Maltotetraose (BioDeep_00000000587)

 

Secondary id: BioDeep_00000001108, BioDeep_00000229607, BioDeep_00000405433, BioDeep_00000855750

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

化学式: C24H42O21 (666.2218)
中文名称: 麦芽四糖
谱图信息: 最多检出来源 Homo sapiens(urine) 21.81%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)OC4C(OC(C(C4O)O)O)CO)CO)CO)O)O)O)O
InChI: InChI=1S/C24H42O21/c25-1-5-9(29)10(30)15(35)22(40-5)44-19-7(3-27)42-24(17(37)12(19)32)45-20-8(4-28)41-23(16(36)13(20)33)43-18-6(2-26)39-21(38)14(34)11(18)31/h5-38H,1-4H2/t5-,6-,7-,8-,9-,10+,11-,12-,13-,14-,15-,16-,17-,18-,19-,20-,21?,22-,23-,24-/m1/s1

描述信息

Maltotetraose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotetraose exists in all living organisms, ranging from bacteria to humans. Outside of the human body, maltotetraose has been detected, but not quantified in several different foods, such as welsh onions, kales, small-leaf lindens, other bread, and romaine lettuces. Maltotetraose is a normal human oligo saccharide present in plasma, but is elevated in cases of Pompe disease (PMID 15886040).
Alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp is a maltotetraose tetrasaccharide consisting of three alpha-D-glucopyranose residues and a D-glucopyranose residue joined in sequence by (1->4) glycosidic bonds.
Amylotetraose is a natural product found in Streptomyces with data available.
Constituent of corn syrup. Product of action of a-amylase on starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.
Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

同义名列表

26 个代谢物同义名

(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol; O-alpha-delta-glucopyranosyl-(1->4)-O(4xi)-alpha-delta-xylo-hexopyranosyl-(1->4)-O-alpha-delta-glucopyranosyl-(1->4)-delta-glucose; alpha-D-gluco-hexopyranosyl-(1->4)-alpha-D-gluco-hexopyranosyl-(1->4)-alpha-D-gluco-hexopyranosyl-(1->4)-D-gluco-hexopyranose; O-alpha-delta-glucopyranosyl-(1-4)-O-alpha-delta-glucopyranosyl-(1-4)-O-alpha-delta-glucopyranosyl-(1-4)-delta-Glucose; O-alpha-delta-Glucopyranosyl-(1.4)-O-alpha-delta-glucopyranosyl-(1.4)-O-alpha-delta-glucopyranosyl-(1.4)-delta-glucose; O-alpha-D-glucopyranosyl-(1->4)-O(4xi)-alpha-D-xylo-hexopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-D-glucose; O-alpha-D-Glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-glucopyranose; Α-D-gluco-hexopyranosyl-(1->4)-α-D-gluco-hexopyranosyl-(1->4)-α-D-gluco-hexopyranosyl-(1->4)-D-gluco-hexopyranose; a-D-Gluco-hexopyranosyl-(1->4)-a-D-gluco-hexopyranosyl-(1->4)-a-D-gluco-hexopyranosyl-(1->4)-D-gluco-hexopyranose; alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-D-glucopyranose; O-alpha-D-glucopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-D-glucose; O-alpha-D-Glucopyranosyl-(1.4)-O-alpha-D-glucopyranosyl-(1.4)-O-alpha-D-glucopyranosyl-(1.4)-D-glucose; O-alpha-D-glucopyranosyl-(1-4)-O-alpha-D-glucopyranosyl-(1-4)-O-alpha-D-glucopyranosyl-(1-4)-D-Glucose; O-a-D-Glucopyranosyl-(1->4)-O-a-D-glucopyranosyl-(1->4)-O-a-D-glucopyranosyl-(1->4)-D-glucose; O-Α-D-glucopyranosyl-(1->4)-O-α-D-glucopyranosyl-(1->4)-O-α-D-glucopyranosyl-(1->4)-D-glucose; WURCS=2.0/2,4,3/[a2122h-1x_1-5][a2122h-1a_1-5]/1-2-2-2/a4-b1_b4-c1_c4-D1; alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp; Glc(a1-4)Glc(a1-4)Glc(a1-4)Glc; alpha-1,4-Tetraglucose; a-1,4-Tetraglucose; d-maltotetraose; Maltotetraose; Amylotetraose; Fujioligo 450; α-1,4-Tetraglucose; Maltotetraose



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

13 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(11)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 AOX1, HADH, PDGFB
Peripheral membrane protein 1 GBA1
Nucleus 2 MGA, MYBL1
cytosol 2 AOX1, PGK1
trans-Golgi network 1 GBA1
nucleoplasm 4 ATP2B1, HADH, MGA, MYBL1
Cell membrane 4 ADCY5, ATP2B1, MGAM, TREH
Multi-pass membrane protein 4 ADCY5, ADCY7, ATP2B1, MAL2
Synapse 1 ATP2B1
cell surface 1 PDGFB
glutamatergic synapse 2 ATP2B1, MAL2
Golgi apparatus 1 GBA1
Golgi membrane 2 INS, PDGFB
lysosomal membrane 1 GBA1
mitochondrial inner membrane 1 HADH
presynaptic membrane 1 ATP2B1
Lysosome 1 GBA1
plasma membrane 7 ADCY5, ADCY7, ATP2B1, LCT, MGA, MGAM, TREH
synaptic vesicle membrane 2 ATP2B1, MAL2
Membrane 8 ADCY5, ADCY7, ATP2B1, MAL2, MGAM, PDGFB, PGK1, TREH
apical plasma membrane 3 MAL2, MGA, MGAM
basolateral plasma membrane 2 ATP2B1, PDGFB
extracellular exosome 9 AMY2A, AOX1, ATP2B1, GBA1, MAL2, MGA, MGAM, PGK1, TREH
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 1 GBA1
extracellular space 4 AMY2A, INS, PDGFB, PGK1
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 1 MAL2
mitochondrion 1 HADH
intracellular membrane-bounded organelle 1 ATP2B1
Single-pass type I membrane protein 1 LCT
Secreted 3 INS, MGAM, PDGFB
extracellular region 4 AMY2A, INS, MGAM, PDGFB
Single-pass membrane protein 1 MGAM
hippocampal mossy fiber to CA3 synapse 1 MAL2
Mitochondrion matrix 1 HADH
mitochondrial matrix 1 HADH
Cell projection, cilium 1 ADCY5
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Apical cell membrane 1 LCT
Mitochondrion inner membrane 1 HADH
Membrane raft 2 MAL2, PGK1
mitochondrial nucleoid 1 HADH
collagen-containing extracellular matrix 1 PDGFB
lateral plasma membrane 1 ATP2B1
cilium 1 ADCY5
chromatin 1 MGA
cell projection 1 ATP2B1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 TREH
Endomembrane system 1 ADCY5
endosome lumen 1 INS
tertiary granule membrane 2 MGA, MGAM
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 TREH
secretory granule lumen 1 INS
Golgi lumen 2 INS, PDGFB
endoplasmic reticulum lumen 2 INS, PDGFB
MLL1 complex 1 MGA
platelet alpha granule lumen 1 PDGFB
transport vesicle 1 INS
mitochondrial fatty acid beta-oxidation multienzyme complex 1 HADH
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
ficolin-1-rich granule membrane 2 MGA, MGAM
external side of apical plasma membrane 1 LCT
platelet-derived growth factor complex 1 PDGFB
photoreceptor ribbon synapse 1 ATP2B1


文献列表

  • Eun Yeong Jang, Ki-Bae Hong, Yeok Boo Chang, Jungcheul Shin, Eun Young Jung, Kyungae Jo, Hyung Joo Suh. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules (Basel, Switzerland). 2020 Nov; 25(21):. doi: 10.3390/molecules25215201. [PMID: 33182247]
  • Soon Young Shin, You Jung Jung, Yeonjoong Yong, Hi Jae Cho, Yoongho Lim, Young Han Lee. Inhibition of PDGF-induced migration and TNF-α-induced ICAM-1 expression by maltotetraose from bamboo stem extract (BSE) in mouse vascular smooth muscle cells. Molecular nutrition & food research. 2016 09; 60(9):2086-97. doi: 10.1002/mnfr.201500601. [PMID: 27067145]
  • Wim Sluiter, Jeroen C van den Bosch, Daphne A Goudriaan, Carin M van Gelder, Juna M de Vries, Jan G M Huijmans, Arnold J J Reuser, Ans T van der Ploeg, George J G Ruijter. Rapid ultraperformance liquid chromatography-tandem mass spectrometry assay for a characteristic glycogen-derived tetrasaccharide in Pompe disease and other glycogen storage diseases. Clinical chemistry. 2012 Jul; 58(7):1139-47. doi: 10.1373/clinchem.2011.178319. [PMID: 22623745]
  • Udo Schnupf, J L Willett, Wayne Bosma, Frank A Momany. DFT conformation and energies of amylose fragments at atomic resolution. Part 1: Syn forms of alpha-maltotetraose. Carbohydrate research. 2009 Feb; 344(3):362-73. doi: 10.1016/j.carres.2008.11.017. [PMID: 19111747]
  • Udo Schnupf, J L Willett, Frank A Momany. DFT conformation and energies of amylose fragments at atomic resolution. Part 2: 'Band-flip' and 'kink' forms of alpha-maltotetraose. Carbohydrate research. 2009 Feb; 344(3):374-83. doi: 10.1016/j.carres.2008.11.016. [PMID: 19111748]
  • Jong-Hyun Kim, Michihiro Sunako, Hisayo Ono, Yoshikatsu Murooka, Eiichiro Fukusaki, Mitsuo Yamashita. Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137. Journal of bioscience and bioengineering. 2008 Nov; 106(5):449-59. doi: 10.1263/jbb.106.449. [PMID: 19111640]
  • Birte Kramhøft, Kristian Sass Bak-Jensen, Haruhide Mori, Nathalie Juge, Jane Nøhr, Birte Svensson. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase. Biochemistry. 2005 Feb; 44(6):1824-32. doi: 10.1021/bi048100v. [PMID: 15697208]
  • Olivier Gonçalves, Thierry Dintinger, Dominique Blanchard, Charles Tellier. Functional mimicry between anti-Tendamistat antibodies and alpha-amylase. Journal of immunological methods. 2002 Nov; 269(1-2):29-37. doi: 10.1016/s0022-1759(02)00238-7. [PMID: 12379350]
  • G J Lawson. Prevalence of macroamylasaemia using polyethylene glycol precipitation as a screening method. Annals of clinical biochemistry. 2001 Jan; 38(Pt 1):37-45. doi: 10.1258/0004563011900263. [PMID: 11270840]
  • R A Burke, G Hughes, J B Moberly. Lack of interference of icodextrin on creatinine measurements. Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 1999; 15(?):234-7. doi: . [PMID: 10682109]
  • C Andersen, M Jordy, R Benz. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise. The Journal of general physiology. 1995 Mar; 105(3):385-401. doi: 10.1085/jgp.105.3.385. [PMID: 7539481]
  • J L Rosenblum, G L Hortin, C H Smith, G E Pashos, M Landt. Macroamylases: differences in activity against various-sized substrates. Clinical chemistry. 1992 Sep; 38(9):1725-9. doi: . [PMID: 1381999]
  • K Ogawa, T Murata, T Usui. Maltotetraose-forming, amylase-mediated, p-nitrophenyl alpha- and beta-maltopentaoside formation in an aqueous-organic solvent system: a substrate for human amylase in serum. Carbohydrate research. 1991 Jun; 212(?):289-94. doi: 10.1016/0008-6215(91)84068-p. [PMID: 1720345]
  • T Usui, T Murata. Enzymatic synthesis of p-nitrophenyl alpha-maltopentaoside in an aqueous-methanol solvent system by maltotetraose-forming amylase: a substrate for human amylase in serum. Journal of biochemistry. 1988 Jun; 103(6):969-72. doi: 10.1093/oxfordjournals.jbchem.a122395. [PMID: 2459114]
  • D W Andersen, L D Stegink, L J Filer, A E Applebaum. Utilization of intravenously administered glycogen by young pigs. The Journal of nutrition. 1987 Feb; 117(2):274-9. doi: 10.1093/jn/117.2.274. [PMID: 3559742]
  • T E Mifflin, D C Benjamin, D E Bruns. Rapid quantitative, specific measurement of pancreatic amylase in serum with use of a monoclonal antibody. Clinical chemistry. 1985 Aug; 31(8):1283-8. doi: 10.1093/clinchem/31.8.1283. [PMID: 3874721]
  • J C Hafkenscheid, M Hessels. Measurement of pancreatic and salivary alpha-amylase in serum: comparison of methods with five different substrates. Enzyme. 1985; 33(3):128-33. doi: 10.1159/000469421. [PMID: 3876927]
  • O Yuge, M Morio, T Fukui, K Fujii, H Kikuchi, S Takahashi. Maltotriose and maltotetraose excreted in urine following intravenous administration of maltose to human volunteers. The Japanese journal of surgery. 1983 Jul; 13(4):296-303. doi: 10.1007/bf02469510. [PMID: 6645121]
  • V W Lee, C Willis. Activity of human and nonhuman amylases on different substrates used in enzymatic kinetic assay methods--a pitfall in interlaboratory quality control. American journal of clinical pathology. 1982 Mar; 77(3):290-6. doi: 10.1093/ajcp/77.3.290. [PMID: 6176111]
  • A Dickgiesser, H A Müller, J D Kruse-Jarres. [The effect of neutral urinary alpha-glucosidase on the alpha-amylase determination with maltotetraose as a substrate]. Das Medizinische Laboratorium. 1981 Sep; 34(9-10):228-31. doi: . [PMID: 6175886]
  • K J Whitlow, N Gochman, R L Forrester, L J Wataji. Maltotetraose as a substrate for enzyme-coupled assay of amylase activity in serum and urine. Clinical chemistry. 1979 Mar; 25(3):481-3. doi: 10.1093/clinchem/25.3.481. [PMID: 95558]