Exogenous indole-3-acetic acid promotes the plant growth and accumulation of selenium in grapevine under selenium stress. BMC plant biology. 2024 May; 24(1):426. doi: 10.1186/s12870-024-05105-5. [PMID: 38769488]
  • Wenwen Li, Jie Li, Khateeb Hussain, Kaihao Peng, Jiaming Yu, Miaoqing Xu, Shiyong Yang. Transporters and phytohormones analysis reveals differential regulation of ryegrass (Lolium perenne L.) in response to cadmium and arsenic stresses. Journal of hazardous materials. 2024 May; 470(?):134228. doi: 10.1016/j.jhazmat.2024.134228. [PMID: 38626683]
  • Ewa Skała, Monika A Olszewska, Przemysław Tabaka, Agnieszka Kicel. Light-Emitting Diodes and Liquid System Affect the Caffeoylquinic Acid Derivative and Flavonoid Production and Shoot Growth of Rhaponticum carthamoides (Willd.) Iljin. Molecules (Basel, Switzerland). 2024 May; 29(9):. doi: 10.3390/molecules29092145. [PMID: 38731636]
  • Carlos Cortés-Albayay, Mabel Delgado-Torres, Giovanni Larama, Cecilia Paredes-Negron, María de la Luz Mora, Paola Durán, Patricio Javier Barra. Comparative genomics of plant growth promoting phosphobacteria isolated from acidic soils. Antonie van Leeuwenhoek. 2024 May; 117(1):76. doi: 10.1007/s10482-024-01961-1. [PMID: 38705910]
  • Jia Liu, Sumei Qiu, Tingting Xue, Yingdan Yuan. Physiology and transcriptome of Sapindus mukorossi seeds at different germination stages. Genomics. 2024 May; 116(3):110822. doi: 10.1016/j.ygeno.2024.110822. [PMID: 38471577]
  • Hongling Zeng, Kaiwei He, Qin He, Liting Xu, Wei Zhang, Xiang Lu, Yongyan Tang, Xiaobo Zhu, Junjie Yin, Min He, Xuewei Chen, Weitao Li. Exogenous Indole-3-Acetic Acid Suppresses Rice Infection of Magnaporthe oryzae by Affecting Plant Resistance and Fungal Growth. Phytopathology. 2024 May; 114(5):1050-1056. doi: 10.1094/phyto-10-23-0365-kc. [PMID: 38709298]
  • Meng-Yao Ma, Li-Li Hu, Wen-Yan Xu, Wei Zhang. L-tryptophan anaerobic fermentation for indole acetic acid production: Bacterial enrichment and effects of zero valent iron. Bioresource technology. 2024 May; 400(?):130691. doi: 10.1016/j.biortech.2024.130691. [PMID: 38599347]
  • S P Ramya Ranjan Nayak, Seenivasan Boopathi, Munisamy Chandrasekar, B Yamini, Vellapandian Chitra, Bader O Almutairi, Selvaraj Arokiyaraj, Ajay Guru, Jesu Arockiaraj. Indole-3 acetic acid induced cardiac hypertrophy in Wistar albino rats. Toxicology and applied pharmacology. 2024 May; 486(?):116917. doi: 10.1016/j.taap.2024.116917. [PMID: 38555004]
  • Yuanzhou Xu, Yunyun Li, Zhuoliang Xiao, Xinyue Zhang, Jiaguo Jiao, Huijuan Zhang, Huixin Li, Feng Hu, Li Xu. Endogenous IAA affected fluoranthene accumulation by regulating H+-ATPase and SOD activity in ryegrass. Ecotoxicology and environmental safety. 2024 May; 276(?):116315. doi: 10.1016/j.ecoenv.2024.116315. [PMID: 38614001]
  • Jiaxin Chen, Run Cai, Lu Tang, Dan Wang, Ruiwei Lv, Changhong Guo. Antagonistic activity and mechanism of Bacillus subtilis CG-6 suppression of root rot and growth promotion in Alfalfa. Microbial pathogenesis. 2024 May; 190(?):106616. doi: 10.1016/j.micpath.2024.106616. [PMID: 38492826]
  • Tiangang Qi, Weiqiang Yang, Muhammad Jawad Hassan, Jiefang Liu, Yujiao Yang, Qinyu Zhou, Hang Li, Yan Peng. Genome-wide identification of Aux/IAA gene family in white clover (Trifolium repens L.) and functional verification of TrIAA18 under different abiotic stress. BMC plant biology. 2024 Apr; 24(1):346. doi: 10.1186/s12870-024-05034-3. [PMID: 38684940]
  • Jinqing Zhang, Shuxia Li, Xueqin Gao, Yaling Liu, BingZhe Fu. Genome-wide identification and expression pattern analysis of the Aux/IAA (auxin/indole-3-acetic acid) gene family in alfalfa (Medicago sativa) and the potential functions under drought stress. BMC genomics. 2024 Apr; 25(1):382. doi: 10.1186/s12864-024-10313-2. [PMID: 38637768]
  • Nidhi Kandhol, Aakriti Srivastava, Padmaja Rai, Shivesh Sharma, Sangeeta Pandey, Vijay Pratap Singh, Durgesh Kumar Tripathi. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings. Journal of hazardous materials. 2024 Apr; 468(?):133134. doi: 10.1016/j.jhazmat.2023.133134. [PMID: 38387171]
  • Raheel Khan, Muhammad Junaid Sarwar, Muhammad Shabaan, Hafiz Naeem Asghar, Usman Zulfiqar, Irfan Iftikhar, Nazish Aijaz, Fasih Ullah Haider, Talha Chaudhary, Walid Soufan. Exploring the synergistic effects of indole acetic acid (IAA) and compost in the phytostabilization of nickel (Ni) in cauliflower rhizosphere. BMC plant biology. 2024 Apr; 24(1):275. doi: 10.1186/s12870-024-04920-0. [PMID: 38605329]
  • Raifa Abdul Aziz, Poornima Ramesh, Kokkarambath Vannadil Suchithra, Paul Stothard, Vanya Kadla Narayana, Shamprasad Varija Raghu, Fo-Ting Shen, Chiu-Chung Young, T S Keshava Prasad, Asif Hameed. Comprehensive insights into the impact of bacterial indole-3-acetic acid on sensory preferences in Drosophila melanogaster. Scientific reports. 2024 04; 14(1):8311. doi: 10.1038/s41598-024-58829-7. [PMID: 38594449]
  • Min Ji Byun, Hee Seung Seo, Joonghak Lee, Kitae Ban, Serim Oh, Yun Young Lee, Jaesung Lim, Na Kyeong Lee, Chi-Pin James Wang, Minjeong Kim, Jun-Hyeok Han, Juwon Park, Taejong Paik, Hee Ho Park, Tae-Eun Park, Wooram Park, Se-Na Kim, Dae-Hwan Park, Chun Gwon Park. Biofunctional Inorganic Layered Double Hydroxide Nanohybrid Enhances Immunotherapeutic Effect on Atopic Dermatitis Treatment. Small (Weinheim an der Bergstrasse, Germany). 2024 Apr; 20(17):e2304862. doi: 10.1002/smll.202304862. [PMID: 38050931]
  • Xiurong Chen, Xiaoyun Ye, Xiao Yu, Jiamin Zhao, Meijing Song, Danning Yin, Jiayu Yu. Analysis of the regulatory mechanism of exogenous IAA-mediated tryptophan accumulation and synthesis of endogenous IAA in Chlorococcum humicola. Chemosphere. 2024 Apr; 354(?):141633. doi: 10.1016/j.chemosphere.2024.141633. [PMID: 38442772]
  • Tatsuki Akabane, Nobuhiro Suzuki, Kazuyoshi Ikeda, Tomoki Yonezawa, Satoru Nagatoishi, Hiroyoshi Matsumura, Takuya Yoshizawa, Wataru Tsuchiya, Satoshi Kamino, Kouhei Tsumoto, Ken Ishimaru, Etsuko Katoh, Naoki Hirotsu. THOUSAND-GRAIN WEIGHT 6, which is an IAA-glucose hydrolase, preferentially recognizes the structure of the indole ring. Scientific reports. 2024 03; 14(1):6778. doi: 10.1038/s41598-024-57506-z. [PMID: 38514802]
  • Pooja Singh, Saumya Jaiswal, Durgesh Kumar Tripathi, Vijay Pratap Singh. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108461. doi: 10.1016/j.plaphy.2024.108461. [PMID: 38461754]
  • Xinyan Qu, Yingying Song, Qingjun Li, Qi Xu, Yanru Li, Huimin Zhang, Xuemei Cheng, Charles R Mackay, Quanbo Wang, Wei Liu. Indole-3-acetic acid ameliorates dextran sulfate sodium-induced colitis via the ERK signaling pathway. Archives of pharmacal research. 2024 Mar; 47(3):288-299. doi: 10.1007/s12272-024-01488-z. [PMID: 38489148]
  • Jiayu Yu, Biao Ding, Renjie Li, Xiurong Chen, Danning Yin, Meijing Song, Xiaoyun Ye. The efficient capture of polysaccharides in Tetradesmus obliquus of indole-3-acetic acid coupling sludge extraction. The Science of the total environment. 2024 Feb; 912(?):168963. doi: 10.1016/j.scitotenv.2023.168963. [PMID: 38065504]
  • Haoyue Zhang, Jiuxia Zhao, Jingling Zhang, Shuhan Wen, Shiqing Xie, Shengchao Yang, Junwen Chen, Yanli Zhou, Guangqiang Long. Low-concentration exogenous 3-indoleacetic acid improves fruit-setting rate of Marsdenia tenacissima by inhibiting the expression of embryo abortion-related genes. Gene. 2024 Jan; 893(?):147930. doi: 10.1016/j.gene.2023.147930. [PMID: 38381505]
  • Eliandro Espindula, Luciane Maria Pereira Passaglia. Maize-Azospirillum brasilense interaction: accessing maize's miRNA expression under the effect of an inhibitor of indole-3-acetic acid production by the plant. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2024 Jan; ?(?):. doi: 10.1007/s42770-023-01236-3. [PMID: 38214876]
  • Hassan Etesami, Bernard R Glick. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological research. 2024 Jan; 281(?):127602. doi: 10.1016/j.micres.2024.127602. [PMID: 38228017]
  • Jin-Long Zhou, Ashiwin Vadiveloo, Dong-Zhi Chen, Feng Gao. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. Water research. 2024 Jan; 248(?):120864. doi: 10.1016/j.watres.2023.120864. [PMID: 37979569]
  • Kaniz Fatema, Nur Uddin Mahmud, Dipali Rani Gupta, Md Nurealam Siddiqui, Tahsin Islam Sakif, Aniruddha Sarker, Andrew G Sharpe, Tofazzal Islam. Enhancing rice growth and yield with weed endophytic bacteria Alcaligenes faecalis and Metabacillus indicus under reduced chemical fertilization. PloS one. 2024; 19(5):e0296547. doi: 10.1371/journal.pone.0296547. [PMID: 38753661]
  • Qian Tang, Molly Tillmann, Jerry D Cohen. Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana. PloS one. 2024; 19(5):e0303992. doi: 10.1371/journal.pone.0303992. [PMID: 38776314]
  • Tatjana Popržen, Ivan Nikolić, Dijana Krstić-Milošević, Branka Uzelac, Milana Trifunović-Momčilov, Marija Marković, Olga Radulović. Characterization of the IAA-Producing and -Degrading Pseudomonas Strains Regulating Growth of the Common Duckweed (Lemna minor L.). International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417207. [PMID: 38139036]
  • Zi-Ang Li, Yi Li, Dan Liu, David P Molloy, Zhou-Fei Luo, Hai-Ou Li, Jing Zhao, Jing Zhou, Yi Su, Ruo-Zhong Wang, Chao Huang, Lang-Tao Xiao. YUCCA2 (YUC2)-Mediated 3-Indoleacetic Acid (IAA) Biosynthesis Regulates Chloroplast RNA Editing by Relieving the Auxin Response Factor 1 (ARF1)-Dependent Inhibition of Editing Factors in Arabidopsis thaliana. International journal of molecular sciences. 2023 Nov; 24(23):. doi: 10.3390/ijms242316988. [PMID: 38069311]
  • Lingjuan Tang, Daodong Li, Wei Liu, Yafang Sun, Ying Dai, Wenjing Cui, Xinliu Geng, Dayong Li, Fengming Song, Lijun Sun. Continuous In Vivo Monitoring of Indole-3-Acetic Acid and Salicylic Acid in Tomato Leaf Veins Based on an Electrochemical Microsensor. Biosensors. 2023 Nov; 13(12):. doi: 10.3390/bios13121002. [PMID: 38131762]
  • Renjie Li, Meijing Song, Danning Yin, Xiaoyun Ye, Jiayu Yu, Xiurong Chen. Indole-3-acetic acid mediated removal of sludge toxicity by microalgae: Focus on the role of extracellular polymeric substances. Bioresource technology. 2023 Nov; 387(?):129700. doi: 10.1016/j.biortech.2023.129700. [PMID: 37604255]
  • Barbara Molesini, Federica Pennisi, Nicola Vitulo, Tiziana Pandolfini. MicroRNAs associated with AGL6 and IAA9 function in tomato fruit set. BMC research notes. 2023 Sep; 16(1):242. doi: 10.1186/s13104-023-06510-z. [PMID: 37777779]
  • Xiao Yu, Jiamin Zhao, Meijing Song, Renjie Li, Yingying Yang, Xiaoyun Ye, Xiurong Chen. Analysis of the mechanism of exogenous indole-3-acetic acid on the enrichment of d-glucose in Chlorococcum humicola cultured by sludge extracts. The Science of the total environment. 2023 Aug; 902(?):166124. doi: 10.1016/j.scitotenv.2023.166124. [PMID: 37562626]
  • Ning Xu, Yue Song, Chenfan Zheng, Shan Li, Zhen Yang, Meng Jiang. Indole-3-acetic acid and zinc synergistically mitigate positively charged nanoplastic-induced damage in rice. Journal of hazardous materials. 2023 08; 455(?):131637. doi: 10.1016/j.jhazmat.2023.131637. [PMID: 37210880]
  • Miriam Rico-Jiménez, Salvador Muñoz-Mira, Cristina Lomas-Martínez, Tino Krell, Miguel A Matilla. Regulation of indole-3-acetic acid biosynthesis and consequences of auxin production deficiency in Serratia plymuthica. Microbial biotechnology. 2023 08; 16(8):1671-1689. doi: 10.1111/1751-7915.14296. [PMID: 37345981]
  • Muhammad Aizaz, Ibrahim Khan, Lubna, Sajjad Asaf, Saqib Bilal, Rahmatullah Jan, Abdul Latif Khan, Kyung-Min Kim, Ahmed Al-Harrasi. Enhanced Physiological and Biochemical Performance of Mung Bean and Maize under Saline and Heavy Metal Stress through Application of Endophytic Fungal Strain SL3 and Exogenous IAA. Cells. 2023 Jul; 12(15):. doi: 10.3390/cells12151960. [PMID: 37566039]
  • Mengjia Zhou, Ji Wang, Jing Zhou, Lin Liu, Ruixuan Yang, Jingjing Xu, Mingxiang Liang, Li Xu. Exogenous IAA application affects the specific characteristics of fluoranthene distribution in Arabidopsis. Ecotoxicology and environmental safety. 2023 Jul; 263(?):115306. doi: 10.1016/j.ecoenv.2023.115306. [PMID: 37515970]
  • Ghulam Mustafa Afridi, Naseem Ullah, Sami Ullah, Muhammad Nafees, Abid Khan, Raheem Shahzad, Rashid Jawad, Muhammad Adnan, Ke Liu, Matthew Tom Harrison, Shah Saud, Shah Hassan, Muhammad Hamzah Saleem, Durri Shahwar, Taufiq Nawaz, Khaled El-Kahtany, Shah Fahad. Modulation of salt stress through application of citrate capped silver nanoparticles and indole acetic acid in maize. Plant physiology and biochemistry : PPB. 2023 Jul; 201(?):107914. doi: 10.1016/j.plaphy.2023.107914. [PMID: 37515893]
  • Wael A Fathy, Hamada AbdElgawad, Amr H Hashem, Ehab Essawy, Eman Tawfik, Abdulaziz A Al-Askar, Mohamed S Abdelhameed, Ola Hammouda, Khaled N M Elsayed. Exploring Exogenous Indole-3-acetic Acid's Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145501. [PMID: 37513371]
  • Zhiying Guo, Qin Zhang, Yitong Zhang, Changlin Wu, Yijuan Zheng, Fupeng Tong, Linhui Zhang, Ruyu Lu, Xiusong Pan, Hexin Tan, Zongyou Lv. Effects of exogenous indole-3-acetic acid on the density of trichomes, expression of artemisinin biosynthetic genes, and artemisinin biosynthesis in Artemisia annua. Biotechnology and applied biochemistry. 2023 Jul; ?(?):. doi: 10.1002/bab.2489. [PMID: 37424116]
  • Uyen Thu Nguyen, Shashank K Pandey, Jungmook Kim. LBD18 and IAA14 antagonistically interact with ARF7 via the invariant Lys and acidic residues of the OPCA motif in the PB1 domain. Planta. 2023 Jun; 258(2):26. doi: 10.1007/s00425-023-04183-3. [PMID: 37354348]
  • Muhammad Imran, Clems Luzolo Mpovo, Muhammad Aaqil Khan, Shifa Shaffique, Daniel Ninson, Saqib Bilal, Murtaza Khan, Eun-Hae Kwon, Sang-Mo Kang, Byung-Wook Yun, In-Jung Lee. Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108489. [PMID: 37239837]
  • Manuel Pantoja-Guerra, Marleny Burkett-Cadena, Johanna Cadena, Christopher A Dunlap, Camilo A Ramírez. Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek. 2023 May; ?(?):. doi: 10.1007/s10482-023-01828-x. [PMID: 37138159]
  • Jéssica Teixeira da Silveira, Ana Priscila Centeno da Rosa, Michele Greque de Morais, Jorge Alberto Vieira Costa. Cost Reduction in the Production of Spirulina Biomass and Biomolecules from Indole-3-Acetic Acid Supplementation in Different Growth Phases. Applied biochemistry and biotechnology. 2023 May; 195(5):2882-2892. doi: 10.1007/s12010-022-04251-6. [PMID: 36441405]
  • Bo Ri Kim, Minjae Kim, Jung-Im Na, Chang-Hun Huh, Jung-Won Shin. A Randomized Split-Face Study of Photodynamic Therapy With St. John's Wort and Indole-3-Acetic Acid for the Treatment of Acne. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]. 2023 05; 49(5):483-488. doi: 10.1097/dss.0000000000003742. [PMID: 36946749]
  • Can Si, Danqi Zeng, Jaime A Teixeira da Silva, Shengxiang Qiu, Jun Duan, Song Bai, Chunmei He. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC genomics. 2023 Apr; 24(1):199. doi: 10.1186/s12864-023-09263-y. [PMID: 37055721]
  • Jorge Ricaño-Rodríguez, Celeste Ricaño-Rodríguez, Daniela Luis-Yong, Oswaldo Guzmán-López. [First evidence of nitrilase enzymatic activity of Xylaria sp. and its relationship with the biosynthesis of indole-3-acetic acid]. Revista Argentina de microbiologia. 2023 Apr; ?(?):. doi: 10.1016/j.ram.2023.01.008. [PMID: 37024343]
  • Yadong Hu, Hongjie Li, Yaoyi Chen, Qiling Zhang, Shigang Zheng, Dan Rao, Ze Chun, Ruoxi Zhao. Paenibacillus dendrobii sp. nov., an indole-3-acetic acid-producing endophytic bacterium isolated from Dendrobium nobile. International journal of systematic and evolutionary microbiology. 2023 Apr; 73(4):. doi: 10.1099/ijsem.0.005824. [PMID: 37040428]
  • Saad Hanif, Muhammad Bilal, Syeda Nasreen, Muhammad Latif, Muhammad Zia. Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa. Journal of biotechnology. 2023 Mar; 367(?):53-61. doi: 10.1016/j.jbiotec.2023.03.008. [PMID: 36990354]
  • Cheng Zhang, Yi Yang, Zhibo Yu, Jun Wang, Ruihua Huang, Qiuna Zhan, Shangze Li, Jianbin Lai, Shengchun Zhang, Chengwei Yang. SUMO E3 ligase AtMMS21-dependent SUMOylation of AUXIN/INDOLE-3-ACETIC ACID 17 regulates auxin signaling. Plant physiology. 2023 03; 191(3):1871-1883. doi: 10.1093/plphys/kiac553. [PMID: 36464768]
  • Qingrong Li, Wenbo Zhang, Sentai Liao, Dongxu Xing, Yang Xiao, Donglai Zhou, Qiong Yang. Mechanism of lead adsorption by a Bacillus cereus strain with indole-3-acetic acid secretion and inorganic phosphorus dissolution functions. BMC microbiology. 2023 03; 23(1):57. doi: 10.1186/s12866-023-02795-z. [PMID: 36869296]
  • Lucas Dantas Lopes, Stephanie L Futrell, Emma Bergmeyer, Jingjie Hao, Daniel P Schachtman. Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. FEMS microbiology ecology. 2023 Mar; ?(?):. doi: 10.1093/femsec/fiad019. [PMID: 36861302]
  • Lei Lei, Jing-Ya Zhang, Dan Pu, Bing-Zhu Liu, Xian-Min Meng, Qing-Mao Shang, Yun-Dan Duan, Feng Zhang, Meng-Xia Zhang, Chun-Juan Dong. ABA-responsive AREB1/ABI3-1/ABI5 cascade regulates IAA oxidase gene SlDAO2 to inhibit hypocotyl elongation in tomato. Plant, cell & environment. 2023 02; 46(2):498-517. doi: 10.1111/pce.14491. [PMID: 36369997]
  • Meng Wu, Chenhui Yin, Zhixin Liu, Mengyuan Wang, Qijun Sun, Na Niu, Ligang Chen. Biocompatible Fluorescent Biosensor Reveals the Level and Distribution of Indole-3-Acetic Acid Signals in Plants. Analytical chemistry. 2023 01; 95(2):1385-1394. doi: 10.1021/acs.analchem.2c04334. [PMID: 36577018]
  • Xiang-Lin Zhuge, Xin Du, Zhi-Jing Xiu, Cheng-Cheng He, Yi-Ming Wang, Hai-Ling Yang, Xue-Min Han. Discovery of specific catalytic activity toward IAA/FA by LaSABATHs based on genome-wide phylogenetic and enzymatic analysis of SABATH gene family from Larix kaempferi. International journal of biological macromolecules. 2023 Jan; 225(?):1562-1574. doi: 10.1016/j.ijbiomac.2022.11.212. [PMID: 36442561]
  • Chengqiang Zhu, Runhai Jiang, Shaofu Wen, Tiyuan Xia, Saiyong Zhu, Xiuli Hou. Foliar spraying of indoleacetic acid (IAA) enhances the phytostabilization of Pb in naturally tolerant ryegrass by limiting the root-to-shoot transfer of Pb and improving plant growth. PeerJ. 2023; 11(?):e16560. doi: 10.7717/peerj.16560. [PMID: 38111653]
  • Everthon Fernandes Figueredo, Thiago Angelo da Cruz, Jaqueline Raquel de Almeida, Bruna Durante Batista, Joelma Marcon, Pedro Avelino Maia de Andrade, Carolina Alessandra de Almeida Hayashibara, Mauricio Santos Rosa, João Lúcio Azevedo, Maria Carolina Quecine. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological research. 2023 Jan; 266(?):127218. doi: 10.1016/j.micres.2022.127218. [PMID: 36242861]
  • Jishma Panichikkal, Deepa P Mohanan, Sreekanth Koramkulam, Radhakrishnan E Krishnankutty. Chitosan nanoparticles augmented indole-3-acetic acid production by rhizospheric Pseudomonas monteilii. Journal of basic microbiology. 2022 Dec; 62(12):1467-1474. doi: 10.1002/jobm.202100358. [PMID: 35510957]
  • Arash Hemati, Hossein Ali Alikhani, Mehdi Babaei, Ladan Ajdanian, Behnam Asgari Lajayer, Eric D van Hullebusch. Effects of foliar application of humic acid extracts and indole acetic acid on important growth indices of canola (Brassica napus L.). Scientific reports. 2022 11; 12(1):20033. doi: 10.1038/s41598-022-21997-5. [PMID: 36414656]
  • Yanlin Li, Mingdian Zhou, Chunxing Li, Xiaofang Pan, Nan Lv, Zhilong Ye, Gefu Zhu, Quanbao Zhao, Guanjing Cai. Inoculating indoleacetic acid bacteria promotes the enrichment of halotolerant bacteria during secondary fermentation of composting. Journal of environmental management. 2022 Nov; 322(?):116021. doi: 10.1016/j.jenvman.2022.116021. [PMID: 36067675]
  • Shuo Zhao, Xuewen Zhao, Xuefeng Xu, Zhenhai Han, Changpeng Qiu. Transcription Factor IAA27 Positively Regulates P Uptake through Promoted Adventitious Root Development in Apple Plants. International journal of molecular sciences. 2022 Nov; 23(22):. doi: 10.3390/ijms232214029. [PMID: 36430505]
  • Nguyen Thi Kim Thoa, Doan Thi Hong Mai, Brui Long Hiu, Cao Anh Duong, Nguyen Ngoc Bao Chau, Nguyen Mai Nghiep, Nguyen Van Minh, Nguyen Bao Quoc. Roles of β-Indole Acetic Acid (IAA) Producing Endophytic Bacteria on the Recovery of Plant Growth and Survival Ability of Sugarcane Infected White Leaf Disease (SWLD). Current microbiology. 2022 Nov; 79(12):389. doi: 10.1007/s00284-022-03091-1. [PMID: 36329346]
  • Ling Sun, Songzhi Xu, Yihui Tang, Yuhang Zhou, Meng Wang, Yiran Tian, Guangxi Li, Xinyu Zhu, Ning Bao, Lijun Sun. Disposable stainless steel working electrodes for sensitive and simultaneous detection of indole-3-acetic acid and salicylic acid in Arabidopsis thaliana leaves under biotic stresses. Analytical and bioanalytical chemistry. 2022 Nov; 414(26):7721-7730. doi: 10.1007/s00216-022-04303-0. [PMID: 36068347]
  • Min Zhang, Chunxue Gao, Ling Xu, Hui Niu, Qian Liu, Yixiao Huang, Guoshuai Lv, Hengshan Yang, Minhui Li. Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells. 2022 10; 11(20):. doi: 10.3390/cells11203250. [PMID: 36291118]
  • Wiem Mnafgui, Hichem Hajlaoui, Valeria Rizzo, Giuseppe Muratore, Amine Elleuch. Priming with EDTA, IAA and Fe alleviates Pb toxicity in Trigonella Foneum graecum L. growth: Phytochemicals and secondary metabolites. Journal of biotechnology. 2022 Sep; 356(?):42-50. doi: 10.1016/j.jbiotec.2022.07.006. [PMID: 35914618]
  • Muhammad Junaid Yousaf, Anwar Hussain, Muhammad Hamayun, Amjad Iqbal, Waheed Murad, Ayaz Ahmad. Exposure of Brassica to Red Light Antagonizes Low Production of Indole-3-Acetic Acid in Leaf Through Root Signaling Under Stress Conditions. Photochemistry and photobiology. 2022 07; 98(4):874-885. doi: 10.1111/php.13572. [PMID: 34870857]
  • Lu-Fan Li, Lian Xu, Wen-Hao Li, Ji-Quan Sun. Sinomicrobium kalidii sp. nov., an indole-3-acetic acid-producing endophyte from a shoot of halophyte Kalidium cuspidatum. International journal of systematic and evolutionary microbiology. 2022 Jul; 72(7):. doi: 10.1099/ijsem.0.005452. [PMID: 35819407]
  • Xiaoyang Xu, Jihai Zhou, Kun Chen, Yang Wang, Yanmei Ai, Chenyang Zhang, Shoubiao Zhou. Effect of indole-3-acetic acid supplementation on the physiology of Lolium perenne L. and microbial activity in cadmium-contaminated soil. Environmental science and pollution research international. 2022 Jul; 29(35):52483-52492. doi: 10.1007/s11356-022-19417-2. [PMID: 35258728]
  • Luis Gerardo Sarmiento-López, Melina López-Meyer, Ignacio Eduardo Maldonado-Mendoza, Francisco Roberto Quiroz-Figueroa, Gabriela Sepúlveda-Jiménez, Mario Rodríguez-Monroy. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. Journal of bioscience and bioengineering. 2022 Jul; 134(1):21-28. doi: 10.1016/j.jbiosc.2022.03.007. [PMID: 35461767]
  • Shuna Li, Qingqing Li, Xiao Tian, Lijun Mu, Meiling Ji, Xiaoping Wang, Na Li, Fei Liu, Jing Shu, Nigel M Crawford, Yong Wang. PHB3 regulates lateral root primordia formation via NO-mediated degradation of AUXIN/INDOLE-3-ACETIC ACID proteins. Journal of experimental botany. 2022 06; 73(12):4034-4045. doi: 10.1093/jxb/erac115. [PMID: 35303089]
  • Yueqin Fan, Kefei Yu, Huabao Zheng, Yinyan Chen, Ruojin Zhao, Yiyi Li, Zhanwang Zheng. A high-yielding strain of indole-3-acetic acid isolated from food waste compost: metabolic pathways, optimization of fermentation conditions, and application. Environmental technology. 2022 Jun; ?(?):1-11. doi: 10.1080/09593330.2022.2082889. [PMID: 35678156]
  • Jishma Panichikkal, Radhakrishnan E Krishnankutty. Chitosan and Gold Nanoparticles Supplementation for Augmentation of Indole-3-Acetic Acid Production by Rhizospheric Pseudomonas aeruginosa and Plant Growth Enhancement. Current microbiology. 2022 May; 79(6):185. doi: 10.1007/s00284-022-02850-4. [PMID: 35524857]
  • Jorge A Barbosa-Nuñez, Oskar A Palacios, Luz E de-Bashan, Raúl Snell-Castro, Rosa Isela Corona-González, Francisco J Choix. Active indole-3-acetic acid biosynthesis by the bacterium Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. Journal of applied microbiology. 2022 May; 132(5):3650-3663. doi: 10.1111/jam.15509. [PMID: 35233885]
  • Nadeeshani Karannagoda, Antanas Spokevicius, Steven Hussey, Hua Cassan-Wang, Jacqueline Grima-Pettenati, Gerd Bossinger. Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. Plant molecular biology. 2022 May; 109(1-2):51-65. doi: 10.1007/s11103-022-01255-y. [PMID: 35292886]
  • Minchung Kang, Taegun Seo. Rhizobium setariae sp. nov., an Indole-3-Acetic Acid-Producing Bacterium Isolated from Green Foxtail, Setaria viridis. Current microbiology. 2022 Apr; 79(6):162. doi: 10.1007/s00284-022-02860-2. [PMID: 35435479]
  • Sujit Shah, Biva Shah, Rohit Sharma, Bhagwan Rekadwad, Yogesh S Shouche, Jyotsna Sharma, Bijaya Pant. Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production. BMC microbiology. 2022 04; 22(1):101. doi: 10.1186/s12866-022-02507-z. [PMID: 35418028]
  • Sami Ullah, Sara Ali, Afroz Binte Abid, Muhammad Nafees. Modulating response of Zea mays to induced salinity stress through application of nitrate mediated silver nanoparticles and indole acetic acid. Microscopy research and technique. 2022 Mar; 85(3):1135-1145. doi: 10.1002/jemt.23982. [PMID: 34775653]
  • Sajad Papi, Hassan Ahmadvand, Fattah Sotoodehnejadnematalahi, Parichehreh Yaghmaei. The Protective Effects of Indole-Acetic Acid on the Renal Ischemia-Reperfusion Injury via Antioxidant and Antiapoptotic Properties in A Rat Model. Iranian journal of kidney diseases. 2022 03; 16(2):125-134. doi: . [PMID: 35489081]
  • Zhenning Teng, Huihui Yu, Guanqun Wang, Shuan Meng, Bohan Liu, Yake Yi, Yinke Chen, Qin Zheng, Ling Liu, Jianchang Yang, Meijuan Duan, Jianhua Zhang, Nenghui Ye. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. The Plant journal : for cell and molecular biology. 2022 03; 109(6):1457-1472. doi: 10.1111/tpj.15642. [PMID: 34921476]
  • K Chinachanta, A Shutsrirung, L Herrmann, D Lesueur. Isolation and characterization of KDML105 aromatic rice rhizobacteria producing indole-3-acetic acid: impact of organic and conventional paddy rice practices. Letters in applied microbiology. 2022 Mar; 74(3):354-366. doi: 10.1111/lam.13602. [PMID: 34784062]
  • Samia Faiz, Anis Ali Shah, Naima Huma Naveed, Anila Nijabat, Nasim Ahmad Yasin, Aima Iram Batool, Hayssam M Ali, Talha Javed, Phillip W Simon, Aamir Ali. Synergistic application of silver nanoparticles and indole acetic acid alleviate cadmium induced stress and improve growth of Daucus carota L. Chemosphere. 2022 Mar; 290(?):133200. doi: 10.1016/j.chemosphere.2021.133200. [PMID: 34914957]
  • Maura Santos Reis de Andrade da Silva, Orlando Carlos Huertas Tavares, Isabelly Santos Rosado de Oliveira, Camilla Santos Reis de Andrade da Silva, Carolina Santos Reis de Andrade da Silva, Márcia Soares Vidal, Vera Lúcia Divan Baldani, Ederson da Conceição Jesus. Stimulatory effects of defective and effective 3-indoleacetic acid-producing bacterial strains on rice in an advanced stage of its vegetative cycle. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2022 Mar; 53(1):281-288. doi: 10.1007/s42770-021-00651-8. [PMID: 35060090]
  • Jonathan Lombardino, Swati Bijlani, Nitin K Singh, Jason M Wood, Richard Barker, Simon Gilroy, Clay C C Wang, Kasthuri Venkateswaran. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiology spectrum. 2022 02; 10(1):e0199421. doi: 10.1128/spectrum.01994-21. [PMID: 35019675]
  • Romain Vial, Stéphane Poitevin, Nathalie McKay, Stéphane Burtey, Claire Cerini. Tryptophan Metabolites Regulate Neuropentraxin 1 Expression in Endothelial Cells. International journal of molecular sciences. 2022 Feb; 23(4):. doi: 10.3390/ijms23042369. [PMID: 35216489]
  • Adeela Naureen, Faiz-Ul H Nasim, Muhammad S Choudhary, Muhammad Ashraf, Florian M W Grundler, A Sylvia S Schleker. A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Archives of microbiology. 2022 Feb; 204(3):181. doi: 10.1007/s00203-022-02768-2. [PMID: 35175443]
  • Sara Bernardo, Lia-Tânia Dinis, Nelson Machado, Ana Barros, Marta Pitarch-Bielsa, Aureliano C Malheiro, Aurelio Gómez-Cadenas, José Moutinho-Pereira. Uncovering the effects of kaolin on balancing berry phytohormones and quality attributes of Vitis vinifera grown in warm-temperate climate regions. Journal of the science of food and agriculture. 2022 Jan; 102(2):782-793. doi: 10.1002/jsfa.11413. [PMID: 34227127]
  • Arnaud-Thierry Djami-Tchatchou, Zipeng Alex Li, Paul Stodghill, Melanie J Filiatrault, Barbara N Kunkel. Identification of Indole-3-Acetic Acid-Regulated Genes in Pseudomonas syringae pv. tomato Strain DC3000. Journal of bacteriology. 2022 01; 204(1):e0038021. doi: 10.1128/jb.00380-21. [PMID: 34662236]
  • Shaohuan Li, Muhammad Mobeen Tahir, Tong Wu, Lingling Xie, Xiaoyun Zhang, Jiangping Mao, Anam Ayyoub, Libo Xing, Dong Zhang, Yun Shao. Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. International journal of molecular sciences. 2022 Jan; 23(2):. doi: 10.3390/ijms23020976. [PMID: 35055162]
  • Aishwarya Sharma, Kanchan Vishwakarma, Nand Kumar Singh, Ved Prakash, Naleeni Ramawat, Rajendra Prasad, Shivendra Sahi, Vijay Pratap Singh, Durgesh Kumar Tripathi, Shivesh Sharma. Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (CrVI) toxicity in Oryza sativa seedlings. Journal of biotechnology. 2022 Jan; 343(?):71-82. doi: 10.1016/j.jbiotec.2021.09.005. [PMID: 34534595]
  • Shubhra Khare, N B Singh, Niharika, Ajey Singh, Nimisha Amist, Zeba Azim, Ravi Kumar Yadav. Phytochemicals mitigation of Brassica napus by IAA grown under Cd and Pb toxicity and its impact on growth responses of Anagallis arvensis. Journal of biotechnology. 2022 Jan; 343(?):83-95. doi: 10.1016/j.jbiotec.2021.12.001. [PMID: 34864124]
  • Geeta Chhetri, Inhyup Kim, Minchung Kang, Jiyoun Kim, Yoonseop So, Taegun Seo. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants. Journal of microbiology (Seoul, Korea). 2022 Jan; 60(1):1-10. doi: 10.1007/s12275-022-1474-8. [PMID: 34826099]
  • Yunhua Xiao, Hongmei Liu, Rui Chen, Shuming Liu, Xiaodong Hao, Jun Fang. Heteroauxin-producing bacteria enhance the plant growth and lead uptake of Miscanthus floridulus (Lab.). International journal of phytoremediation. 2022; 24(11):1205-1212. doi: 10.1080/15226514.2021.2024134. [PMID: 34995152]