(4-Aminobutyl)guanidine (BioDeep_00000001287)
Secondary id: BioDeep_00000400211
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H14N4 (130.1218404)
中文名称: (4-氨基丁基)胍, 胍丁胺, 硫酸胍基丁胺
谱图信息:
最多检出来源 Homo sapiens(blood) 0.82%
Last reviewed on 2024-09-14.
Cite this Page
(4-Aminobutyl)guanidine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/(4-aminobutyl)guanidine (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001287). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CCN=C(N)N)CN
InChI: InChI=1S/C5H14N4/c6-3-1-2-4-9-5(7)8/h1-4,6H2,(H4,7,8,9)
描述信息
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. -- Wikipedia; Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is discussed as a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to ?2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Agmatine is found in many foods, some of which are fruits, kohlrabi, carob, and burdock.
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma.
Agmatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=306-60-5 (retrieved 2024-07-01) (CAS RN: 306-60-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
18 个代谢物同义名
N-(Aminoiminomethyl)-1,4-butanediamine; 1 Amino 4 guanidinobutane; 1-(4-Aminobutyl)guanidine; 1-Amino-4-guanidinobutane; N-(4-Aminobutyl)guanidine; (4-Aminobutyl) guanidine; (4-Aminobutyl)-guanidine; 4-Guanidino-1-butanamine; N-4-Aminobutylguanidine; 1-Amino-4-guanidobutane; 4-(Aminobutyl)guanidine; (4-Aminobutyl)guanidine; Agmatine sulfate salt; Agmatinium; Argmatine; Agmatine; Agmatine; (4-Aminobutyl)guanidine
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:17431
- KEGG: C00179
- PubChem: 199
- HMDB: HMDB0001432
- Metlin: METLIN3523
- DrugBank: DB08838
- ChEMBL: CHEMBL58343
- Wikipedia: Agmatine
- MeSH: Agmatine
- MetaCyc: AGMATHINE
- KNApSAcK: C00001400
- foodb: FDB008310
- chemspider: 194
- CAS: 306-60-5
- MoNA: PS066001
- MoNA: PS011403
- MoNA: PS066002
- MoNA: PS066003
- MoNA: AU510707
- MoNA: KO002257
- MoNA: PR100066
- MoNA: KO002253
- MoNA: PS011401
- MoNA: PR100307
- MoNA: AU510701
- MoNA: KO002256
- MoNA: PS011402
- MoNA: KO002255
- MoNA: KO002254
- PMhub: MS000000267
- PDB-CCD: AG2
- 3DMET: B00052
- NIKKAJI: J11.608D
- RefMet: Agmatine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-178
- PubChem: 3479
- KNApSAcK: 17431
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(0)
代谢反应
335 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Agmatine biosynthesis:
AGM + H2O ⟶ Putrescine + Urea
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
BioCyc(10)
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- arginine degradation III (arginine decarboxylase/agmatinase pathway):
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of polyamine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- putrescine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
WikiPathways(0)
Plant Reactome(311)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Putrescine biosynthesis I:
L-Arg ⟶ AGM + carbon dioxide
- Putrescine biosynthesis II:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(2)
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
PharmGKB(0)
18 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 148819 - Anadara broughtonii: 10.1021/JF60216A038
- 182803 - Araneus ventricosus: 10.1016/0305-0491(91)90393-R
- 3824 - Canavalia gladiata: 10.1016/0031-9422(90)85449-P
- 3847 - Glycine max: 10.1016/0031-9422(90)85450-T
- 119431 - Hippospongia communis: 10.1515/BCHM2.1960.322.1.198
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 3860 - Lathyrus sativus: 10.1016/0031-9422(74)85020-X
- 442941 - Lyallia kerguelensis: 10.1016/S0031-9422(99)00191-0
- 6573 - Mizuhopecten yessoensis: 10.1021/JF60216A038
- 54801 - Nuphar japonica: 10.1139/B97-175
- 3888 - Pisum sativum: 10.1016/0031-9422(90)85450-T
- 244452 - Pseudopleuronectes herzensteini: 10.1021/JF60216A038
- 3891 - Psophocarpus tetragonolobus: 10.1016/0031-9422(90)85450-T
- 3908 - Vicia sativa: 10.1016/0031-9422(91)83201-U
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Karen Rodríguez-Núñez, Alejandra Cortés-Monroy, Marcela Serey, Yunus Ensari, Mehdi D Davari, Claudia Bernal, Ronny Martinez. Modulating Substrate Specificity of Rhizobium sp. Histamine Dehydrogenase through Protein Engineering for Food Quality Applications.
Molecules (Basel, Switzerland).
2023 Apr; 28(9):. doi:
10.3390/molecules28093748
. [PMID: 37175158] - Madhura P Dixit, Shivkumar S Sammeta, Mrunali D Dhokne, Shubhada Mangrulkar, Manoj A Upadhya, Milind J Umekar, Brijesh G Taksande, Nandkishor R Kotagale. Chronic agmatine treatment prevents olanzapine-induced obesity and metabolic dysregulation in female rats.
Brain research bulletin.
2022 12; 191(?):69-77. doi:
10.1016/j.brainresbull.2022.10.013
. [PMID: 36272666] - Donatella Coradduzza, Tatiana Solinas, Emanuela Azara, Nicola Culeddu, Sara Cruciani, Angelo Zinellu, Serenella Medici, Margherita Maioli, Massimo Madonia, Ciriaco Carru. Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis.
Biomolecules.
2022 03; 12(4):. doi:
10.3390/biom12040514
. [PMID: 35454104] - Katarina Milosevic, Ivana Stevanovic, Iva D Bozic, Ana Milosevic, Marija M Janjic, Danijela Laketa, Ivana Bjelobaba, Irena Lavrnja, Danijela Savic. Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073561
. [PMID: 35408922] - Dan Zhang, Jinzhao Li, Tianzhu Li. Agmatine mitigates palmitate (PA)-induced mitochondrial and metabolic dysfunction in microvascular endothelial cells.
Human & experimental toxicology.
2022 Jan; 41(?):9603271221110857. doi:
10.1177/09603271221110857
. [PMID: 35747990] - Anna Wiśniewska, Aneta Stachowicz, Katarzyna Kuś, Magdalena Ulatowska-Białas, Justyna Totoń-Żurańska, Anna Kiepura, Kamila Stachyra, Maciej Suski, Mariusz Gajda, Jacek Jawień, Rafał Olszanecki. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio.
International journal of molecular sciences.
2021 Oct; 22(19):. doi:
10.3390/ijms221910688
. [PMID: 34639029] - Yanpei Zhang, Shuqiao Yuan, Tuanjie Che, Jinchun He. Agmatine and glycolipid metabolism.
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2021 Aug; 46(8):889-893. doi:
10.11817/j.issn.1672-7347.2021.200351
. [PMID: 34565735] - Patrick M Honore, Sebastien Redant, Keitiane Kaefer, Leonel Barreto Gutierrez, Luc Kugener, Rachid Attou, Andrea Gallerani, David De Bels. Serum Agmatine Levels Were Negatively Correlated With the Severity of Sepsis: Beware of Potential Confounders!.
Critical care medicine.
2021 08; 49(8):e810-e811. doi:
10.1097/ccm.0000000000004980
. [PMID: 34261941] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Nanxiang Xiong, Xiaofei Gao, Hongyang Zhao, Feng Cai, Fang-Cheng Zhang, Ye Yuan, Weichao Liu, Fangping He, Lauren G Zacharias, Hong Lin, Hieu S Vu, Chao Xing, Dong-Xiao Yao, Fei Chen, Benyan Luo, Wenzhi Sun, Ralph J DeBerardinis, Hao Xu, Woo-Ping Ge. Using arterial-venous analysis to characterize cancer metabolic consumption in patients.
Nature communications.
2020 06; 11(1):3169. doi:
10.1038/s41467-020-16810-8
. [PMID: 32576825] - Wanwan Wang, Zhuoxian Yu, Jinpeng Meng, Pengyong Zhou, Ting Luo, Jin Zhang, Jun Wu, Yonggen Lou. Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera.
Scientific reports.
2020 04; 10(1):5778. doi:
10.1038/s41598-020-62752-y
. [PMID: 32238850] - Dimitrios Tsikas, Alexander Bollenbach, Erik Hanff, Bibiana Beckmann, Björn Redfors. Synthesis of homoagmatine and GC-MS analysis of tissue homoagmatine and agmatine: evidence that homoagmatine but not agmatine is a metabolite of pharmacological L-homoarginine in the anesthetized rat.
Amino acids.
2020 Feb; 52(2):235-245. doi:
10.1007/s00726-019-02808-0
. [PMID: 31776762] - Takahiro Sugiura, Yasushi Hirasawa, Tohru Toyoshi, Yasuo Matsumura. Effects of Agmatine on Contrast-Induced Nephropathy in Rats and Rabbits.
Biological & pharmaceutical bulletin.
2020; 43(10):1556-1561. doi:
10.1248/bpb.b20-00405
. [PMID: 32999165] - Arisoy Ozden, Halaris Angelos, Aricioglu Feyza, Wild Elizabeth, Piletz John. Altered plasma levels of arginine metabolites in depression.
Journal of psychiatric research.
2020 01; 120(?):21-28. doi:
10.1016/j.jpsychires.2019.10.004
. [PMID: 31629205] - Xuanfei Li, Junyu Zhu, Lixing Tian, Xiaoyuan Ma, Xia Fan, Li Luo, Jing Yu, Yu Sun, Xue Yang, Wanqi Tang, Wei Ma, Jun Yan, Xiang Xu, Huaping Liang. Agmatine Protects Against the Progression of Sepsis Through the Imidazoline I2 Receptor-Ribosomal S6 Kinase 2-Nuclear Factor-κB Signaling Pathway.
Critical care medicine.
2020 01; 48(1):e40-e47. doi:
10.1097/ccm.0000000000004065
. [PMID: 31634234] - Laura Barrientos-Moreno, María Antonia Molina-Henares, Marta Pastor-García, María Isabel Ramos-González, Manuel Espinosa-Urgel. Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress.
Journal of bacteriology.
2019 11; 201(22):. doi:
10.1128/jb.00454-19
. [PMID: 31451546] - Rosina Pryor, Povilas Norvaisas, Georgios Marinos, Lena Best, Louise B Thingholm, Leonor M Quintaneiro, Wouter De Haes, Daniela Esser, Silvio Waschina, Celia Lujan, Reuben L Smith, Timothy A Scott, Daniel Martinez-Martinez, Orla Woodward, Kevin Bryson, Matthias Laudes, Wolfgang Lieb, Riekelt H Houtkooper, Andre Franke, Liesbet Temmerman, Ivana Bjedov, Helena M Cochemé, Christoph Kaleta, Filipe Cabreiro. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy.
Cell.
2019 09; 178(6):1299-1312.e29. doi:
10.1016/j.cell.2019.08.003
. [PMID: 31474368] - David H Bergin, Yu Jing, Gail Williams, Bruce G Mockett, Hu Zhang, Wickliffe C Abraham, Ping Liu. Safety and neurochemical profiles of acute and sub-chronic oral treatment with agmatine sulfate.
Scientific reports.
2019 09; 9(1):12669. doi:
10.1038/s41598-019-49078-0
. [PMID: 31481723] - Daqing Xu, Lirong Zhang. Increasing Agmatine Production in Escherichia coli through Metabolic Engineering.
Journal of agricultural and food chemistry.
2019 Jul; 67(28):7908-7915. doi:
10.1021/acs.jafc.9b03038
. [PMID: 31268314] - Emine Yılmaz, M Ramazan Şekeroğlu, Ekrem Yılmaz, Erdem Çokluk. Evaluation of plasma agmatine level and its metabolic pathway in patients with bipolar disorder during manic episode and remission period.
International journal of psychiatry in clinical practice.
2019 Jun; 23(2):128-133. doi:
10.1080/13651501.2019.1569237
. [PMID: 31081413] - Beyazit Garip, Hakan Kayir, Ozcan Uzun. l-Arginine metabolism before and after 10 weeks of antipsychotic treatment in first-episode psychotic patients.
Schizophrenia research.
2019 04; 206(?):58-66. doi:
10.1016/j.schres.2018.12.015
. [PMID: 30587428] - V Selakovic, Lj Arsenijevic, M Jovanovic, S Sivcev, N Jovanovic, M Leontijevic, M Stojanovic, M Radenkovic, P Andjus, L Radenovic. Functional and pharmacological analysis of agmatine administration in different cerebral ischemia animal models.
Brain research bulletin.
2019 03; 146(?):201-212. doi:
10.1016/j.brainresbull.2019.01.005
. [PMID: 30641119] - E K El-Sayed, Aae Ahmed, Em El Morsy, S Nofal. Neuroprotective effect of agmatine (decarboxylated l-arginine) against oxidative stress and neuroinflammation in rotenone model of Parkinson's disease.
Human & experimental toxicology.
2019 Feb; 38(2):173-184. doi:
10.1177/0960327118788139
. [PMID: 30001633] - Nishat Ahmed, Naif Aljuhani, Hind S Al-Hujaili, Manar A Al-Hujaili, Mohamed A Elkablawy, Magdy M Noah, Hany Abo-Haded, Dina S El-Agamy. Agmatine protects against sodium valproate-induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway.
Journal of biochemical and molecular toxicology.
2018 Dec; 32(12):e22227. doi:
10.1002/jbt.22227
. [PMID: 30273971] - Ana C Guerra de Souza, Cinara L Gonçalves, Viviane de Souza, Juliana M Hartwig, Marcelo Farina, Rui D Prediger. Agmatine attenuates depressive-like behavior and hippocampal oxidative stress following amyloid β (Aβ1-40) administration in mice.
Behavioural brain research.
2018 11; 353(?):51-56. doi:
10.1016/j.bbr.2018.06.032
. [PMID: 29964071] - Lusliany J Rondón, M C Farges, N Davin, B Sion, A M Privat, M P Vasson, A Eschalier, C Courteix. L-Arginine supplementation prevents allodynia and hyperalgesia in painful diabetic neuropathic rats by normalizing plasma nitric oxide concentration and increasing plasma agmatine concentration.
European journal of nutrition.
2018 Oct; 57(7):2353-2363. doi:
10.1007/s00394-017-1508-x
. [PMID: 28725942] - Maha H Sharawy, Rehab S Abdelrahman, Dalia H El-Kashef. Agmatine attenuates rhabdomyolysis-induced acute kidney injury in rats in a dose dependent manner.
Life sciences.
2018 Sep; 208(?):79-86. doi:
10.1016/j.lfs.2018.07.019
. [PMID: 30009822] - Jinbo Li, Kaixuan Zhang, Yu Meng, Jianping Hu, Mengqi Ding, Jiahui Bian, Mingli Yan, Jianming Han, Meiliang Zhou. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor.
The Plant journal : for cell and molecular biology.
2018 08; 95(3):444-457. doi:
10.1111/tpj.13960
. [PMID: 29752755] - Yusuke Kitada, Koji Muramatsu, Hirokazu Toju, Ryoko Kibe, Yoshimi Benno, Shin Kurihara, Mitsuharu Matsumoto. Bioactive polyamine production by a novel hybrid system comprising multiple indigenous gut bacterial strategies.
Science advances.
2018 06; 4(6):eaat0062. doi:
10.1126/sciadv.aat0062
. [PMID: 29963630] - Erman Esnafoglu, İlhan İrende. Decreased plasma agmatine levels in autistic subjects.
Journal of neural transmission (Vienna, Austria : 1996).
2018 04; 125(4):735-740. doi:
10.1007/s00702-017-1836-2
. [PMID: 29302750] - S Tommasi, D J Elliot, M Da Boit, S R Gray, B C Lewis, A A Mangoni. Homoarginine and inhibition of human arginase activity: kinetic characterization and biological relevance.
Scientific reports.
2018 02; 8(1):3697. doi:
10.1038/s41598-018-22099-x
. [PMID: 29487337] - Inci Turan, Hale Sayan Ozacmak, V Haktan Ozacmak, Figen Barut, Mehmet Araslı. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats.
Life sciences.
2017 Nov; 189(?):23-28. doi:
10.1016/j.lfs.2017.08.032
. [PMID: 28893640] - Mohammed S El-Awady, Manar A Nader, Maha H Sharawy. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.
Environmental toxicology and pharmacology.
2017 Oct; 55(?):74-80. doi:
10.1016/j.etap.2017.08.009
. [PMID: 28837867] - Anna Wiśniewska, Rafał Olszanecki, Justyna Totoń-Żurańska, Katarzyna Kuś, Aneta Stachowicz, Maciej Suski, Anna Gębska, Mariusz Gajda, Jacek Jawień, Ryszard Korbut. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.
International journal of molecular sciences.
2017 Aug; 18(8):. doi:
10.3390/ijms18081706
. [PMID: 28777310] - Nitin B Gawali, Vipin D Bulani, Malvika S Gursahani, Padmini S Deshpande, Pankaj S Kothavade, Archana R Juvekar. Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway.
Brain research.
2017 05; 1663(?):66-77. doi:
10.1016/j.brainres.2017.03.004
. [PMID: 28302445] - Fatemeh Yarmohmmadi, Nastaran Rahimi, Hedyeh Faghir-Ghanesefat, Nina Javadian, Alireza Abdollahi, Parvin Pasalar, Farahnaz Jazayeri, Shahram Ejtemaeemehr, Ahmad Reza Dehpour. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat.
European journal of pharmacology.
2017 Feb; 796(?):39-44. doi:
10.1016/j.ejphar.2016.12.022
. [PMID: 27993640] - Brijesh G Taksande, Dinesh Y Gawande, Chandrabhan T Chopde, Milind J Umekar, Nandkishor R Kotagale. Agmatine ameliorates adjuvant induced arthritis and inflammatory cachexia in rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Feb; 86(?):271-278. doi:
10.1016/j.biopha.2016.12.039
. [PMID: 28006753] - Eun-Jeong Kwon, Moon-Moo Kim. Agmatine modulates melanogenesis via MITF signaling pathway.
Environmental toxicology and pharmacology.
2017 Jan; 49(?):124-130. doi:
10.1016/j.etap.2016.12.008
. [PMID: 27988355] - Nagla A El-Sherbeeny, Manar A Nader, Ghalia M Attia, Hayam Ateyya. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways.
Naunyn-Schmiedeberg's archives of pharmacology.
2016 Dec; 389(12):1341-1351. doi:
10.1007/s00210-016-1284-9
. [PMID: 27638633] - Andréia S Cunha, Filipe C Matheus, Morgana Moretti, Tuane B Sampaio, Anicleto Poli, Danúbia B Santos, Dirleise Colle, Mauricio P Cunha, Carlos H Blum-Silva, Louis P Sandjo, Flávio H Reginatto, Ana Lúcia S Rodrigues, Marcelo Farina, Rui D Prediger. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.
Behavioural brain research.
2016 10; 312(?):64-76. doi:
10.1016/j.bbr.2016.06.014
. [PMID: 27306571] - Yavuz Sami Salihoglu, Tarik Elri, Kanat Gulle, Murat Can, Mustafa Aras, Hale Sayan Ozacmak, Mehmet Cabuk. Evaluation of the protective effect of agmatine against cisplatin nephrotoxicity with 99mTc-DMSA renal scintigraphy and cystatin-C.
Renal failure.
2016 Oct; 38(9):1496-1502. doi:
10.1080/0886022x.2016.1227919
. [PMID: 27604130] - Chiara Gualandi, Nora Bloise, Nicolò Mauro, Paolo Ferruti, Amedea Manfredi, Maurilio Sampaolesi, Anna Liguori, Romolo Laurita, Matteo Gherardi, Vittorio Colombo, Livia Visai, Maria Letizia Focarete, Elisabetta Ranucci. Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing.
Macromolecular bioscience.
2016 10; 16(10):1533-1544. doi:
10.1002/mabi.201600061
. [PMID: 27282336] - M A Nader, N M Gamiel, H El-Kashef, M S Zaghloul. Effect of agmatine on experimental vascular endothelial dysfunction.
Human & experimental toxicology.
2016 May; 35(5):573-82. doi:
10.1177/0960327115597311
. [PMID: 26424770] - Dalia H El-Kashef, Asmaa E El-Kenawi, Mona Abdel Rahim, Ghada M Suddek, Hatem A Salem. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.
Canadian journal of physiology and pharmacology.
2016 Mar; 94(3):278-86. doi:
10.1139/cjpp-2015-0321
. [PMID: 26641937] - Jia Deng, Lixing Tian, Xiaoyuan Ma, Xia Fan, Fengyan Hou, Huaping Liang, Yan Luo. [The effects of agmatine on acute peritoneal inflammatory injury and neutrophil infiltration induced by zymosan in mice].
Zhonghua wei zhong bing ji jiu yi xue.
2016 Mar; 28(3):225-9. doi:
NULL
. [PMID: 29916686] - Nitin B Gawali, Amrita A Chowdhury, Pankaj S Kothavade, Vipin D Bulani, Dnyaneshwar M Nagmoti, Archana R Juvekar. Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice.
European journal of pharmacology.
2016 Jan; 770(?):165-71. doi:
10.1016/j.ejphar.2015.11.044
. [PMID: 26593708] - Bruno Ramos-Molina, Andrés J López-Contreras, Ana Lambertos, Christophe Dardonville, Asunción Cremades, Rafael Peñafiel. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.
Amino acids.
2015 May; 47(5):1025-34. doi:
10.1007/s00726-015-1931-3
. [PMID: 25655388] - S S Ahn, S H Kim, J E Lee, K J Ahn, D J Kim, H S Choi, J Kim, N-Y Shin, S-K Lee. Effects of agmatine on blood-brain barrier stabilization assessed by permeability MRI in a rat model of transient cerebral ischemia.
AJNR. American journal of neuroradiology.
2015 Feb; 36(2):283-8. doi:
10.3174/ajnr.a4113
. [PMID: 25273536] - Zheng Liu, Fengyan Hou, He Jin, Ya Xiao, Xia Fan, Xue Yang, Jun Yan, Huaping Liang. [Effects of agmatine on excessive inflammatory reaction and proliferation of splenic cells in mice with trauma].
Zhonghua wei zhong bing ji jiu yi xue.
2015 Feb; 27(2):110-4. doi:
10.3760/cma.j.issn.2095-4352.2015.02.007
. [PMID: 25665609] - Tomasz Hura, Michał Dziurka, Katarzyna Hura, Agnieszka Ostrowska, Kinga Dziurka. Free and Cell Wall-Bound Polyamines under Long-Term Water Stress Applied at Different Growth Stages of ×Triticosecale Wittm.
PloS one.
2015; 10(8):e0135002. doi:
10.1371/journal.pone.0135002
. [PMID: 26247474] - Gad M Gilad, Varda H Gilad. Long-term (5 years), high daily dosage of dietary agmatine--evidence of safety: a case report.
Journal of medicinal food.
2014 Nov; 17(11):1256-9. doi:
10.1089/jmf.2014.0026
. [PMID: 25247837] - Zhongli Qiu, Ying Lin, Zhili Xiong, Jianwei Xie. [Determination of endogenous agmatine in rat plasma by isotope dilution-gas chromatography-mass spectrometry].
Se pu = Chinese journal of chromatography.
2014 Jul; 32(7):779-83. doi:
10.3724/sp.j.1123.2014.03030
. [PMID: 25255573] - D S El-Agamy, M H Sharawy, E M Ammar. Agmatine attenuates silica-induced pulmonary fibrosis.
Human & experimental toxicology.
2014 Jun; 33(6):650-60. doi:
10.1177/0960327114521047
. [PMID: 24505053] - Dina S El-Agamy, Mirhan N Makled, Nareman M Gamil. Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.
Inflammopharmacology.
2014 Jun; 22(3):187-94. doi:
10.1007/s10787-013-0188-2
. [PMID: 23989863] - Mohammed S El-Awady, Ghada M Suddek. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.
The Journal of pharmacy and pharmacology.
2014 Jun; 66(6):835-43. doi:
10.1111/jphp.12204
. [PMID: 24393128] - Andiara E Freitas, Luis E B Bettio, Vivian B Neis, Danúbia B Santos, Camille M Ribeiro, Priscila B Rosa, Marcelo Farina, Ana Lúcia S Rodrigues. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice.
Progress in neuro-psychopharmacology & biological psychiatry.
2014 Apr; 50(?):143-50. doi:
10.1016/j.pnpbp.2013.12.012
. [PMID: 24370459] - Gulay Bayramoglu, M Yakup Arica. P(HPMA/EGDMA) beads grafted with fibrous chains by SI-ATRP method: agmatine functionalized affinity beads for selective separation of serum albumin.
Bioprocess and biosystems engineering.
2014 Feb; 37(2):205-15. doi:
10.1007/s00449-013-0987-2
. [PMID: 23754324] - Xuan -fei Li, Xia Fan, Zhi-hua Zheng, Xue Yang, Zheng Liu, Jian-ping Gong, Hua-ping Liang. [Protective effects of agmatine on lipopolysaccharide -induced acute hepatic injury in mice].
Zhonghua wei zhong bing ji jiu yi xue.
2013 Dec; 25(12):720-4. doi:
. [PMID: 24620385]
- Gad M Gilad, Varda H Gilad. Evidence for oral agmatine sulfate safety--a 95-day high dosage pilot study with rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Dec; 62(?):758-62. doi:
10.1016/j.fct.2013.10.005
. [PMID: 24140462] - Brijesh G Taksande, Dharmesh S Faldu, Madhura P Dixit, Jay N Sakaria, Manish M Aglawe, Milind J Umekar, Nandkishor R Kotagale. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.
European journal of pharmacology.
2013 Nov; 720(1-3):115-20. doi:
10.1016/j.ejphar.2013.10.041
. [PMID: 24183973] - Tayfun Uzbay, Gokhan Goktalay, Hakan Kayir, Salih S Eker, Asli Sarandol, Sema Oral, Levent Buyukuysal, Gokhan Ulusoy, Selcuk Kirli. Increased plasma agmatine levels in patients with schizophrenia.
Journal of psychiatric research.
2013 Aug; 47(8):1054-60. doi:
10.1016/j.jpsychires.2013.04.004
. [PMID: 23664672] - Jeisa M Pelet, David Putnam. A combinatorial library of bi-functional polymeric vectors for siRNA delivery in vitro.
Pharmaceutical research.
2013 Feb; 30(2):362-76. doi:
10.1007/s11095-012-0876-4
. [PMID: 23054087] - Arthur S Brecher, Anum H Riaz. Polyamines detoxify the anticoagulant effect of acetaldehyde on prothrombin time.
Journal of cardiovascular pharmacology.
2012 Jul; 60(1):1-7. doi:
10.1097/fjc.0b013e318251f98d
. [PMID: 22407337] - Wenkai Ren, Yulong Yin, Gang Liu, Xinglong Yu, Yinghui Li, Guan Yang, Teijun Li, Guoyao Wu. Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection.
Amino acids.
2012 Jun; 42(6):2089-94. doi:
10.1007/s00726-011-0942-y
. [PMID: 21617969] - I V Ferents, I V Brodiak, M Ia Liuta, V A Burda, A M Fedorovych, N O Sybirna. [The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2012 May; 84(3):55-62. doi:
NULL
. [PMID: 22860402] - Pravinkumar Bhutada, Yogita Mundhada, Vishwas Humane, Anand Rahigude, Prashant Deshmukh, Sandeep Latad, Kishor Jain. Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic rats.
Progress in neuro-psychopharmacology & biological psychiatry.
2012 Apr; 37(1):96-105. doi:
10.1016/j.pnpbp.2012.01.009
. [PMID: 22300747] - Yang Lin, Hokyoung Son, Kyunghun Min, Jungkwan Lee, Gyung Ja Choi, Jin-Cheol Kim, Yin-Won Lee. A putative transcription factor MYT2 regulates perithecium size in the ascomycete Gibberella zeae.
PloS one.
2012; 7(5):e37859. doi:
10.1371/journal.pone.0037859
. [PMID: 22649560] - Wilfried Jonkers, Yanhong Dong, Karen Broz, H Corby Kistler. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.
PLoS pathogens.
2012; 8(5):e1002724. doi:
10.1371/journal.ppat.1002724
. [PMID: 22693448] - Neeraj Gupta, Hu Zhang, Ping Liu. Chronic difluoromethylornithine treatment impairs spatial learning and memory in rats.
Pharmacology, biochemistry, and behavior.
2012 Jan; 100(3):464-73. doi:
10.1016/j.pbb.2011.10.011
. [PMID: 22024160] - Eva S Schweikhard, Christine M Ziegler. Amino acid secondary transporters: toward a common transport mechanism.
Current topics in membranes.
2012; 70(?):1-28. doi:
10.1016/b978-0-12-394316-3.00001-6
. [PMID: 23177982] - Yuri C Martins, Graziela M Zanini, John A Frangos, Leonardo J M Carvalho. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA.
PloS one.
2012; 7(2):e32048. doi:
10.1371/journal.pone.0032048
. [PMID: 22348145] - Nandkishor R Kotagale, Brijesh G Taksande, Paresh J Wadhwani, Mahesh W Palhade, Sachin M Mendhi, Dinesh Y Gawande, Pravin N Hadole, Chandrabhan T Chopde. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents.
Pharmacology, biochemistry, and behavior.
2012 Jan; 100(3):398-403. doi:
10.1016/j.pbb.2011.09.006
. [PMID: 21989253] - Grant R Cramer, Kaoru Urano, Serge Delrot, Mario Pezzotti, Kazuo Shinozaki. Effects of abiotic stress on plants: a systems biology perspective.
BMC plant biology.
2011 Nov; 11(?):163. doi:
10.1186/1471-2229-11-163
. [PMID: 22094046] - Ying Gu, Xia Fan, Chun Zhang, Xue Yang, Yi-xi Bao, Hua-ping Liang. [The protective effects of agmatine in zymosan induced acute lung injury in mice].
Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue.
2011 Nov; 23(11):665-8. doi:
. [PMID: 22292183]
- Márcia de Oliveira Sampaio Gomes, Mariana Casteleti Beraldo, Thaila Cristina Putarov, Márcio Antônio Brunetto, Leandro Zaine, Maria Beatriz Abreu Glória, Aulus Cavalieri Carciofi. Old beagle dogs have lower faecal concentrations of some fermentation products and lower peripheral lymphocyte counts than young adult beagles.
The British journal of nutrition.
2011 Oct; 106 Suppl 1(?):S187-90. doi:
10.1017/s0007114511002960
. [PMID: 22005424] - Charles G Nasmith, Sean Walkowiak, Li Wang, Winnie W Y Leung, Yunchen Gong, Anne Johnston, Linda J Harris, David S Guttman, Rajagopal Subramaniam. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum.
PLoS pathogens.
2011 Sep; 7(9):e1002266. doi:
10.1371/journal.ppat.1002266
. [PMID: 21980289] - Jia-Ming Li, Yong He, Peng Zhou, Yun-Gen Xu, Jia-Zhi Peng, Ri-Zheng Sheng. [Design, synthesis and Na+/H+ exchanger isoform-1 inhibitory activity of feruloylagmatine analogues].
Yao xue xue bao = Acta pharmaceutica Sinica.
2011 Aug; 46(8):936-41. doi:
. [PMID: 22007518]
- Fábio O Pedrosa, Rose Adele Monteiro, Roseli Wassem, Leonardo M Cruz, Ricardo A Ayub, Nelson B Colauto, Maria Aparecida Fernandez, Maria Helena P Fungaro, Edmundo C Grisard, Mariangela Hungria, Humberto M F Madeira, Rubens O Nodari, Clarice A Osaku, Maria Luiza Petzl-Erler, Hernán Terenzi, Luiz G E Vieira, Maria Berenice R Steffens, Vinicius A Weiss, Luiz F P Pereira, Marina I M Almeida, Lysangela R Alves, Anelis Marin, Luiza Maria Araujo, Eduardo Balsanelli, Valter A Baura, Leda S Chubatsu, Helisson Faoro, Augusto Favetti, Geraldo Friedermann, Chirlei Glienke, Susan Karp, Vanessa Kava-Cordeiro, Roberto T Raittz, Humberto J O Ramos, Enilze Maria S F Ribeiro, Liu Un Rigo, Saul N Rocha, Stefan Schwab, Anilda G Silva, Eliel M Souza, Michelle Z Tadra-Sfeir, Rodrigo A Torres, Audrei N G Dabul, Maria Albertina M Soares, Luciano S Gasques, Ciela C T Gimenes, Juliana S Valle, Ricardo R Ciferri, Luiz C Correa, Norma K Murace, João A Pamphile, Eliana Valéria Patussi, Alberto J Prioli, Sonia Maria A Prioli, Carmem Lúcia M S C Rocha, Olívia Márcia N Arantes, Márcia Cristina Furlaneto, Leandro P Godoy, Carlos E C Oliveira, Daniele Satori, Laurival A Vilas-Boas, Maria Angélica E Watanabe, Bibiana Paula Dambros, Miguel P Guerra, Sandra Marisa Mathioni, Karine Louise Santos, Mario Steindel, Javier Vernal, Fernando G Barcellos, Rubens J Campo, Ligia Maria O Chueire, Marisa Fabiana Nicolás, Lilian Pereira-Ferrari, José L da Conceição Silva, Nereida M R Gioppo, Vladimir P Margarido, Maria Amélia Menck-Soares, Fabiana Gisele S Pinto, Rita de Cássia G Simão, Elizabete K Takahashi, Marshall G Yates, Emanuel M Souza. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.
PLoS genetics.
2011 May; 7(5):e1002064. doi:
10.1371/journal.pgen.1002064
. [PMID: 21589895] - Melvin J Oliver, Lining Guo, Danny C Alexander, John A Ryals, Bernard W M Wone, John C Cushman. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus.
The Plant cell.
2011 Apr; 23(4):1231-48. doi:
10.1105/tpc.110.082800
. [PMID: 21467579] - Ayelet Erez, Sandesh C Sreenath Nagamani, Brendan Lee. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond.
American journal of medical genetics. Part C, Seminars in medical genetics.
2011 Feb; 157C(1):45-53. doi:
10.1002/ajmg.c.30289
. [PMID: 21312326] - Tate N Winter, William F Elmquist, Carolyn A Fairbanks. OCT2 and MATE1 provide bidirectional agmatine transport.
Molecular pharmaceutics.
2011 Feb; 8(1):133-42. doi:
10.1021/mp100180a
. [PMID: 21128598] - Deepti Nair, Ehab A Dayyat, Shelley X Zhang, Yang Wang, David Gozal. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea.
PloS one.
2011; 6(5):e19847. doi:
10.1371/journal.pone.0019847
. [PMID: 21625437] - Francois Blachier, Anne Marie Davila, Robert Benamouzig, Daniel Tome. Channelling of arginine in NO and polyamine pathways in colonocytes and consequences.
Frontiers in bioscience (Landmark edition).
2011 01; 16(4):1331-43. doi:
10.2741/3792
. [PMID: 21196235] - Donald M Gardiner, Kemal Kazan, Sebastien Praud, Francois J Torney, Anca Rusu, John M Manners. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production.
BMC plant biology.
2010 Dec; 10(?):289. doi:
10.1186/1471-2229-10-289
. [PMID: 21192794] - Bernd Zechmann, Ana Tomasić, Lucija Horvat, Hrvoje Fulgosi. Subcellular distribution of glutathione and cysteine in cyanobacteria.
Protoplasma.
2010 Oct; 246(1-4):65-72. doi:
10.1007/s00709-010-0126-8
. [PMID: 20349253] - Heidi C Vebø, Margrete Solheim, Lars Snipen, Ingolf F Nes, Dag A Brede. Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine.
PloS one.
2010 Aug; 5(8):e12489. doi:
10.1371/journal.pone.0012489
. [PMID: 20824220] - Han Huisman, Paul Wynveen, Mikaela Nichkova, Gottfried Kellermann. Novel ELISAs for screening of the biogenic amines GABA, glycine, beta-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples.
Analytical chemistry.
2010 Aug; 82(15):6526-33. doi:
10.1021/ac100858u
. [PMID: 20586417] - Dagmar Kolb, Maria Müller, Günther Zellnig, Bernd Zechmann. Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L.
Protoplasma.
2010 Jul; 243(1-4):87-94. doi:
10.1007/s00709-009-0043-x
. [PMID: 19424775] - Annalisa Tassoni, Nello Bagni, Maura Ferri, Marina Franceschetti, Alex Khomutov, Maria Paula Marques, Sonia M Fiuza, Alina R Simonian, Donatella Serafini-Fracassini. Helianthus tuberosus and polyamine research: past and recent applications of a classical growth model.
Plant physiology and biochemistry : PPB.
2010 Jul; 48(7):496-505. doi:
10.1016/j.plaphy.2010.01.019
. [PMID: 20172735] - Berit Ebert, Daniela Zöller, Alexander Erban, Ines Fehrle, Jürgen Hartmann, Annette Niehl, Joachim Kopka, Joachim Fisahn. Metabolic profiling of Arabidopsis thaliana epidermal cells.
Journal of experimental botany.
2010 Mar; 61(5):1321-35. doi:
10.1093/jxb/erq002
. [PMID: 20150518] - Guoyu Pan, Tate N Winter, John C Roberts, Carolyn A Fairbanks, William F Elmquist. Organic cation uptake is enhanced in bcrp1-transfected MDCKII cells.
Molecular pharmaceutics.
2010 Feb; 7(1):138-45. doi:
10.1021/mp900177r
. [PMID: 19886673] - Inho Jo, Changsu Han, Sangmee Ahn Jo, Ji Ah Seo, Moon Ho Park, Nan Hee Kim. Low levels of plasma agmatine in the metabolic syndrome.
Metabolic syndrome and related disorders.
2010 Feb; 8(1):21-4. doi:
10.1089/met.2009.0032
. [PMID: 19929601] - Chin-Hong Chang, Hung-Tsung Wu, Kai-Chun Cheng, Hung-Jung Lin, Juei-Tang Cheng. Increase of beta-endorphin secretion by agmatine is induced by activation of imidazoline I(2A) receptors in adrenal gland of rats.
Neuroscience letters.
2010 Jan; 468(3):297-9. doi:
10.1016/j.neulet.2009.11.018
. [PMID: 19913596] - Humberto M Spindola, Leila Servat, Carina Denny, Rodney A F Rodrigues, Marcos N Eberlin, Elaine Cabral, Ilza M O Sousa, Jorge Y Tamashiro, João E Carvalho, Mary A Foglio. Antinociceptive effect of geranylgeraniol and 6alpha,7beta-dihydroxyvouacapan-17beta-oate methyl ester isolated from Pterodon pubescens Benth.
BMC pharmacology.
2010 Jan; 10(?):1. doi:
10.1186/1471-2210-10-1
. [PMID: 20055987] - Donald M Gardiner, Kemal Kazan, John M Manners. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence.
Molecular plant-microbe interactions : MPMI.
2009 Dec; 22(12):1588-600. doi:
10.1094/mpmi-22-12-1588
. [PMID: 19888824] - Atsushi Muroi, Atsushi Ishihara, Chihiro Tanaka, Akihiro Ishizuka, Junji Takabayashi, Hideto Miyoshi, Takaaki Nishioka. Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana.
Planta.
2009 Aug; 230(3):517-27. doi:
10.1007/s00425-009-0960-0
. [PMID: 19521717] - Rico Lippmann, Stephanie Kaspar, Twan Rutten, Michael Melzer, Jochen Kumlehn, Andrea Matros, Hans-Peter Mock. Protein and metabolite analysis reveals permanent induction of stress defense and cell regeneration processes in a tobacco cell suspension culture.
International journal of molecular sciences.
2009 Jul; 10(7):3012-3032. doi:
10.3390/ijms10073012
. [PMID: 19742122] - Chin-Hui Su, I-Min Liu, Hsien-Hui Chung, Juei-Tang Cheng. Activation of I2-imidazoline receptors by agmatine improved insulin sensitivity through two mechanisms in type-2 diabetic rats.
Neuroscience letters.
2009 Jul; 457(3):125-8. doi:
10.1016/j.neulet.2009.03.093
. [PMID: 19429177] - Shulin Zhao, Yong Huang, Ming Shi, Yi-Ming Liu. Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection.
Journal of chromatography. A.
2009 Jun; 1216(26):5155-9. doi:
10.1016/j.chroma.2009.04.081
. [PMID: 19447398]