Gene Association: ALDH7A1
UniProt Search:
ALDH7A1 (PROTEIN_CODING)
Function Description: aldehyde dehydrogenase 7 family member A1
found 47 associated metabolites with current gene based on the text mining result from the pubmed database.
Aminoadipic acid
Aminoadipic acid (CAS: 542-32-5), also known as 2-aminoadipate, is a metabolite in the principal biochemical pathway of lysine. It is an intermediate in the metabolism (i.e. breakdown or degradation) of lysine and saccharopine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor N-methyl-D-aspartate (NMDA). Aminoadipic acid has also been shown to inhibit the production of kynurenic acid, a broad spectrum excitatory amino acid receptor antagonist, in brain tissue slices (PMID: 8566117). Recent studies have shown that aminoadipic acid is elevated in prostate biopsy tissues from prostate cancer patients (PMID: 23737455). Mutations in DHTKD1 (dehydrogenase E1 and transketolase domain-containing protein 1) have been shown to cause human 2-aminoadipic aciduria and 2-oxoadipic aciduria via impaired decarboxylation of 2-oxoadipate to glutaryl-CoA, which is the last step in the lysine degradation pathway (PMID: 23141293). Aging, diabetes, sepsis, and renal failure are known to catalyze the oxidation of lysyl residues to form 2-aminoadipic acid in human skin collagen and potentially other tissues (PMID: 18448817). Proteolytic breakdown of these tissues can lead to the release of free 2-aminoadipic acid. Studies in rats indicate that aminoadipic acid (along with the three branched-chain amino acids: leucine, valine, and isoleucine) levels are elevated in the pre-diabetic phase and so aminoadipic acid may serve as a predictive biomarker for the development of diabetes (PMID: 15389298). Long-term hyperglycemia of endothelial cells can also lead to elevated levels of aminoadipate which is thought to be a sign of lysine breakdown through oxidative stress and reactive oxygen species (ROS) (PMID: 21961526). 2-Aminoadipate is a potential small-molecule marker of oxidative stress (PMID: 21647514). Therefore, depending on the circumstances aminoadipic acid can act as an acidogen, a diabetogen, an atherogen, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A diabetogen is a compound that can lead to type 2 diabetes. An atherogen is a compound that leads to atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of aminoadipic acid are associated with at least two inborn errors of metabolism including 2-aminoadipic aciduria and 2-oxoadipic aciduria. Aminoadipic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a diabetogen, serum aminoadipic levels appear to regulate glucose homeostasis and have been highly predictive of individuals who later develop diabetes (PMID: 24091325). In particular, aminoadipic acid lowers fasting plasma glucose levels and enhances insulin secretion from human islets. As an atherogen, aminoadipic acid has been found to be produced at high levels via protein lysine oxidation in atherosclerotic plaques (PMID: 28069522). A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). L-α-Aminoadipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-90-7 (retrieved 2024-07-01) (CAS RN: 1118-90-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Metanephrine
Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm. In adrenal chromaffin cells, leakage of norepinephrine and epinephrine from storage granules leads to substantial intracellular production of the O-methylated metabolite metanephrine. In fact, the adrenals constitute the single largest source out of any organ system including the liver for circulating metanephrine. In humans, about 93 percent of circulating metanephrine is derived from catecholamines metabolized within adrenal chromaffin cells. (PMID 15317907). Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm.
Saccharopine
Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds
Pipecolic acid
Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
Pyridoxal
Pyridoxal is a pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. Pyridoxal, also known as pyridoxaldehyde, belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2, 3, 4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal is one form of vitamin B6. Pyridoxal exists in all living species, ranging from bacteria to humans. In humans, pyridoxal is involved in glycine and serine metabolism. Pyridoxal has been detected, but not quantified in several different foods, such as sourdoughs, lichee, arctic blackberries, watercress, and cottonseeds. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal. Pridoxal has a role as a cofactor, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.
Pyridoxine
Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
Pyridoxal 5'-phosphate
Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
Mefloquine
Mefloquine is only found in individuals that have used or taken this drug. It is a phospholipid-interacting antimalarial drug (antimalarials). It is very effective against plasmodium falciparum with very few side effects. [PubChem]Mefloquine has been found to produce swelling of the Plasmodium falciparum food vacuoles. It may act by forming toxic complexes with free heme that damage membranes and interact with other plasmodial components. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Hydroxybutyric acid
4-Hydroxybutyric acid (also known as gamma-hydroxybutyrate or GHB) is a precursor and a metabolite of gamma-aminobutyric acid (GABA). GHB acts as a central nervous system (CNS) neuromodulator, mediating its effects through GABA and GHB-specific receptors, or by affecting dopamine transmission (PMID: 16620539). GHB occurs naturally in all mammals, but its function remains unknown. GHB is labeled as an illegal drug in most countries, but it also is used as a legal drug (Xyrem) in patients with narcolepsy. It is used illegally (under the street names juice, liquid ecstasy, or G) as an intoxicant for increasing athletic performance and as a date rape drug. In high doses, GHB inhibits the CNS, inducing sleep and inhibiting the respiratory drive. In lower doses, its euphoriant effect predominates (PMID: 17658710). When present in sufficiently high levels, 4-hydroxybutyric acid can act as an acidogen, a neurotoxin, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A neurotoxin is a compound that adversely affects neural cells and tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 4-hydroxybutyric acid are associated with two inborn errors of metabolism: glutaric aciduria II and succinic semialdehyde dehydrogenase deficiency (SSADH). SSADH deficiency leads to a 30-fold increase of GHB and a 2-4 fold increase of GABA in the brains of patients with SSADH deficiency as compared to normal brain concentrations of the compounds. As an acidogen, 4-hydroxybutyric acid is an organic acid, and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. Many affected children with organic acidemias experience intellectual disability or delayed development. These are also the characteristic symptoms of the untreated IEMs mentioned above. Particularly for SSADH deficiency, the most common features observed include developmental delay, hypotonia, and intellectual disability. Nearly half of patients exhibit ataxia, seizures, behaviour problems, and hyporeflexia. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a neurotoxin, GHB appears to affect both GABA (a neurotransmitter) signaling and glutamate signaling (another neurotransmitter). Glutamine metabolism may also play a role in the pathophysiology of excessive levels of GHB. High levels of GHB have been shown to depress both the NMDA and AMPA/kainite receptor-mediated functions and may also alter glutamatergic excitatory synaptic transmission as well. 4-Hydroxybutyric acid is a microbial metabolite found in Aeromonas, Escherichia and Pseudomonas (PMID: 19434404). 4-hydroxybutyric acid may cause bradycardia and dyskinesias.
Betaine aldehyde
Betaine aldehyde, also known as BTL, belongs to the class of organic compounds known as tetraalkylammonium salts. These are organonitrogen compounds containing a quaternary ammonium substituted with four alkyl chains. Betaine aldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, betaine aldehyde is involved in betaine metabolism. Outside of the human body, betaine aldehyde has been detected, but not quantified in, several different foods, such as sourdoughs, summer savouries, loganberries, burbots, and celery stalks. This could make betaine aldehyde a potential biomarker for the consumption of these foods. Betaine aldehyde is an intermediate in the metabolism of glycine, serine, and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde into glycine betaine. Betaine aldehyde is a substrate for choline dehydrogenase (PMID: 12467448, 7646513). Betaine aldehyde is an intermediate in the metabolism of glycine, serine and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde to glycine betaine. Betaine aldehyde is a substrate for Choline dehydrogenase (mitochondrial). (PMID: 12467448, 7646513) [HMDB]. Betaine aldehyde is found in many foods, some of which are celery leaves, pummelo, star anise, and grape. COVID info from COVID-19 Disease Map KEIO_ID B044 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid
2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid (CAS: 3038-89-9), also known as 2,3,4,5-tetrahydropiperidine-2-carboxylate and 1-piperideine-6-carboxylic acid, is a cyclic intermediate in lysine degradation. L-Lysine is an essential amino acid that is a necessary building block for all protein in the body and It plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. In the lysine degradation pathway, 2,3,4,5-tetrahydro-2-pyridinecarboxylic acid is a substrate for L-aminoadipate-semialdehyde dehydrogenase (amaA) and can be formed by the spontaneous cyclization of 2-aminoadipate-6-semialdehyde. 2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid is also an intermediate in glycine, serine, and threonine metabolism. It is a substrate for peroxisomal sarcosine oxidase. KEIO_ID I015
1-Pyrroline-5-carboxylic acid
1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.
Allysine
Allysine (CAS: 1962-83-0), also known as 2-amino-6-oxohexanoic acid or 6-oxonorleucine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, allysine has been detected, but not quantified in, several different foods, such as winged beans, wasabi, common verbena, arrowhead, and oats. This could make allysine a potential biomarker for the consumption of these foods. Allysine is a derivative of lysine used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.
3-Oxosteroid
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
N-Benzoylanthranilic acid
N-Benzoylanthranilic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
Atovaquone
Atovaquone is only found in individuals that have used or taken this drug. It is a hydroxynaphthoquinone that has antimicrobial activity and is being used in antimalarial protocols. [PubChem]Atovaquone is a hydroxy- 1, 4- naphthoquinone, an analog of ubiquinone, with antipneumocystis activity. The mechanism of action against Pneumocystis carinii has not been fully elucidated. In Plasmodium species, the site of action appears to be the cytochrome bc1 complex (Complex III). Several metabolic enzymes are linked to the mitochondrial electron transport chain via ubiquinone. Inhibition of electron transport by atovaquone will result in indirect inhibition of these enzymes. The ultimate metabolic effects of such blockade may include inhibition of nucleic acid and ATP synthesis. Atovaquone also has been shown to have good in vitro activity against Toxoplasma gondii. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors
dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose
2,4,6-Trichloro-4-biphenylol
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
1-Pyrroline-5-carboxylic acid
A 1-pyrrolinecarboxylic acid that is 1-pyrroline in which one of the hydrogens at position 5 is replaced by a carboxy group. The stereoisomer (S)-1-pyrroline-5-carboxylate (also referred to as L-P5C) is an intermediate metabolite in the biosynthesis and degradation of proline and arginine.[4][5][6] In prokaryotic proline biosynthesis, GSA is synthesized from γ-glutamyl phosphate by the enzyme γ-glutamyl phosphate reductase. In most eukaryotes, GSA is synthesised from the amino acid glutamate by the bifunctional enzyme 1-pyrroline-5-carboxylate synthase (P5CS). The human P5CS is encoded by the ALDH18A1 gene.[7][8] The enzyme pyrroline-5-carboxylate reductase converts P5C into proline. In proline degradation, the enzyme proline dehydrogenase produces P5C from proline, and the enzyme 1-pyrroline-5-carboxylate dehydrogenase converts GSA to glutamate. In many prokaryotes, proline dehydrogenase and P5C dehydrogenase form a bifunctional enzyme that prevents the release of P5C during proline degradation. 1-Pyrroline-5-carboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2906-39-0 (retrieved 2024-07-09) (CAS RN: 2906-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Pipecolic acid
L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
2-Aminoadipic acid
Aminoadipic acid, also known as a-aminoadipate or Aad, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Aminoadipic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Aminoadipic acid exists in all eukaryotes, ranging from yeast to humans. Within humans, aminoadipic acid participates in a number of enzymatic reactions. In particular, aminoadipic acid can be biosynthesized from allysine; which is mediated by the enzyme Alpha-aminoadipic semialdehyde dehydrogenase. In addition, aminoadipic acid and oxoglutaric acid can be converted into oxoadipic acid and L-glutamic acid; which is catalyzed by the enzyme kynurenine/alpha-aminoadipate aminotransferase, mitochondrial. In humans, aminoadipic acid is involved in the metabolic disorder called 2-aminoadipic 2-oxoadipic aciduria. Outside of the human body, Aminoadipic acid is found, on average, in the highest concentration within a few different foods, such as wheats, milk (cow), and ryes and in a lower concentration in dills, garden onions, and white cabbages. Aminoadipic acid has also been detected, but not quantified in, several different foods, such as barley, cow milks, cow milks, cow milks, and cow milks. This could make aminoadipic acid a potential biomarker for the consumption of these foods. Aminoadipic acid is a potentially toxic compound. Aminoadipic acid, with regard to humans, has been found to be associated with several diseases such as alpha-aminoadipic and alpha-ketoadipic aciduria, colorectal cancer, metastatic melanoma, and eosinophilic esophagitis; aminoadipic acid has also been linked to the inborn metabolic disorder 2-ketoadipic acidemia. A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Pipecolic acid
L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.
4-Hydroxybutyric acid
A 4-hydroxy monocarboxylic acid that is butyric acid in which one of the hydrogens at position 4 is replaced by a hydroxy group.
α-Aminoadipic acid
An optically active form of 2-aminoadipic acid having D-configuration. The L-enantiomer of 2-aminoadipic acid. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 9 Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
pyridoxal
A pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. The 4-carboxyaldehyde form of vitamin B6, it is converted into pyridoxal phosphate, a coenzyme for the synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. D018977 - Micronutrients > D014815 - Vitamins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
ATOVAQUONE
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors
Pyridoxine
A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
L-Pipecolic acid
The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.
pyridoxal phosphate
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
Pipecolic acid
A piperidinemonocarboxylic acid in which the carboxy group is located at position C-2. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
mefloquine
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
Pyridoxin
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
delta-1-piperidine-6-carboxylic acid
(S)-2,3,4,5-Tetrahydropiperidine-2-carboxylate is a cyclic intermediate in lysine degradation. L-Lysine is an essential amino acid that is a necessary building block for all protein in the body and It plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. In lysine degradation pathway, (S)-2,3,4,5-Tetrahydropiperidine-2-carboxylate is a substrate for L-aminoadipate-semialdehyde dehydrogenase (amaA) and can be formed by spontaneous cyclization of 2-aminoadipate-6-semialdehyde. [HMDB]. (S)-2,3,4,5-Tetrahydropiperidine-2-carboxylate is found in many foods, some of which are sorghum, ginger, celery leaves, and lowbush blueberry.
betaine aldehyde
A quaternary ammonium ion that is nitrogen substituted by three methyl groups and a 2-oxoethyl group. It is an intermediate in the metabolism of amino acids like glycine, serine and threonine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(S)-1-piperideine-6-carboxylic acid
The (S)-enantiomer of 1-piperideine-6-carboxylic acid.
4-Hydroxy-2,4,6-trichlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Lariam
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS