Lotaustralin (BioDeep_00000000946)

 

Secondary id: BioDeep_00000406728

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile

化学式: C11H19NO6 (261.1212)
中文名称: 百脉根苷
谱图信息: 最多检出来源 Viridiplantae(plant) 7.63%

分子结构信息

SMILES: CCC(C#N)(C)O[C@@H]1O[C@@H]([C@@H](O)[C@H](O)[C@H]1O)CO
InChI: InChI=1S/C11H19NO6/c1-3-11(2,5-12)18-10-9(16)8(15)7(14)6(4-13)17-10/h6-10,13-16H,3-4H2,1-2H3

描述信息

Lotaustralin is a cyanogenic glycoside.
Lotaustralin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available.
Epilotaustralin is found in cereals and cereal products. Epilotaustralin is isolated from Triticum monococcum (wheat).
Glycoside from Trifolium repens (white clover) and other plants
Lotaustralin is a cyanogenic glucoside isolated from Manihot esculenta [1].

同义名列表

19 个代谢物同义名

(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butanenitrile; (2R)-2-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-butanenitrile; (2R)-2-methyl-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile; (2R)-2-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutanenitrile; 2-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butanenitrile; 2-methyl-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutanenitrile; BUTANENITRILE, 2-(.BETA.-D-GLUCOPYRANOSYLOXY)-2-METHYL-, (2R)-; Butanenitrile, 2-(beta-D-glucopyranosyloxy)-2-methyl-, (R)-; 2(R)-hydroxy-2-methylbutyronitrile-beta-D- glucopyranoside; 2(R)-Hydroxy-2-methylbutyronitrile-beta-D-glucopyranoside; (2R)-2-(beta-D-Glucopyranosyloxy)-2-methyl-butanenitrile;; 2-(beta-D-Glucopyranosyloxy)-2-methyl-(R)-butanenitrile; (R)-2-(beta-D-Glucopyranosyloxy)-2-methylbutyronitrile; 2-hydroxy-2-methylbutyronitrile-beta-D-glucopyranoside; .BETA.-D-GLUCOPYRANOSYLOXY-2-METHYLBUTYRONITRILE (R); lotaustralin, (S)-isomer; Lotaustralin; AC1L9B81; Lotaustralin



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

34 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(4)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(30)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

140 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ALB, CA1, CASP3, TH, WT1
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 1 CYP1B1
Nucleus 4 ALB, CASP3, TH, WT1
cytosol 6 ACACA, ALB, CA1, CASP3, TH, WT1
dendrite 1 TH
centrosome 1 ALB
nucleoplasm 2 CASP3, WT1
Cell membrane 2 ITGAM, P2RY4
Cell projection, axon 1 TH
Multi-pass membrane protein 2 P2RY4, SLC5A1
cell surface 1 ITGAM
glutamatergic synapse 2 CASP3, P2RY4
Golgi apparatus 1 ALB
neuronal cell body 1 CASP3
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
Cytoplasm, cytosol 1 ACACA
plasma membrane 3 ITGAM, P2RY4, SLC5A1
terminal bouton 1 TH
Membrane 2 CYP1B1, ITGAM
apical plasma membrane 2 P2RY4, SLC5A1
axon 1 TH
basolateral plasma membrane 1 P2RY4
extracellular exosome 4 ALB, CA1, ITGAM, SLC5A1
endoplasmic reticulum 1 ALB
extracellular space 3 ALB, ITGAM, TST
perinuclear region of cytoplasm 2 SLC5A1, TH
mitochondrion 4 ACACA, CYP1B1, TH, TST
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 1 CYP1B1
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 ITGAM
Secreted 1 ALB
extracellular region 1 ALB
cytoplasmic side of plasma membrane 1 TH
Mitochondrion matrix 1 TST
mitochondrial matrix 1 TST
anchoring junction 1 ALB
external side of plasma membrane 1 ITGAM
actin cytoskeleton 1 ACACA
perikaryon 1 TH
cytoplasmic vesicle 1 TH
nucleolus 1 WT1
Melanosome membrane 1 TH
Early endosome 1 SLC5A1
presynaptic active zone membrane 1 P2RY4
Apical cell membrane 1 SLC5A1
Cytoplasm, perinuclear region 1 TH
Membrane raft 1 ITGAM
intracellular vesicle 1 SLC5A1
nuclear speck 1 WT1
neuron projection 1 TH
ciliary basal body 1 ALB
centriole 1 ALB
brush border membrane 1 SLC5A1
spindle pole 1 ALB
blood microparticle 1 ALB
fibrillar center 1 ACACA
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
Nucleus speckle 1 WT1
plasma membrane raft 1 ITGAM
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
death-inducing signaling complex 1 CASP3
integrin complex 1 ITGAM
integrin alphaM-beta2 complex 1 ITGAM
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
intracellular organelle 1 SLC5A1
[Isoform 1]: Nucleus speckle 1 WT1
[Isoform 4]: Nucleus, nucleoplasm 1 WT1
ciliary transition fiber 1 ALB


文献列表

  • Érika C Pinheiro de Castro, Rojan Demirtas, Anna Orteu, Carl Erik Olsen, Mohammed Saddik Motawie, Márcio Zikan Cardoso, Mika Zagrobelny, Søren Bak. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Insect biochemistry and molecular biology. 2020 01; 116(?):103259. doi: 10.1016/j.ibmb.2019.103259. [PMID: 31698083]
  • Rafael Díaz-Sobac, Alma Vázquez-Luna, Eduardo Rivadeneyra-Domínguez, Juan Francisco Rodríguez-Landa, Tomás Guerrero, J Sergio Durand-Niconoff. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach. Journal of molecular modeling. 2019 Sep; 25(9):295. doi: 10.1007/s00894-019-4170-9. [PMID: 31478108]
  • Kristina Mastanjević, Bojan Šarkanj, Rudolf Krska, Michael Sulyok, Benedikt Warth, Krešimir Mastanjević, Božidar Šantek, Vinko Krstanović. From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food chemistry. 2018 Jul; 254(?):115-121. doi: 10.1016/j.foodchem.2018.02.005. [PMID: 29548430]
  • Daniela Lai, Martina Pičmanová, Maher Abou Hachem, Mohammed Saddik Motawia, Carl Erik Olsen, Birger Lindberg Møller, Fred Rook, Adam M Takos. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Plant molecular biology. 2015 Sep; 89(1-2):21-34. doi: 10.1007/s11103-015-0348-4. [PMID: 26249044]
  • Doralyn S Dalisay, Kye Won Kim, Choonseok Lee, Hong Yang, Oliver Rübel, Benjamin P Bowen, Laurence B Davin, Norman G Lewis. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging. Journal of natural products. 2015 Jun; 78(6):1231-42. doi: 10.1021/acs.jnatprod.5b00023. [PMID: 25981198]
  • M Sulyok, F Beed, S Boni, A Abass, A Mukunzi, R Krska. Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and Rwanda by an LC-MS/MS-based multi-toxin method. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2015; 32(4):488-502. doi: 10.1080/19440049.2014.975752. [PMID: 25350522]
  • Joel Fürstenberg-Hägg, Mika Zagrobelny, Kirsten Jørgensen, Heiko Vogel, Birger Lindberg Møller, Søren Bak. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist. PloS one. 2014; 9(10):e108745. doi: 10.1371/journal.pone.0108745. [PMID: 25299618]
  • Shigeki Saito, Mohammed Saddik Motawia, Carl Erik Olsen, Birger Lindberg Møller, Søren Bak. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry. 2012 May; 77(?):260-7. doi: 10.1016/j.phytochem.2012.01.020. [PMID: 22385904]
  • Rubini Kannangara, Mohammed S Motawia, Natascha K K Hansen, Suzanne M Paquette, Carl E Olsen, Birger L Møller, Kirsten Jørgensen. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. The Plant journal : for cell and molecular biology. 2011 Oct; 68(2):287-301. doi: 10.1111/j.1365-313x.2011.04695.x. [PMID: 21736650]
  • Priya Kali Dhas, Pachiappan Chitra, Sylvia Jayakumar, Aruna Rita Mary. Study of the effects of hydrogen cyanide exposure in Cassava workers. Indian journal of occupational and environmental medicine. 2011 Sep; 15(3):133-6. doi: 10.4103/0019-5278.93204. [PMID: 22412292]
  • Sukhuman Whankaew, Supannee Poopear, Supanath Kanjanawattanawong, Sithichoke Tangphatsornruang, Opas Boonseng, David A Lightfoot, Kanokporn Triwitayakorn. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC genomics. 2011 May; 12(?):266. doi: 10.1186/1471-2164-12-266. [PMID: 21609492]
  • Bala Nambisan. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 Mar; 49(3):690-3. doi: 10.1016/j.fct.2010.10.035. [PMID: 21074593]
  • Narayanan N Narayanan, Uzoma Ihemere, Claire Ellery, Richard T Sayre. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. PloS one. 2011; 6(7):e21996. doi: 10.1371/journal.pone.0021996. [PMID: 21799761]
  • Niels Bjerg Jensen, Mika Zagrobelny, Karin Hjernø, Carl Erik Olsen, Jens Houghton-Larsen, Jonas Borch, Birger Lindberg Møller, Søren Bak. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nature communications. 2011; 2(?):273. doi: 10.1038/ncomms1271. [PMID: 21505429]
  • M Guadalupe Rojas, Juan Alfredo Morales-Ramos. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis. Journal of chemical ecology. 2010 Dec; 36(12):1354-62. doi: 10.1007/s10886-010-9872-5. [PMID: 20953678]
  • Adam Takos, Daniela Lai, Lisbeth Mikkelsen, Maher Abou Hachem, Dale Shelton, Mohammed Saddik Motawia, Carl Erik Olsen, Trevor L Wang, Cathie Martin, Fred Rook. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. The Plant cell. 2010 May; 22(5):1605-19. doi: 10.1105/tpc.109.073502. [PMID: 20453117]
  • Mika Zagrobelny, Karsten Scheibye-Alsing, Niels Bjerg Jensen, Birger Lindberg Møller, Jan Gorodkin, Søren Bak. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. BMC genomics. 2009 Dec; 10(?):574. doi: 10.1186/1471-2164-10-574. [PMID: 19954531]
  • Daniel J Ballhorn, Stefanie Kautz, Martin Heil, Adrian D Hegeman. Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PloS one. 2009; 4(5):e5450. doi: ". [PMID: 19424497]
  • Anne Vinther Morant, Nanna Bjarnholt, Mads Emil Kragh, Christian Hauge Kjaergaard, Kirsten Jørgensen, Suzanne Michelle Paquette, Markus Piotrowski, Anne Imberty, Carl Erik Olsen, Birger Lindberg Møller, Søren Bak. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Plant physiology. 2008 Jul; 147(3):1072-91. doi: 10.1104/pp.107.109512. [PMID: 18467457]
  • Nanna Bjarnholt, Mette Laegdsmand, Hans C B Hansen, Ole H Jacobsen, Birger Lindberg Møller. Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere. 2008 Jun; 72(6):897-904. doi: 10.1016/j.chemosphere.2008.03.047. [PMID: 18472138]
  • Tetsuya Sakurai, Germán Plata, Fausto Rodríguez-Zapata, Motoaki Seki, Andrés Salcedo, Atsushi Toyoda, Atsushi Ishiwata, Joe Tohme, Yoshiyuki Sakaki, Kazuo Shinozaki, Manabu Ishitani. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC plant biology. 2007 Dec; 7(?):66. doi: 10.1186/1471-2229-7-66. [PMID: 18096061]
  • Mika Zagrobelny, Søren Bak, Carl Erik Olsen, Birger Lindberg Møller. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect biochemistry and molecular biology. 2007 Nov; 37(11):1189-97. doi: 10.1016/j.ibmb.2007.07.008. [PMID: 17916505]
  • Mika Zagrobelny, Søren Bak, Claus Thorn Ekstrøm, Carl Erik Olsen, Birger Lindberg Møller. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect biochemistry and molecular biology. 2007 Jan; 37(1):10-8. doi: 10.1016/j.ibmb.2006.09.008. [PMID: 17175442]
  • Kirsten Jørgensen, Søren Bak, Peter Kamp Busk, Charlotte Sørensen, Carl Erik Olsen, Johanna Puonti-Kaerlas, Birger Lindberg Møller. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant physiology. 2005 Sep; 139(1):363-74. doi: 10.1104/pp.105.065904. [PMID: 16126856]
  • Yurdanur Akgul, Daneel Ferreira, Ehab A Abourashed, Ikhlas A Khan. Lotaustralin from Rhodiola rosea roots. Fitoterapia. 2004 Sep; 75(6):612-4. doi: 10.1016/j.fitote.2004.06.002. [PMID: 15351122]
  • Lisbeth Garbrecht Thygesen, Kirsten Jørgensen, Birger Lindberg Møller, Søren Balling Engelsen. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide. Applied spectroscopy. 2004 Feb; 58(2):212-7. doi: 10.1366/000370204322842959. [PMID: 15000716]
  • W Fan, Y Tezuka, K M Ni, S Kadota. Prolyl endopeptidase inhibitors from the underground part of Rhodiola sachalinensis. Chemical & pharmaceutical bulletin. 2001 Apr; 49(4):396-401. doi: 10.1248/cpb.49.396. [PMID: 11310664]
  • S Kang, J Wang. [Comparative study of the constituents from 10 Rhodiola plants]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 1997 Dec; 20(12):616-8. doi: ". [PMID: 12572503]
  • A Nahrstedt. Cyanogenesis and the role of cyanogenic compounds in insects. Ciba Foundation symposium. 1988; 140(?):131-50. doi: 10.1002/9780470513712.ch9. [PMID: 3073053]
  • M A Hughes, J D Stirling, D B Collinge. The inheritance of cyanoglucoside content in Trifolium repens L. Biochemical genetics. 1984 Feb; 22(1-2):139-51. doi: 10.1007/bf00499294. [PMID: 6712586]
  • . . . . doi: . [PMID: 21429539]
  • . . . . doi: . [PMID: 21045121]
  • . . . . doi: . [PMID: 15122013]
  • . . . . doi: . [PMID: 10636899]
  • . . . . doi: . [PMID: 1727632]