Aminoadipic acid (BioDeep_00000001297)
Secondary id: BioDeep_00000227599, BioDeep_00000398048, BioDeep_00000399892, BioDeep_00000405290, BioDeep_00000408272
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H11NO4 (161.0688046)
中文名称: 2-氨基己二酸水合物, L-2-氨基己二酸, DL-α-氨基己二酸, 氨基己二酸, 2-氨基己二酸, L-α-氨基己二酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.37%
Last reviewed on 2024-07-01.
Cite this Page
Aminoadipic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/aminoadipic_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001297). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC(C(=O)O)N)CC(=O)O
InChI: InChI=1S/C6H11NO4/c7-4(6(10)11)2-1-3-5(8)9/h4H,1-3,7H2,(H,8,9)(H,10,11)
描述信息
Aminoadipic acid (CAS: 542-32-5), also known as 2-aminoadipate, is a metabolite in the principal biochemical pathway of lysine. It is an intermediate in the metabolism (i.e. breakdown or degradation) of lysine and saccharopine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor N-methyl-D-aspartate (NMDA). Aminoadipic acid has also been shown to inhibit the production of kynurenic acid, a broad spectrum excitatory amino acid receptor antagonist, in brain tissue slices (PMID: 8566117). Recent studies have shown that aminoadipic acid is elevated in prostate biopsy tissues from prostate cancer patients (PMID: 23737455). Mutations in DHTKD1 (dehydrogenase E1 and transketolase domain-containing protein 1) have been shown to cause human 2-aminoadipic aciduria and 2-oxoadipic aciduria via impaired decarboxylation of 2-oxoadipate to glutaryl-CoA, which is the last step in the lysine degradation pathway (PMID: 23141293). Aging, diabetes, sepsis, and renal failure are known to catalyze the oxidation of lysyl residues to form 2-aminoadipic acid in human skin collagen and potentially other tissues (PMID: 18448817). Proteolytic breakdown of these tissues can lead to the release of free 2-aminoadipic acid. Studies in rats indicate that aminoadipic acid (along with the three branched-chain amino acids: leucine, valine, and isoleucine) levels are elevated in the pre-diabetic phase and so aminoadipic acid may serve as a predictive biomarker for the development of diabetes (PMID: 15389298). Long-term hyperglycemia of endothelial cells can also lead to elevated levels of aminoadipate which is thought to be a sign of lysine breakdown through oxidative stress and reactive oxygen species (ROS) (PMID: 21961526). 2-Aminoadipate is a potential small-molecule marker of oxidative stress (PMID: 21647514). Therefore, depending on the circumstances aminoadipic acid can act as an acidogen, a diabetogen, an atherogen, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A diabetogen is a compound that can lead to type 2 diabetes. An atherogen is a compound that leads to atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of aminoadipic acid are associated with at least two inborn errors of metabolism including 2-aminoadipic aciduria and 2-oxoadipic aciduria. Aminoadipic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a diabetogen, serum aminoadipic levels appear to regulate glucose homeostasis and have been highly predictive of individuals who later develop diabetes (PMID: 24091325). In particular, aminoadipic acid lowers fasting plasma glucose levels and enhances insulin secretion from human islets. As an atherogen, aminoadipic acid has been found to be produced at high levels via protein lysine oxidation in atherosclerotic plaques (PMID: 28069522).
A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA).
L-α-Aminoadipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-90-7 (retrieved 2024-07-01) (CAS RN: 1118-90-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
同义名列表
26 个代谢物同义名
(2S)-2-Azaniumyl-6-hydroxy-6-oxohexanoate; (2S)-2-Aminohexanedioic acid; (S)-2-Aminohexanedioic acid; L-2-Aminohexanedioic acid; L-alpha-Aminoadipic acid; 2-Aminohexanedioic acid; (S)-2-Aminohexanedioate; (S)-2-Aminoadipic acid; alpha-Aminoadipic acid; L-2-Aminohexanedioate; L-2-Aminoadipic acid; L-Α-aminoadipic acid; L-alpha-Aminoadipate; L-a-Aminoadipic acid; α-Aminoadipic acid; L-Aminoadipic acid; 2-Aminoadipic acid; L-Α-aminoadipate; L-a-Aminoadipate; L-2-Aminoadipate; Aminoadipic acid; 2-Aminoadipate; a-Aminoadipate; Aminoadipate; Aminoadipic acid; L-2-Aminoadipic acid
数据库引用编号
36 个数据库交叉引用编号
- ChEBI: CHEBI:37024
- ChEBI: CHEBI:37023
- KEGG: C00956
- PubChem: 92136
- HMDB: HMDB0000510
- Metlin: METLIN3271
- ChEMBL: CHEMBL433238
- ChEMBL: CHEMBL88804
- Wikipedia: Alpha-Aminoadipic_acid
- MeSH: 2-Aminoadipic Acid
- MetaCyc: CPD-468
- KNApSAcK: C00007393
- foodb: FDB021812
- chemspider: 83182
- CAS: 1118-90-7
- MoNA: KO000169
- MoNA: KO002261
- MoNA: PR100296
- MoNA: PS063801
- MoNA: KO002259
- MoNA: KO000166
- MoNA: KO002262
- MoNA: KO000170
- MoNA: KO000168
- MoNA: KO002258
- MoNA: PS063802
- MoNA: KO000167
- MoNA: PR100729
- MoNA: KO002260
- PMhub: MS000000281
- PDB-CCD: UN1
- 3DMET: B01358
- NIKKAJI: J38.125J
- RefMet: Aminoadipic acid
- medchemexpress: HY-113328
- LOTUS: LTS0221318
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
302 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(3)
- Vitamin B6-dependent and responsive disorders:
L-lysine ⟶ Saccharopine
- Cerebral organic acidurias, including diseases:
L-2-Aminoadipic acid ⟶ 2-Oxoadipic acid
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(272)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
INOH(3)
- Lysine degradation ( Lysine degradation ):
2-Oxo-glutaric acid + L-Lysine + NADH ⟶ H2O + L-Saccharopine + NAD+
- L-2-Amino-adipic acid + 2-Oxo-glutaric acid = 2-Oxo-adipic acid + L-Glutamic acid ( Lysine degradation ):
2-Oxo-glutaric acid + L-2-Amino-adipic acid ⟶ 2-Oxo-adipic acid + L-Glutamic acid
- NAD+ + L-2-Amino-adipate 6-semialdehyde + H2O = NADH + L-2-Amino-adipic acid ( Lysine degradation ):
H2O + L-2-Amino-adipate 6-semialdehyde + NAD+ ⟶ L-2-Amino-adipic acid + NADH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(24)
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Metabolism:
Adenosine triphosphate + Aminoadipic acid + holo-[LYS2 peptidyl-carrier-protein] ⟶ Adenosine monophosphate + L-2-aminoadipyl-[LYS2 peptidyl-carrier-protein] + Pyrophosphate
- Lysine Metabolism:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
PharmGKB(0)
78 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0221318
- 4890 - Ascomycota: LTS0221318
- 2 - Bacteria: LTS0221318
- 5204 - Basidiomycota: LTS0221318
- 6237 - Caenorhabditis: LTS0221318
- 6239 - Caenorhabditis elegans: 10.1039/C3MB25539E
- 6239 - Caenorhabditis elegans: 10.1186/1471-2164-13-36
- 6239 - Caenorhabditis elegans: LTS0221318
- 415760 - Caylusea: LTS0221318
- 415761 - Caylusea abyssinica: 10.1016/S0031-9422(00)83801-7
- 415761 - Caylusea abyssinica: LTS0221318
- 7711 - Chordata: LTS0221318
- 119089 - Chromadorea: LTS0221318
- 3394 - Cycadaceae: LTS0221318
- 3296 - Cycadopsida: LTS0221318
- 3395 - Cycas: LTS0221318
- 3397 - Cycas circinalis: 10.1055/S-2006-958002
- 3397 - Cycas circinalis: LTS0221318
- 3396 - Cycas revoluta: 10.1016/S0031-9422(96)00866-7
- 3396 - Cycas revoluta: LTS0221318
- 58031 - Cycas rumphii: 10.1055/S-2006-958002
- 58031 - Cycas rumphii: LTS0221318
- 2759 - Eukaryota: LTS0221318
- 3803 - Fabaceae: LTS0221318
- 38944 - Flammulina: LTS0221318
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0221318
- 4751 - Fungi: LTS0221318
- 9604 - Hominidae: LTS0221318
- 9605 - Homo: LTS0221318
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0221318
- 3853 - Lathyrus: LTS0221318
- 3860 - Lathyrus sativus: 10.1016/0021-9673(94)00777-2
- 3860 - Lathyrus sativus: LTS0221318
- 3398 - Magnoliopsida: LTS0221318
- 40674 - Mammalia: LTS0221318
- 3879 - Medicago sativa: -
- 33208 - Metazoa: LTS0221318
- 6231 - Nematoda: LTS0221318
- 862241 - Physalacriaceae: LTS0221318
- 3887 - Pisum: LTS0221318
- 3888 - Pisum sativum: 10.3891/ACTA.CHEM.SCAND.16-0514
- 3888 - Pisum sativum: LTS0221318
- 3754 - Prunus: LTS0221318
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0221318
- 3889 - Psophocarpus: LTS0221318
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0221318
- 26958 - Resedaceae: LTS0221318
- 6243 - Rhabditidae: LTS0221318
- 3745 - Rosaceae: LTS0221318
- 4895 - Schizosaccharomyces: LTS0221318
- 4896 - Schizosaccharomyces pombe: LTS0221318
- 4894 - Schizosaccharomycetaceae: LTS0221318
- 147554 - Schizosaccharomycetes: LTS0221318
- 1883 - Streptomyces: LTS0221318
- 1901 - Streptomyces clavuligerus: 10.1111/J.1749-6632.1996.TB40543.X
- 1901 - Streptomyces clavuligerus: 10.1128/JB.173.3.985-988.1991
- 1901 - Streptomyces clavuligerus: 10.1186/1471-2180-13-296
- 1901 - Streptomyces clavuligerus: LTS0221318
- 1901 - Streptomyces clavuligerus: NA
- 2062 - Streptomycetaceae: LTS0221318
- 35493 - Streptophyta: LTS0221318
- 9821 - Suidae: LTS0221318
- 9822 - Sus: LTS0221318
- 9823 - Sus scrofa: LTS0221318
- 9825 - Sus scrofa domesticus: 10.1007/S11306-012-0441-5
- 9825 - Sus scrofa domesticus: LTS0221318
- 415978 - Sus scrofa scrofa: 10.1007/S11306-012-0441-5
- 415978 - Sus scrofa scrofa: LTS0221318
- 58023 - Tracheophyta: LTS0221318
- 3913 - Vigna: LTS0221318
- 157791 - Vigna radiata: 10.1016/0031-9422(86)88023-2
- 157791 - Vigna radiata: LTS0221318
- 33090 - Viridiplantae: LTS0221318
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dietmar Funck, Malte Sinn, Giuseppe Forlani, Jörg S Hartig. Guanidine production by plant homoarginine-6-hydroxylases.
eLife.
2024 Apr; 12(?):. doi:
10.7554/elife.91458
. [PMID: 38619227] - Mingjian Shi, Chuan Wang, Hao Mei, Marinella Temprosa, Jose C Florez, Mark Tripputi, Jordi Merino, Loren Lipworth, Xiao-Ou Shu, Robert E Gerszten, Thomas J Wang, Joshua A Beckman, Jorge L Gamboa, Jonathan D Mosley, Jane F Ferguson. Genetic Architecture of Plasma Alpha-Aminoadipic Acid Reveals a Relationship With High-Density Lipoprotein Cholesterol.
Journal of the American Heart Association.
2022 06; 11(11):e024388. doi:
10.1161/jaha.121.024388
. [PMID: 35621206] - Yedi Zhou, Yu Xu, Xiang Zhang, Qian Huang, Wei Tan, Yonghui Yang, Xiaori He, Shigeo Yoshida, Peiquan Zhao, Yun Li. Plasma levels of amino acids and derivatives in retinopathy of prematurity.
International journal of medical sciences.
2021; 18(15):3581-3587. doi:
10.7150/ijms.63603
. [PMID: 34522185] - Chi-Jen Lo, Yu-Shien Ko, Su-Wei Chang, Hsiang-Yu Tang, Cheng-Yu Huang, Yu-Chen Huang, Hung-Yao Ho, Chih-Ming Lin, Mei-Ling Cheng. Metabolic signatures of muscle mass loss in an elderly Taiwanese population.
Aging.
2020 12; 13(1):944-956. doi:
10.18632/aging.202209
. [PMID: 33410783] - João Leandro, Tetyana Dodatko, Robert J DeVita, Hongjie Chen, Brandon Stauffer, Chunli Yu, Sander M Houten. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1.
Journal of inherited metabolic disease.
2020 11; 43(6):1154-1164. doi:
10.1002/jimd.12276
. [PMID: 32567100] - Matias Estaras, Fatma Z Ameur, Mario Estévez, Silvia Díaz-Velasco, Antonio Gonzalez. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Nov; 145(?):111594. doi:
10.1016/j.fct.2020.111594
. [PMID: 32738373] - Juliette Bouchereau, Manuel Schiff. Inherited Disorders of Lysine Metabolism: A Review.
The Journal of nutrition.
2020 10; 150(Suppl 1):2556S-2560S. doi:
10.1093/jn/nxaa112
. [PMID: 33000154] - Cristina Razquin, Miguel Ruiz-Canela, Clary B Clish, Jun Li, Estefania Toledo, Courtney Dennis, Liming Liang, Albert Salas-Huetos, Kerry A Pierce, Marta Guasch-Ferré, Dolores Corella, Emilio Ros, Ramon Estruch, Enrique Gómez-Gracia, Montse Fitó, Jose Lapetra, Dora Romaguera, Angel Alonso-Gómez, Lluis Serra-Majem, Jordi Salas-Salvadó, Frank B Hu, Miguel A Martínez-González. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies.
Cardiovascular diabetology.
2019 11; 18(1):151. doi:
10.1186/s12933-019-0958-2
. [PMID: 31722714] - Wang-Yang Xu, Yan Shen, Houbao Zhu, Junhui Gao, Chen Zhang, Lingyun Tang, Shun-Yuan Lu, Chun-Ling Shen, Hong-Xin Zhang, Ziwei Li, Peng Meng, Ying-Han Wan, Jian Fei, Zhu-Gang Wang. 2-Aminoadipic acid protects against obesity and diabetes.
The Journal of endocrinology.
2019 11; 243(2):111-123. doi:
10.1530/joe-19-0157
. [PMID: 31454789] - Mario Estévez, Patricia Padilla, Leila Carvalho, Lourdes Martín, Ana Carrapiso, Josué Delgado. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins.
Redox biology.
2019 09; 26(?):101277. doi:
10.1016/j.redox.2019.101277
. [PMID: 31352127] - Jiao Xue, Junjuan Wang, Pan Gong, Minhang Wu, Wenshuang Yang, Shiju Jiang, Ye Wu, Yuwu Jiang, Yuehua Zhang, Tatiana Yuzyuk, Hong Li, Zhixian Yang. Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy.
Scientific reports.
2019 08; 9(1):11371. doi:
10.1038/s41598-019-47882-2
. [PMID: 31388081] - Ganesh V Halade, Vasundhara Kain, Bochra Tourki, Jeevan Kumar Jadapalli. Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure.
Metabolism: clinical and experimental.
2019 07; 96(?):22-32. doi:
10.1016/j.metabol.2019.04.011
. [PMID: 30999004] - Charles R Evans, Alla Karnovsky, Michael A Puskarich, George Michailidis, Alan E Jones, Kathleen A Stringer. Untargeted Metabolomics Differentiates l-Carnitine Treated Septic Shock 1-Year Survivors and Nonsurvivors.
Journal of proteome research.
2019 05; 18(5):2004-2011. doi:
10.1021/acs.jproteome.8b00774
. [PMID: 30895797] - Suat Ekin, Murat Dogan, Fazilet Gok, Yağmur Karakus. Assessment of antioxidant enzymes, total sialic acid, lipid bound sialic acid, vitamins and selected amino acids in children with phenylketonuria.
Pediatric research.
2018 12; 84(6):821-828. doi:
10.1038/s41390-018-0137-2
. [PMID: 30135593] - Christoph U Schräder, Andrea Heinz, Petra Majovsky, Berin Karaman Mayack, Jürgen Brinckmann, Wolfgang Sippl, Christian E H Schmelzer. Elastin is heterogeneously cross-linked.
The Journal of biological chemistry.
2018 09; 293(39):15107-15119. doi:
10.1074/jbc.ra118.004322
. [PMID: 30108173] - Wang-Yang Xu, Houbao Zhu, Yan Shen, Ying-Han Wan, Xiao-Die Tu, Wen-Ting Wu, Lingyun Tang, Hong-Xin Zhang, Shun-Yuan Lu, Xiao-Long Jin, Jian Fei, Zhu-Gang Wang. DHTKD1 Deficiency Causes Charcot-Marie-Tooth Disease in Mice.
Molecular and cellular biology.
2018 07; 38(13):. doi:
10.1128/mcb.00085-18
. [PMID: 29661920] - Juraj Koska, Aramesh Saremi, Scott Howell, Gideon Bahn, Barbora De Courten, Henry Ginsberg, Paul J Beisswenger, Peter D Reaven. Advanced Glycation End Products, Oxidation Products, and Incident Cardiovascular Events in Patients With Type 2 Diabetes.
Diabetes care.
2018 03; 41(3):570-576. doi:
10.2337/dc17-1740
. [PMID: 29208654] - Janaína Camacho da Silva, Alexandre Umpierrez Amaral, Cristiane Cecatto, Alessandro Wajner, Kálita Dos Santos Godoy, Rafael Teixeira Ribeiro, Aline de Mello Gonçalves, Ângela Zanatta, Mateus Struecker da Rosa, Samanta Oliveira Loureiro, Carmen Regla Vargas, Guilhian Leipnitz, Diogo Onofre Gomes de Souza, Moacir Wajner. α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats.
Neurotoxicity research.
2017 Aug; 32(2):276-290. doi:
10.1007/s12640-017-9735-8
. [PMID: 28429309] - Amal Al Teneiji, Theodora U J Bruun, Dawn Cordeiro, Jaina Patel, Michal Inbar-Feigenberg, Shelly Weiss, Eduard Struys, Saadet Mercimek-Mahmutoglu. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy.
Metabolic brain disease.
2017 04; 32(2):443-451. doi:
10.1007/s11011-016-9933-8
. [PMID: 27882480] - Nematallah Mansour, Véronique Dumulon-Perreault, Samia Ait-Mohand, Michel Paquette, Roger Lecomte, Brigitte Guérin. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64 Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists.
Journal of labelled compounds & radiopharmaceuticals.
2017 04; 60(4):200-212. doi:
10.1002/jlcr.3491
. [PMID: 28129446] - Zhipeng A Wang, Yu Zeng, Yadagiri Kurra, Xin Wang, Jeffery M Tharp, Erol C Vatansever, Willie W Hsu, Susie Dai, Xinqiang Fang, Wenshe R Liu. A Genetically Encoded Allysine for the Synthesis of Proteins with Site-Specific Lysine Dimethylation.
Angewandte Chemie (International ed. in English).
2017 01; 56(1):212-216. doi:
10.1002/anie.201609452
. [PMID: 27910233] - Izabella Agostinho Pena, Lygia Azevedo Marques, Ângelo B A Laranjeira, José A Yunes, Marcos N Eberlin, Alex MacKenzie, Paulo Arruda. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE).
Biochimica et biophysica acta. Molecular basis of disease.
2017 01; 1863(1):121-128. doi:
10.1016/j.bbadis.2016.09.006
. [PMID: 27615426] - Tatiana Yuzyuk, Aiping Liu, Amanda Thomas, JoDell E Wilson, Irene De Biase, Nicola Longo, Marzia Pasquali. A novel method for simultaneous quantification of alpha-aminoadipic semialdehyde/piperideine-6-carboxylate and pipecolic acid in plasma and urine.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Apr; 1017-1018(?):145-152. doi:
10.1016/j.jchromb.2016.02.043
. [PMID: 26970849] - Alastair B Ross, Cecilia Svelander, Ingrid Undeland, Rui Pinto, Ann-Sofie Sandberg. Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men.
The Journal of nutrition.
2015 Nov; 145(11):2456-63. doi:
10.3945/jn.115.214262
. [PMID: 26400963] - Jacob Hagen, Heleen te Brinke, Ronald J A Wanders, Alida C Knegt, Esmee Oussoren, A Jeannette M Hoogeboom, George J G Ruijter, Daniel Becker, Karl Otfried Schwab, Ingo Franke, Marinus Duran, Hans R Waterham, Jörn Oliver Sass, Sander M Houten. Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria.
Journal of inherited metabolic disease.
2015 Sep; 38(5):873-9. doi:
10.1007/s10545-015-9841-9
. [PMID: 25860818] - Shoichiro Funatsu, Takashi Kondoh, Takahiro Kawase, Hiromi Ikeda, Mao Nagasawa, D Michael Denbow, Mitsuhiro Furuse. Long-term consumption of dried bonito dashi (a traditional Japanese fish stock) reduces anxiety and modifies central amino acid levels in rats.
Nutritional neuroscience.
2015 Aug; 18(6):256-64. doi:
10.1179/1476830514y.0000000124
. [PMID: 24701973] - Genya Watanabe, Hiroyuki Kobayashi, Masahiro Shibata, Masatoshi Kubota, Motoni Kadowaki, Shinobu Fujimura. Regulation of free glutamate content in meat by dietary lysine in broilers.
Animal science journal = Nihon chikusan Gakkaiho.
2015 Apr; 86(4):435-42. doi:
10.1111/asj.12321
. [PMID: 25491790] - Antonella Rosi, Lucia Ricci-Vitiani, Mauro Biffoni, Sveva Grande, Anna Maria Luciani, Alessandra Palma, Daniele Runci, Marianna Cappellari, Ruggero De Maria, Laura Guidoni, Roberto Pallini, Vincenza Viti. (1) H NMR spectroscopy of glioblastoma stem-like cells identifies alpha-aminoadipate as a marker of tumor aggressiveness.
NMR in biomedicine.
2015 Mar; 28(3):317-26. doi:
10.1002/nbm.3254
. [PMID: 25581615] - Mariana Utrera, David Morcuende, Mario Estévez. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties.
Meat science.
2014 Mar; 96(3):1250-7. doi:
10.1016/j.meatsci.2013.10.032
. [PMID: 24334047] - Mariana Utrera, Vita Parra, Mario Estévez. Protein oxidation during frozen storage and subsequent processing of different beef muscles.
Meat science.
2014 Feb; 96(2 Pt A):812-20. doi:
10.1016/j.meatsci.2013.09.006
. [PMID: 24200575] - Isaac Ferrer-López, Pedro Ruiz-Sala, Begoña Merinero, Celia Pérez-Cerdá, Magdalena Ugarte. Determination of urinary alpha-aminoadipic semialdehyde by LC-MS/MS in patients with congenital metabolic diseases.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Jan; 944(?):141-3. doi:
10.1016/j.jchromb.2013.10.032
. [PMID: 24316525] - Man-Li Sun, Han-Xiao Yu, Yong Han, Jun Tian, Yan-Qin Yu. Glial modulation of vibrissal sensory processing in rats.
The Chinese journal of physiology.
2013 Dec; 56(6):309-17. doi:
10.4077/cjp.2013.bab129
. [PMID: 24495177] - Drissia Vogel-Adghough, Elia Stahl, Hana Návarová, Juergen Zeier. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.
Plant signaling & behavior.
2013 Nov; 8(11):e26366. doi:
10.4161/psb.26366
. [PMID: 24025239] - Thomas J Wang, Debby Ngo, Nikolaos Psychogios, Andre Dejam, Martin G Larson, Ramachandran S Vasan, Anahita Ghorbani, John O'Sullivan, Susan Cheng, Eugene P Rhee, Sumita Sinha, Elizabeth McCabe, Caroline S Fox, Christopher J O'Donnell, Jennifer E Ho, Jose C Florez, Martin Magnusson, Kerry A Pierce, Amanda L Souza, Yi Yu, Christian Carter, Peter E Light, Olle Melander, Clary B Clish, Robert E Gerszten. 2-Aminoadipic acid is a biomarker for diabetes risk.
The Journal of clinical investigation.
2013 Oct; 123(10):4309-17. doi:
10.1172/jci64801
. [PMID: 24091325] - Katharina Danhauser, Sven W Sauer, Tobias B Haack, Thomas Wieland, Christian Staufner, Elisabeth Graf, Johannes Zschocke, Tim M Strom, Thorsten Traub, Jürgen G Okun, Thomas Meitinger, Georg F Hoffmann, Holger Prokisch, Stefan Kölker. DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria.
American journal of human genetics.
2012 Dec; 91(6):1082-7. doi:
10.1016/j.ajhg.2012.10.006
. [PMID: 23141293] - Eduard Alexander Struys, Benjamin Nota, Abdellatif Bakkali, Saad Al Shahwan, Gajja Sophi Salomons, Brahim Tabarki. Pyridoxine-dependent epilepsy with elevated urinary α-amino adipic semialdehyde in molybdenum cofactor deficiency.
Pediatrics.
2012 Dec; 130(6):e1716-9. doi:
10.1542/peds.2012-1094
. [PMID: 23147983] - M Utrera, M Armenteros, S Ventanas, F Solano, M Estévez. Pre-freezing raw hams affects quality traits in cooked hams: potential influence of protein oxidation.
Meat science.
2012 Dec; 92(4):596-603. doi:
10.1016/j.meatsci.2012.06.005
. [PMID: 22748310] - Els Vossen, Mariana Utrera, Stefaan De Smet, David Morcuende, Mario Estévez. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.
Meat science.
2012 Dec; 92(4):451-7. doi:
10.1016/j.meatsci.2012.05.010
. [PMID: 22698996] - Clara D M van Karnebeek, Hans Hartmann, Sravan Jaggumantri, Levinus A Bok, Barb Cheng, Mary Connolly, Curtis R Coughlin, Anibh M Das, Sidney M Gospe, Cornelis Jakobs, Johanna H van der Lee, Saadet Mercimek-Mahmutoglu, Uta Meyer, Eduard Struys, Graham Sinclair, Johan Van Hove, Jean-Paul Collet, Barbara R Plecko, Sylvia Stockler. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials.
Molecular genetics and metabolism.
2012 Nov; 107(3):335-44. doi:
10.1016/j.ymgme.2012.09.006
. [PMID: 23022070] - Philippa B Mills, Emma J Footitt, Serkan Ceyhan, Paula J Waters, Cornelis Jakobs, Peter T Clayton, Eduard A Struys. Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency.
Journal of inherited metabolic disease.
2012 Nov; 35(6):1031-6. doi:
10.1007/s10545-012-9466-1
. [PMID: 22403017] - Baljit K Ubhi, Kian Kai Cheng, Jiyang Dong, Tobias Janowitz, Duncan Jodrell, Ruth Tal-Singer, William MacNee, David A Lomas, John H Riley, Julian L Griffin, Susan C Connor. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD.
Molecular bioSystems.
2012 Oct; 8(12):3125-33. doi:
10.1039/c2mb25194a
. [PMID: 23051772] - Abdulaziz S Al-Saman, Tamer M Rizk. A case of extreme prematurity and delayed diagnosis of pyridoxine-dependent epilepsy.
Neurosciences (Riyadh, Saudi Arabia).
2012 Oct; 17(4):371-3. doi:
NULL
. [PMID: 23022904] - Eduard A Struys, Levinus A Bok, Dina Emal, Saskia Houterman, Michel A Willemsen, Cornelis Jakobs. The measurement of urinary Δ¹-piperideine-6-carboxylate, the alter ego of α-aminoadipic semialdehyde, in Antiquitin deficiency.
Journal of inherited metabolic disease.
2012 Sep; 35(5):909-16. doi:
10.1007/s10545-011-9443-0
. [PMID: 22249334] - Mariana Utrera, Mario Estévez. Oxidation of myofibrillar proteins and impaired functionality: underlying mechanisms of the carbonylation pathway.
Journal of agricultural and food chemistry.
2012 Aug; 60(32):8002-11. doi:
10.1021/jf302111j
. [PMID: 22838408] - Majid Alfadhel, Sandra Sirrs, Paula J Waters, András Szeitz, Eduard Struys, Marion Coulter-Mackie, Sylvia Stockler-Ipsiroglu. Variability of phenotype in two sisters with pyridoxine dependent epilepsy.
The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques.
2012 Jul; 39(4):516-9. doi:
10.1017/s0317167100014050
. [PMID: 22728861] - Mariana Utrera, Javier-Germán Rodríguez-Carpena, David Morcuende, Mario Estévez. Formation of lysine-derived oxidation products and loss of tryptophan during processing of porcine patties with added avocado byproducts.
Journal of agricultural and food chemistry.
2012 Apr; 60(15):3917-26. doi:
10.1021/jf3001313
. [PMID: 22452641] - Olajumoke O Oladipo, Annette L Weindel, Al N Saunders, Dennis J Dietzen. Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS.
Molecular genetics and metabolism.
2011 Dec; 104(4):476-9. doi:
10.1016/j.ymgme.2011.08.020
. [PMID: 21908220] - Maiko Watanabe, Takahiro Yonezawa, Ken-ichi Lee, Susumu Kumagai, Yoshiko Sugita-Konishi, Keiichi Goto, Yukiko Hara-Kudo. Evaluation of genetic markers for identifying isolates of the species of the genus Fusarium.
Journal of the science of food and agriculture.
2011 Oct; 91(13):2500-4. doi:
10.1002/jsfa.4507
. [PMID: 21725977] - Alato Okuno, Tsutomu Fukuwatari, Katsumi Shibata. High tryptophan diet reduces extracellular dopamine release via kynurenic acid production in rat striatum.
Journal of neurochemistry.
2011 Sep; 118(5):796-805. doi:
10.1111/j.1471-4159.2011.07369.x
. [PMID: 21711351] - Olatz Pampliega, María Domercq, Federico N Soria, Pablo Villoslada, Alfredo Rodríguez-Antigüedad, Carlos Matute. Increased expression of cystine/glutamate antiporter in multiple sclerosis.
Journal of neuroinflammation.
2011 Jun; 8(?):63. doi:
10.1186/1742-2094-8-63
. [PMID: 21639880] - Chad Brocker, Miriam Cantore, Paola Failli, Vasilis Vasiliou. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity.
Chemico-biological interactions.
2011 May; 191(1-3):269-77. doi:
10.1016/j.cbi.2011.02.016
. [PMID: 21338592] - Nadia S Metwally, Sanaa A Ali, Azza M Mohamed, Hussein M Khaled, Samia A Ahmed. Levels of certain tumor markers as differential factors between bilharzial and non-biharzial bladder cancer among Egyptian patients.
Cancer cell international.
2011 Apr; 11(1):8. doi:
10.1186/1475-2867-11-8
. [PMID: 21473769] - Zhenhua Du, Lei Zhang, Shuye Liu. [Application of liquid chromatography-mass spectrometry in the study of metabolic profiling of cirrhosis in different grades].
Se pu = Chinese journal of chromatography.
2011 Apr; 29(4):314-9. doi:
10.3724/sp.j.1123.2011.00314
. [PMID: 21770240] - Sven W Sauer, Silvana Opp, Georg F Hoffmann, David M Koeller, Jürgen G Okun, Stefan Kölker. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I.
Brain : a journal of neurology.
2011 Jan; 134(Pt 1):157-70. doi:
10.1093/brain/awq269
. [PMID: 20923787] - Hongxia Zhang, Lina Ding, Xuemei Fang, Zhimin Shi, Yating Zhang, Hebing Chen, Xianzhong Yan, Jiayin Dai. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies.
PloS one.
2011; 6(6):e20862. doi:
10.1371/journal.pone.0020862
. [PMID: 21677784] - H I H El-Sayyad, M A El-Sherbiny, M A Sobh, A M Abou-El-Naga, M A N Ibrahim, S A Mousa. Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats.
International journal of biological sciences.
2011; 7(6):715-28. doi:
10.7150/ijbs.7.715
. [PMID: 21697998] - Oliver Fiehn, W Timothy Garvey, John W Newman, Kerry H Lok, Charles L Hoppel, Sean H Adams. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.
PloS one.
2010 Dec; 5(12):e15234. doi:
10.1371/journal.pone.0015234
. [PMID: 21170321] - Abdul Jaleel, Gregory C Henderson, Benjamin J Madden, Katherine A Klaus, Dawn M Morse, Srinivas Gopala, K Sreekumaran Nair. Identification of de novo synthesized and relatively older proteins: accelerated oxidative damage to de novo synthesized apolipoprotein A-1 in type 1 diabetes.
Diabetes.
2010 Oct; 59(10):2366-74. doi:
10.2337/db10-0371
. [PMID: 20622162] - Philippa B Mills, Emma J Footitt, Kevin A Mills, Karin Tuschl, Sarah Aylett, Sophia Varadkar, Cheryl Hemingway, Neil Marlow, Janet Rennie, Peter Baxter, Olivier Dulac, Rima Nabbout, William J Craigen, Bernhard Schmitt, François Feillet, Ernst Christensen, Pascale De Lonlay, Mike G Pike, M Imelda Hughes, Eduard A Struys, Cornelis Jakobs, Sameer M Zuberi, Peter T Clayton. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency).
Brain : a journal of neurology.
2010 Jul; 133(Pt 7):2148-59. doi:
10.1093/brain/awq143
. [PMID: 20554659] - Rubén Rellán-Alvarez, Sofía Andaluz, Jorge Rodríguez-Celma, Gert Wohlgemuth, Graziano Zocchi, Ana Alvarez-Fernández, Oliver Fiehn, Ana Flor López-Millán, Javier Abadía. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply.
BMC plant biology.
2010 Jun; 10(?):120. doi:
10.1186/1471-2229-10-120
. [PMID: 20565974] - Xingjun Fan, Jianye Zhang, Mathilde Theves, Christopher Strauch, Ina Nemet, Xiaoqin Liu, Juan Qian, Frank J Giblin, Vincent M Monnier. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes.
The Journal of biological chemistry.
2009 Dec; 284(50):34618-27. doi:
10.1074/jbc.m109.032094
. [PMID: 19854833] - Yulan Wang, Shu-Hua Xiao, Jian Xue, Burton H Singer, Jürg Utzinger, Elaine Holmes. Systems metabolic effects of a necator americanus infection in Syrian hamster.
Journal of proteome research.
2009 Dec; 8(12):5442-50. doi:
10.1021/pr900711j
. [PMID: 19810771] - Katerina Sadilkova, Sidney M Gospe, Si Houn Hahn. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures.
Journal of neuroscience methods.
2009 Oct; 184(1):136-41. doi:
10.1016/j.jneumeth.2009.07.019
. [PMID: 19631689] - Jin Bong Park, Ji Yoon Jo, Hong Zheng, Kaushik P Patel, Javier E Stern. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters.
The Journal of physiology.
2009 Oct; 587(Pt 19):4645-60. doi:
10.1113/jphysiol.2009.173435
. [PMID: 19703969] - Banzragch Battur, Damdinsuren Boldbaatar, Rika Umemiya-Shirafuji, Min Liao, Badgar Battsetseg, DeMar Taylor, Badarch Baymbaa, Kozo Fujisaki. LKR/SDH plays important roles throughout the tick life cycle including a long starvation period.
PloS one.
2009 Sep; 4(9):e7136. doi:
10.1371/journal.pone.0007136
. [PMID: 19774086] - Mario Estévez, Velimatti Ollilainen, Marina Heinonen. Analysis of protein oxidation markers alpha-aminoadipic and gamma-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS).
Journal of agricultural and food chemistry.
2009 May; 57(9):3901-10. doi:
10.1021/jf804017p
. [PMID: 19326863] - Gianfranco Pasut, Fabiana Canal, Lisa Dalla Via, Silvia Arpicco, Francesco M Veronese, Oddone Schiavon. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid.
Journal of controlled release : official journal of the Controlled Release Society.
2008 May; 127(3):239-48. doi:
10.1016/j.jconrel.2008.02.002
. [PMID: 18346806] - David R Sell, Christopher M Strauch, Wei Shen, Vincent M Monnier. Aging, diabetes, and renal failure catalyze the oxidation of lysyl residues to 2-aminoadipic acid in human skin collagen: evidence for metal-catalyzed oxidation mediated by alpha-dicarbonyls.
Annals of the New York Academy of Sciences.
2008 Apr; 1126(?):205-9. doi:
10.1196/annals.1433.065
. [PMID: 18448817] - Yu-Haey Kuo, Barbara Defoort, Haileyesus Getahun, Redda Tekle Haimanot, Fernand Lambein. Comparison of urinary amino acids and trace elements (copper, zinc and manganese) of recent neurolathyrism patients and healthy controls from Ethiopia.
Clinical biochemistry.
2007 Mar; 40(5-6):397-402. doi:
10.1016/j.clinbiochem.2006.11.020
. [PMID: 17291478] - K A Bauerly, D H Storms, C B Harris, S Hajizadeh, M Y Sun, C P Cheung, M A Satre, A J Fascetti, E Tchaparian, R B Rucker. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat.
Biochimica et biophysica acta.
2006 Nov; 1760(11):1741-8. doi:
10.1016/j.bbagen.2006.07.009
. [PMID: 17029795] - Mitsugu Akagawa, Daisuke Sasaki, Yoshihisa Ishii, Yayoi Kurota, Mari Yotsu-Yamashita, Koji Uchida, Kyozo Suyama. New method for the quantitative determination of major protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes: investigation of the formation mechanism and chemical nature in vitro and in vivo.
Chemical research in toxicology.
2006 Aug; 19(8):1059-65. doi:
10.1021/tx060026p
. [PMID: 16918245] - Dao-Quan Peng, Zhiping Wu, Gregory Brubaker, Lemin Zheng, Megan Settle, Eitan Gross, Michael Kinter, Stanley L Hazen, Jonathan D Smith. Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-I functional activities.
The Journal of biological chemistry.
2005 Oct; 280(40):33775-84. doi:
10.1074/jbc.m504092200
. [PMID: 16091367] - R Pulido, A Jiménez-Escrig, L Orensanz, F Saura-Calixto, A Jiménez-Escrig. Study of plasma antioxidant status in Alzheimer's disease.
European journal of neurology.
2005 Jul; 12(7):531-5. doi:
10.1111/j.1468-1331.2005.01000.x
. [PMID: 15958093] - Mitsugu Akagawa, Daisuke Sasaki, Yayoi Kurota, Kyozo Suyama. Formation of alpha-aminoadipic and gamma-glutamic semialdehydes in proteins by the maillard reaction.
Annals of the New York Academy of Sciences.
2005 Jun; 1043(?):129-34. doi:
10.1196/annals.1333.016
. [PMID: 16037231] - David J Fox, Jill Reckless, Sibylle M Wilbert, Ian Greig, Stuart Warren, David J Grainger. Identification of 3-(acylamino)azepan-2-ones as stable broad-spectrum chemokine inhibitors resistant to metabolism in vivo.
Journal of medicinal chemistry.
2005 Feb; 48(3):867-74. doi:
10.1021/jm049365a
. [PMID: 15689171] - Robert Rucker, David Storms, Annemarie Sheets, Eskouhie Tchaparian, Andrea Fascetti. Biochemistry: is pyrroloquinoline quinone a vitamin?.
Nature.
2005 Feb; 433(7025):E10-1; discussion E11. doi:
10.1038/nature03323
. [PMID: 15689994] - Enoka P Wijekoon, Craig Skinner, Margaret E Brosnan, John T Brosnan. Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes.
Canadian journal of physiology and pharmacology.
2004 Jul; 82(7):506-14. doi:
10.1139/y04-067
. [PMID: 15389298] - Rainer Breitling. Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor.
BMC pediatrics.
2004 Mar; 4(?):5. doi:
10.1186/1471-2431-4-5
. [PMID: 15102341] - Koichi Nagao, Hirotomo Akabane, Taisei Masuda, Masato Komai, Hiroyuki Tanaka, Hiroichi Nagai. Effect of MX-68 on airway inflammation and hyperresponsiveness in mice and guinea-pigs.
The Journal of pharmacy and pharmacology.
2004 Feb; 56(2):187-96. doi:
10.1211/0022357022548
. [PMID: 15005877] - Paul T Wilkes, Giacomo Meschia, Cecilia Teng, Yaming Zhu, Randall B Wilkening, Frederick C Battaglia. The effect of an elevated maternal lysine concentration on placental lysine transport in pregnant sheep.
American journal of obstetrics and gynecology.
2003 Nov; 189(5):1494-500. doi:
10.1067/s0002-9378(03)00595-7
. [PMID: 14634591] - Paolo Guidetti, Robert Schwarcz. Determination of alpha-aminoadipic acid in brain, peripheral tissues, and body fluids using GC/MS with negative chemical ionization.
Brain research. Molecular brain research.
2003 Oct; 118(1-2):132-9. doi:
10.1016/j.molbrainres.2003.08.004
. [PMID: 14559362] - Mitsugu Akagawa, Takeshi Sasaki, Kyozo Suyama. Oxidative deamination of lysine residue in plasma protein of diabetic rats. Novel mechanism via the Maillard reaction.
European journal of biochemistry.
2002 Nov; 269(22):5451-8. doi:
10.1046/j.1432-1033.2002.03243.x
. [PMID: 12423343] - P Rozan, Y H Kuo, F Lambein. Amino acids in seeds and seedlings of the genus Lens.
Phytochemistry.
2001 Sep; 58(2):281-9. doi:
10.1016/s0031-9422(01)00200-x
. [PMID: 11551552] - J S Lee, H R Yoon, C J Coe. A Korean girl with alpha-aminoadipic and alpha-ketoadipic aciduria accompanied with elevation of 2-hydroxyglutarate and glutarate.
Journal of inherited metabolic disease.
2001 Aug; 24(4):509-10. doi:
10.1023/a:1010589815638
. [PMID: 11596655] - E Johansson, J J Steffens, Y Lindqvist, G Schneider. Crystal structure of saccharopine reductase from Magnaporthe grisea, an enzyme of the alpha-aminoadipate pathway of lysine biosynthesis.
Structure (London, England : 1993).
2000 Oct; 8(10):1037-47. doi:
10.1016/s0969-2126(00)00512-8
. [PMID: 11080625] - X Zhu, G Tang, G Galili. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.
The Biochemical journal.
2000 Oct; 351(Pt 1):215-20. doi:
10.1042/0264-6021:3510215
. [PMID: 10998364] - J F Young, L O Dragsted, B Daneshvar, S T Lauridsen, M Hansen, B Sandström. The effect of grape-skin extract on oxidative status.
The British journal of nutrition.
2000 Oct; 84(4):505-13. doi:
10.1017/s0007114500001811
. [PMID: 11103221] - B Plecko, S Stöckler-Ipsiroglu, E Paschke, W Erwa, E A Struys, C Jakobs. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy.
Annals of neurology.
2000 Jul; 48(1):121-5. doi:
10.1002/1531-8249(200007)48:1<121::aid-ana20>3.0.co;2-v
. [PMID: 10894227] - F Wu, H Orlefors, M Bergström, G Antoni, H Omura, B Eriksson, Y Watanabe, B Långström. Uptake of 14C- and 11C-labeled glutamate, glutamine and aspartate in vitro and in vivo.
Anticancer research.
2000 Jan; 20(1A):251-6. doi:
NULL
. [PMID: 10769663] - B A Barshop, W L Nyhan, R K Naviaux, K A McGowan, M Friedlander, R H Haas. Kearns-Sayre syndrome presenting as 2-oxoadipic aciduria.
Molecular genetics and metabolism.
2000 Jan; 69(1):64-8. doi:
10.1006/mgme.1999.2946
. [PMID: 10655159] - B A Sela, T Massos, D Fogel, J Zlotnik. [Alpha-amino adipic aciduria: a rare psychomotor syndrome].
Harefuah.
1999 Nov; 137(10):451-3, 511. doi:
NULL
. [PMID: 10959342] - Y H Han, Y Kato, Y Sugiyama. Binding and transport of methotrexate and its derivative, MX-68, across the brush-border membrane in rat kidney.
Biopharmaceutics & drug disposition.
1999 Nov; 20(8):361-7. doi:
10.1002/1099-081x(199911)20:8<361::aid-bdd202>3.0.co;2-o
. [PMID: 10870092] - Y H Han, Y Kato, Y Sugiyama. Nonlinear disposition kinetics of a novel antifolate, MX-68, in rats.
The Journal of pharmacology and experimental therapeutics.
1999 Oct; 291(1):204-12. doi:
NULL
. [PMID: 10490906] - T Chand-Goyal, J W Eckert, S Droby, E Glickmann, K Atkinson. Transformation of Candida oleophila and survival of a transformant on orange fruit under field conditions.
Current genetics.
1999 Feb; 35(1):51-7. doi:
10.1007/s002940050432
. [PMID: 10022949] - A E El-Khoury, A Basile, L Beaumier, S Y Wang, H A Al-Amiri, A Selvaraj, S Wong, A Atkinson, A M Ajami, V R Young. Twenty-four-hour intravenous and oral tracer studies with L-[1-13C]-2-aminoadipic acid and L-[1-13C]lysine as tracers at generous nitrogen and lysine intakes in healthy adults.
The American journal of clinical nutrition.
1998 Oct; 68(4):827-39. doi:
10.1093/ajcn/68.4.827
. [PMID: 9771859] - M Mihara, N Takagi, K Urakawa, Y Moriya, Y Takeda. A novel antifolate, MX-68, inhibits the development of autoimmune disease in MRL/lpr mice.
International archives of allergy and immunology.
1997 Aug; 113(4):454-9. doi:
10.1159/000237622
. [PMID: 9250591] - J B Gramsbergen, P S Hodgkins, A Rassoulpour, W A Turski, P Guidetti, R Schwarcz. Brain-specific modulation of kynurenic acid synthesis in the rat.
Journal of neurochemistry.
1997 Jul; 69(1):290-8. doi:
10.1046/j.1471-4159.1997.69010290.x
. [PMID: 9202322] - W Reichelt, J Stabel-Burow, T Pannicke, H Weichert, U Heinemann. The glutathione level of retinal Müller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate.
Neuroscience.
1997 Apr; 77(4):1213-24. doi:
10.1016/s0306-4522(96)00509-x
. [PMID: 9130799] - M Mihara, N Takagi, K Urakawa, Y Moriya, Y Takeda. Preventive effect of a novel antifolate, MX-68, in murine systemic lupus erythematosus (SLE).
International journal of immunopharmacology.
1997 Feb; 19(2):67-74. doi:
10.1016/s0192-0561(97)00015-5
. [PMID: 9278176]