Sanguinarine (BioDeep_00000000499)

 

Secondary id: BioDeep_00000397985, BioDeep_00001867514

human metabolite PANOMIX_OTCML-2023 Endogenous Toxin natural product


代谢物信息卡片


24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21),23-nonaen-24-ium

化学式: [C20H14NO4]+ (332.0923)
中文名称: 血根碱, 假白屈菜季铵碱
谱图信息: 最多检出来源 Homo sapiens(plant) 9.16%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Sanguinarine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/sanguinarine (retrieved 2025-01-08) (BioDeep RN: BioDeep_00000000499). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C[n+1](c1)c(c54)c(ccc(cc(O6)c(OC6)c5)4)c(c2)c(cc(O3)c(OC3)2)1
InChI: InChI=1S/C20H14NO4/c1-21-8-12-5-17-18(24-10-23-17)6-14(12)13-3-2-11-4-16-19(25-9-22-16)7-15(11)20(13)21/h2-8H,9-10H2,1H3/q+1

描述信息

Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent.
Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available.
Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208).
See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of).
Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine

Sanguinarine (13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is derived from the root of Sanguinaria canadensis and other poppy-fumaria species (for references, see Ref. 1). This benzophenanthridine alkaloid is a structural homologue of chelerythrine, which is a potent inhibitor of protein kinase C (2). Sanguinarine has been shown to display antitumor (3) and anti-inflammatory properties in animals (4) and to inhibit neutrophil function, including degranulation and phagocytosis in vitro(5). It is also a potent inhibitor of Na-K-dependent ATPase (6, 7, 8) and cholinesterase (9).

同义名列表

65 个代谢物同义名

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21),23-nonaen-24-ium; 24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14,16,21,23-nonaen-24-ium; 24-methyl-5,7,18,20-tetraoxa-24-azoniahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaene; 24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁴,²².0¹⁷,²¹]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaen-24-ium; 24-methyl-5,7,18,20-tetraoxa-24-azoniahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaene; 13-methyl-2H,10H-(1,3)dioxolo(4,5-i)(1,3)dioxolo(4,5:4,5)benzo(1,2-c)phenanthridinium; 13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4,5:4,5]benzo[1,2-c]phenanthridinium; 13-Methyl-[1,3]dioxolo[4,5:4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridin-13-ium; 13-Methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium(1+), 9CI; 13-Methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium nitrate; (1,3)-Benzodioxolo(5,6-c)-1,3-dioxolo(4,5-i)phenanthridinium, 13-methyl-; 13-Methyl[1,3]benzodioxolo[5,6-C][1,3]dioxolo[4,5-I]phenanthridin-13-Ium; [1,3]Benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium, 13-methyl-; (1,3)BENZODIOXOLO(5,6-C)-1,3-DIOXOLO(4,5-I)PHENANTHRIDINIUM, 13-METHYL-; 13-methyl(1,3)benzodioxolo(5,6-c)-1,3-dioxolo(4,5-i)phenanthridinium; 13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium; 5-Methyl-2,3:7,8-bis(methylenedioxy)benzo[c]phenanthridinium(1+); Dimethylenedioxy benzphenanthridine; Pseudochelerythrine;Sanguinarin; Benzophenanthridine alkaloid; INVGWHRKADIJHF-UHFFFAOYSA-N; compound 1 [PMID: 28621943]; sanguinarine sulfate (2:1); sanguinarine sulfate (1:1); sanguinarine hydroxide; sanguinarium-chloride; SANGUINARINE [WHO-DD]; sanguinarine chloride; sanguinarine nitrate; pseudo-chelerythrine; pseudochelerythrine; Prestwick1_000987; Prestwick3_000987; Prestwick0_000987; Prestwick2_000987; SANGUINARINE [MI]; Spectrum2_000724; Spectrum3_001148; Spectrum4_001838; Spectrum5_000635; |x-Chelerythrine; y-Chelerythrine; UNII-AV9VK043SS; Tox21_110268_1; BPBio1_001159; Lopac0_001108; DivK1c_000495; sanguinarine; Sanguinarium; KBio2_005875; Tox21_110268; sanguiritrin; KBio1_000495; KBio2_003307; KBio2_000739; KBio3_002175; sanguinarin; IDI1_000495; sangvinarin; AV9VK043SS; Sangrovit; Viadent; Veadent; UI5; Sanguinarine



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

27 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(25)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

221 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANXA5, BCL2, CASP3, CASP8, CASP9, CAT, CTNNB1, CYP1A1, MTOR, PIK3CA, PTGS2, STAT3, TP53
Peripheral membrane protein 6 ANXA5, CYP1A1, CYP1B1, GORASP1, MTOR, PTGS2
Endoplasmic reticulum membrane 6 BCL2, CYP1A1, CYP1A2, CYP1B1, MTOR, PTGS2
Nucleus 10 BCL2, CASP3, CASP8, CASP9, CTNNB1, GABPA, MTOR, PARP1, STAT3, TP53
cytosol 13 ANXA5, BCL2, CASP3, CASP8, CASP9, CAT, CTNNB1, GPT, MTOR, PARP1, PIK3CA, STAT3, TP53
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 2 CTNNB1, TP53
nucleoplasm 8 CASP3, CASP8, CTNNB1, GABPA, MTOR, PARP1, STAT3, TP53
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 CTNNB1, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 3 CASP8, CTNNB1, PIK3CA
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 1 TNF
glutamatergic synapse 2 CASP3, CTNNB1
Golgi apparatus 1 GORASP1
Golgi membrane 2 GORASP1, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
Lysosome 1 MTOR
plasma membrane 4 CTNNB1, PIK3CA, STAT3, TNF
Membrane 8 ANXA5, BCL2, CAT, CTNNB1, CYP1B1, MTOR, PARP1, TP53
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 ANXA5, CAT, CTNNB1, GPT
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, PTGS2, TP53
extracellular space 1 TNF
perinuclear region of cytoplasm 2 CTNNB1, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 8 BCL2, CASP8, CASP9, CAT, CYP1A1, CYP1B1, PARP1, TP53
protein-containing complex 8 BCL2, CASP8, CASP9, CAT, CTNNB1, PARP1, PTGS2, TP53
intracellular membrane-bounded organelle 4 CAT, CYP1A1, CYP1A2, CYP1B1
Microsome membrane 5 CYP1A1, CYP1A2, CYP1B1, MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
extracellular region 3 ANXA5, CAT, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, CASP8, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 4 CTNNB1, PARP1, STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, TNF
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 2 PARP1, TP53
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Cell projection, lamellipodium 1 CASP8
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 CTNNB1, TP53
focal adhesion 3 ANXA5, CAT, CTNNB1
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 4 GABPA, PARP1, STAT3, TP53
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Chromosome 1 PARP1
cytoskeleton 1 CASP8
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 PARP1
spindle pole 1 CTNNB1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 2 PARP1, TP53
nuclear envelope 2 MTOR, PARP1
Endomembrane system 2 CTNNB1, MTOR
euchromatin 1 CTNNB1
cell body 1 CASP8
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
apoptosome 1 CASP9
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 2 CTNNB1, PARP1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Weixiao Lei, Hui Zhu, Man Cao, Feng Zhang, Qing Lai, Shengming Lu, Wenpan Dong, Jiahui Sun, Dafu Ru. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. International journal of biological macromolecules. 2024 Feb; 257(Pt 2):128727. doi: 10.1016/j.ijbiomac.2023.128727. [PMID: 38092109]
  • Jian-Sheng Dai, Jian Xu, Hao-Jie Shen, Ni-Pi Chen, Bing-Qi Zhu, Zheng-Jie Xue, Hao-Han Chen, Zhi-Shan Ding, Rui Ding, Chao-Dong Qian. The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump. Microbiology spectrum. 2024 Jan; 12(1):e0323723. doi: 10.1128/spectrum.03237-23. [PMID: 38038452]
  • Jing-Ying Fan, Jie Liu, Wen-Qing Zhang, Ting Lin, Xi-Ran Hu, Fang-Liang Zhou, Le Tang, Ying-Chun He, Hong-Jian Shi. Anti-Nasopharyngeal carcinoma mechanism of sanguinarine based on network pharmacology and molecular docking. Medicine. 2023 Dec; 102(48):e36477. doi: 10.1097/md.0000000000036477. [PMID: 38050231]
  • Mengting Liu, Zhiqin Liu, Zhuang Dong, Xianglin Zou, Jianguo Zeng, Zihui Yang. Identification of Sanguinarine Metabolites in Rats Using UPLC-Q-TOF-MS/MS. Molecules (Basel, Switzerland). 2023 Nov; 28(22):. doi: 10.3390/molecules28227641. [PMID: 38005364]
  • Xue Li, Li Zhang, Zilin Zhong, Sujie Sun, Jie Wu, Fasheng Liu, Zigang Cao, Huiqiang Lu, Xinjun Liao, Bing Zhou, Jianjun Chen. Sanguinarine exposure induces immunotoxicity and abnormal locomotor behavior in zebrafish. Fish & shellfish immunology. 2023 Jun; 139(?):108898. doi: 10.1016/j.fsi.2023.108898. [PMID: 37301310]
  • Zhijie Zheng, Yonghui Zheng, Xiaoben Liang, Guanhong Xue, Haichong Wu. Sanguinarine Enhances the Integrity of the Blood-Milk Barrier and Inhibits Oxidative Stress in Lipopolysaccharide-Stimulated Mastitis. Cells. 2022 11; 11(22):. doi: 10.3390/cells11223658. [PMID: 36429086]
  • Xueliang Yang, Lei Li, Yuxin Shi, Xue Wang, Yun Zhang, Meng Jin, Xiqiang Chen, Rongchun Wang, Kechun Liu. Neurotoxicity of sanguinarine via inhibiting mitophagy and activating apoptosis in zebrafish and PC12 cells. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105259. doi: 10.1016/j.pestbp.2022.105259. [PMID: 36464364]
  • Yang Mengzhe, Zhang Beibei, Liang Zhenqiang, Cheng Nannan, Lü Anqiao, Yang Jianyu, Guo Xingzhe, Bai Xianyu, Huang Yuanjiao, Jiao Aijun, X U Ning. Sanguinarine suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma inhibiting mTOR signaling. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2022 10; 42(5):687-692. doi: 10.19852/j.cnki.jtcm.20220426.001. [PMID: 36083474]
  • Qiang Lu, Zhenshan Zhang, Yifei Xu, Yujia Chen, Cailan Li. Sanguinarine, a major alkaloid from Zanthoxylum nitidum (Roxb.) DC., inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. Journal of ethnopharmacology. 2022 Sep; 295(?):115388. doi: 10.1016/j.jep.2022.115388. [PMID: 35577159]
  • Bei Li, Yingbin Luo, Yixi Zhou, Jianchun Wu, Zhihong Fang, Yan Li. Role of sanguinarine in regulating immunosuppression in a Lewis lung cancer mouse model. International immunopharmacology. 2022 Sep; 110(?):108964. doi: 10.1016/j.intimp.2022.108964. [PMID: 35728305]
  • Asmat Ullah, Najeeb Ullah, Touseef Nawaz, Tariq Aziz. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anti-cancer agents in medicinal chemistry. 2022 Aug; ?(?):. doi: 10.2174/1871520622666220831124321. [PMID: 36045531]
  • Yong Shi, Lei Zhong, Kaijian Chen, Yuding Fan, Kai Xie, Junzhi Zhang, Jihong Dai, Yi Hu. Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis. Fish & shellfish immunology. 2022 Jun; 125(?):190-199. doi: 10.1016/j.fsi.2022.05.013. [PMID: 35569777]
  • Tengfei Liu, Yuanwei Gou, Bei Zhang, Rui Gao, Chang Dong, Mingming Qi, Lihong Jiang, Xuanwei Ding, Chun Li, Jiazhang Lian. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and bioengineering. 2022 05; 119(5):1314-1326. doi: 10.1002/bit.28040. [PMID: 35060115]
  • Shasank S Swain, Sanghamitra Pati, Tahziba Hussain. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European journal of medicinal chemistry. 2022 Mar; 232(?):114173. doi: 10.1016/j.ejmech.2022.114173. [PMID: 35168150]
  • José Ignacio Laines-Hidalgo, José Armando Muñoz-Sánchez, Lloyd Loza-Müller, Felipe Vázquez-Flota. An Update of the Sanguinarine and Benzophenanthridine Alkaloids' Biosynthesis and Their Applications. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041378. [PMID: 35209167]
  • Xue Wang, Xueliang Yang, Jiazhen Wang, Lei Li, Yun Zhang, Meng Jin, Xiqiang Chen, Chen Sun, Rongchun Wang, Kechun Liu. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2022 Feb; 252(?):109228. doi: 10.1016/j.cbpc.2021.109228. [PMID: 34744004]
  • Rongzhong Xu, Jianchun Wu, Yingbin Luo, Yuli Wang, Jianhui Tian, Wenjing Teng, Bo Zhang, Zhihong Fang, Yan Li. Sanguinarine Represses the Growth and Metastasis of Non-small Cell Lung Cancer by Facilitating Ferroptosis. Current pharmaceutical design. 2022; 28(9):760-768. doi: 10.2174/1381612828666220217124542. [PMID: 35176976]
  • Guanhua Lou, Jin Wang, Ju Hu, Qingxia Gan, Chengyi Peng, Haijun Xiong, Qinwan Huang. Sanguinarine: A Double-Edged Sword of Anticancer and Carcinogenesis and Its Future Application Prospect. Anti-cancer agents in medicinal chemistry. 2021 10; 21(16):2100-2110. doi: 10.2174/1871520621666210126091512. [PMID: 33573577]
  • Xueliang Yang, Xue Wang, Daili Gao, Yun Zhang, Xiqiang Chen, Qing Xia, Meng Jin, Chen Sun, Qiuxia He, Rongchun Wang, Kechun Liu. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicology letters. 2021 Oct; 350(?):71-80. doi: 10.1016/j.toxlet.2021.07.001. [PMID: 34252508]
  • Siyu Tian, Rui Wang, Shuming Chen, Jialing He, Weili Zheng, Yong Li. Structural Basis for PPARs Activation by The Dual PPARα/γ Agonist Sanguinarine: A Unique Mode of Ligand Recognition. Molecules (Basel, Switzerland). 2021 Oct; 26(19):. doi: 10.3390/molecules26196012. [PMID: 34641558]
  • Wilfred Mabeche Anjago, Wenlong Zeng, Yixiao Chen, Yupeng Wang, Jules Biregeya, Yunxi Li, Tian Zhang, Minghui Peng, Yan Cai, Mingyue Shi, Baohua Wang, Dongmei Zhang, Zonghua Wang, Meilian Chen. The molecular mechanism underlying pathogenicity inhibition by sanguinarine in Magnaporthe oryzae. Pest management science. 2021 Oct; 77(10):4669-4679. doi: 10.1002/ps.6508. [PMID: 34116584]
  • Mohammad A Alfhili, Jawaher Alsughayyir, Ahmed B Basudan. Epidemic dropsy toxin, sanguinarine chloride, stimulates sucrose-sensitive hemolysis and breakdown of membrane phospholipid asymmetry in human erythrocytes. Toxicon : official journal of the International Society on Toxinology. 2021 Aug; 199(?):41-48. doi: 10.1016/j.toxicon.2021.05.013. [PMID: 34081931]
  • Masoumeh Bavarsadi, Amir Hossein Mahdavi, Saeed Ansari-Mahyari, Elaheh Jahanian. Sanguinarine improved nutrient digestibility, hepatic health indices and productive performance in laying hens fed low crude protein diets. Veterinary medicine and science. 2021 05; 7(3):800-811. doi: 10.1002/vms3.436. [PMID: 33570254]
  • Siu Wah Wong-Deyrup, Xun Song, Tsz-Wai Ng, Xiu-Bin Liu, Jian-Guo Zeng, Zhi-Xing Qing, Stephen T Deyrup, Zhen-Dan He, Hong-Jie Zhang. Plant-derived isoquinoline alkaloids that target ergosterol biosynthesis discovered by using a novel antifungal screening tool. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 May; 137(?):111348. doi: 10.1016/j.biopha.2021.111348. [PMID: 33578237]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Mohsin Ahmad Ghauri, Qi Su, Asmat Ullah, Jingjing Wang, Ammar Sarwar, Qing Wu, Dongdong Zhang, Yanmin Zhang. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153500. doi: 10.1016/j.phymed.2021.153500. [PMID: 33626427]
  • Yuting Fu, Wanting Liu, Miao Liu, Jianing Zhang, Min Yang, Ting Wang, Weidong Qian. In vitro anti-biofilm efficacy of sanguinarine against carbapenem-resistant Serratia marcescens. Biofouling. 2021 03; 37(3):341-351. doi: 10.1080/08927014.2021.1919649. [PMID: 33947279]
  • Daniela Marasco, Caterina Vicidomini, Pawel Krupa, Federica Cioffi, Pham Dinh Quoc Huy, Mai Suan Li, Daniele Florio, Kerensa Broersen, Maria Francesca De Pandis, Giovanni N Roviello. Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chemico-biological interactions. 2021 Jan; 334(?):109300. doi: 10.1016/j.cbi.2020.109300. [PMID: 33098838]
  • Peng Huang, Liqiong Xia, Li Zhou, Wei Liu, Peng Wang, Zhixing Qing, Jianguo Zeng. Influence of different elicitors on BIA production in Macleaya cordata. Scientific reports. 2021 01; 11(1):619. doi: 10.1038/s41598-020-79802-0. [PMID: 33436669]
  • Ping Li, Yan-Xiu Wang, Guang Yang, Zun-Cheng Zheng, Chao Yu. Sanguinarine Attenuates Neuropathic Pain in a Rat Model of Chronic Constriction Injury. BioMed research international. 2021; 2021(?):3689829. doi: 10.1155/2021/3689829. [PMID: 34409102]
  • Chun Qing, Huiling Zhang, Anwei Chen, Yiqing Lin, Jihai Shao. Effects and possible mechanisms of sanguinarine on the competition between Raphidiopsis raciborskii (Cyanophyta) and Scenedesmus obliquus (Chlorophyta): A comparative toxicological study. Ecotoxicology and environmental safety. 2020 Dec; 206(?):111192. doi: 10.1016/j.ecoenv.2020.111192. [PMID: 32858326]
  • Duy Thanh Nguyen, Jamila Iqbal, Jianying Han, Gregory K Pierens, Stephen A Wood, George D Mellick, Yunjiang Feng. Chemical constituents from Macleaya cordata (Willd) R. Br. and their phenotypic functions against a Parkinson's disease patient-derived cell line. Bioorganic & medicinal chemistry. 2020 11; 28(21):115732. doi: 10.1016/j.bmc.2020.115732. [PMID: 33065438]
  • Andrea Balažová, Júlia Urdová, Vladimír Forman, Pavel Mučaji. Enhancement of Macarpine Production in Eschscholzia Californica Suspension Cultures under Salicylic Acid Elicitation and Precursor Supplementation. Molecules (Basel, Switzerland). 2020 Mar; 25(6):. doi: 10.3390/molecules25061261. [PMID: 32168770]
  • Yi Li, Thilo Winzer, Zhesi He, Ian A Graham. Over 100 Million Years of Enzyme Evolution Underpinning the Production of Morphine in the Papaveraceae Family of Flowering Plants. Plant communications. 2020 03; 1(2):100029. doi: 10.1016/j.xplc.2020.100029. [PMID: 32685922]
  • Yong Wu, Na-Jiao Zhao, Yan Cao, Zhuo Sun, Qin Wang, Zhao-Ying Liu, Zhi-Liang Sun. Sanguinarine metabolism and pharmacokinetics study in vitro and in vivo. Journal of veterinary pharmacology and therapeutics. 2020 Mar; 43(2):208-214. doi: 10.1111/jvp.12835. [PMID: 31943246]
  • Roya Sarkhosh-Inanlou, Morteza Molaparast, Adel Mohammadzadeh, Vahid Shafiei-Irannejad. Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin-resistant ovarian cancer (A2780) cells. Chemical biology & drug design. 2020 02; 95(2):215-223. doi: 10.1111/cbdd.13621. [PMID: 31512406]
  • Chao Yu, Ping Li, Yan-Xiu Wang, Kai-Gang Zhang, Zun-Cheng Zheng, Li-Shuang Liang. Sanguinarine Attenuates Neuropathic Pain by Inhibiting P38 MAPK Activated Neuroinflammation in Rat Model. Drug design, development and therapy. 2020; 14(?):4725-4733. doi: 10.2147/dddt.s276424. [PMID: 33177809]
  • Zhu-Ying Liu, Xiao-Long Wang, Shu-Qi Ou, De-Xing Hou, Jian-Hua He. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers. PloS one. 2020; 15(6):e0234920. doi: 10.1371/journal.pone.0234920. [PMID: 32559224]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Lan Gao, Hans-Joachim Schmitz, Karl-Heinz Merz, Dieter Schrenk. Characterization of the cytotoxicity of selected Chelidonium alkaloids in rat hepatocytes. Toxicology letters. 2019 Sep; 311(?):91-97. doi: 10.1016/j.toxlet.2019.04.031. [PMID: 31054355]
  • Zhong-Min Zhao, Xiao-Fei Shang, Raymond Kobla Lawoe, Ying-Qian Liu, Rui Zhou, Yu Sun, Yin-Fang Yan, Jun-Cai Li, Guan-Zhou Yang, Cheng-Jie Yang. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. Pesticide biochemistry and physiology. 2019 Sep; 159(?):51-58. doi: 10.1016/j.pestbp.2019.05.015. [PMID: 31400784]
  • Anna Och, Daniel Zalewski, Łukasz Komsta, Przemysław Kołodziej, Janusz Kocki, Anna Bogucka-Kocka. Cytotoxic and Proapoptotic Activity of Sanguinarine, Berberine, and Extracts of Chelidonium majus L. and Berberis thunbergii DC. toward Hematopoietic Cancer Cell Lines. Toxins. 2019 08; 11(9):. doi: 10.3390/toxins11090485. [PMID: 31443589]
  • Maksim V Baranov, Natalia H Revelo, Daniëlle R J Verboogen, Martin Ter Beest, Geert van den Bogaart. SWAP70 is a universal GEF-like adaptor for tethering actin to phagosomes. Small GTPases. 2019 07; 10(4):311-323. doi: 10.1080/21541248.2017.1328302. [PMID: 28489960]
  • Cuiting Wu, Xin Wang, Ming Xu, Youping Liu, Xin Di. Intracellular Accumulation as an Indicator of Cytotoxicity to Screen Hepatotoxic Components of Chelidonium majus L. by LC-MS/MS. Molecules (Basel, Switzerland). 2019 Jun; 24(13):. doi: 10.3390/molecules24132410. [PMID: 31261913]
  • Yue Zhang, Wan-Rong Huang. Sanguinarine induces apoptosis of human lens epithelial cells by increasing reactive oxygen species via the MAPK signaling pathway. Molecular medicine reports. 2019 May; 19(5):4449-4456. doi: 10.3892/mmr.2019.10087. [PMID: 30942394]
  • Taraneh Dastmalchi, Mansour Omidi, Reza Azizinezhad, Shamsali Rezazadeh, Alireza Etminan. Effects of methyl jasmonate and phloroglucinol on thebaine and sanguinarine production in cell suspension culture of Persian poppy (Papaver bracteatum Lindl.). Cellular and molecular biology (Noisy-le-Grand, France). 2019 Mar; 65(3):11-17. doi: . [PMID: 30942151]
  • Shilpa Kuttikrishnan, Kodappully S Siveen, Kirti S Prabhu, Abdul Quaiyoom Khan, Sabah Akhtar, Jericha M Mateo, Maysaloun Merhi, Ruba Taha, Halima El Omri, Fatima Mraiche, Said Dermime, Shahab Uddin. Sanguinarine suppresses growth and induces apoptosis in childhood acute lymphoblastic leukemia. Leukemia & lymphoma. 2019 03; 60(3):782-794. doi: 10.1080/10428194.2018.1494270. [PMID: 30187808]
  • Nan-Xi Hu, Mei Chen, Yi-Song Liu, Qi Shi, Bo Yang, Huan-Cheng Zhang, Pi Cheng, Qi Tang, Zhao-Ying Liu, Jian-Guo Zeng. Pharmacokinetics of sanguinarine, chelerythrine, and their metabolites in broiler chickens following oral and intravenous administration. Journal of veterinary pharmacology and therapeutics. 2019 Mar; 42(2):197-206. doi: 10.1111/jvp.12729. [PMID: 30350369]
  • Yit-Lai Chow, Fumihiko Sato. Transgenerational lipid-reducing activity of benzylisoquinoline alkaloids in Caenorhabditis elegans. Genes to cells : devoted to molecular & cellular mechanisms. 2019 Jan; 24(1):70-81. doi: 10.1111/gtc.12657. [PMID: 30451341]
  • Andrew Croaker, Alvin Lim, Cliff Rosendahl. Black salve in a nutshell. Australian journal of general practice. 2018 12; 47(12):864-867. doi: 10.31128/ajgp-07-18-4657. [PMID: 31212406]
  • Jiashun Chen, Baoju Kang, Yurong Zhao, Kang Yao, Chenxing Fu. Effects of natural dietary supplementation with Macleaya cordata extract containing sanguinarine on growth performance and gut health of early-weaned piglets. Journal of animal physiology and animal nutrition. 2018 Dec; 102(6):1666-1674. doi: 10.1111/jpn.12976. [PMID: 30129225]
  • Fang Liu, XinGuang Zhang, Bin Zhang, WenWei Mao, TianTian Liu, Min Sun, YaHui Wu. TREM1: A positive regulator for inflammatory response via NF-κB pathway in A549 cells infected with Mycoplasma pneumoniae. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Nov; 107(?):1466-1472. doi: 10.1016/j.biopha.2018.07.176. [PMID: 30257363]
  • Andrew Croaker, Graham J King, John H Pyne, Shailendra Anoopkumar-Dukie, Lei Liu. Assessing the risk of epidemic dropsy from black salve use. Journal of applied toxicology : JAT. 2018 10; 38(10):1274-1281. doi: 10.1002/jat.3619. [PMID: 29603306]
  • Nobuhiro Kikuchi, Kimio Satoh, Ryo Kurosawa, Nobuhiro Yaoita, Md Elias-Al-Mamun, Mohammad Abdul Hai Siddique, Junichi Omura, Taijyu Satoh, Masamichi Nogi, Shinichiro Sunamura, Satoshi Miyata, Yoshiro Saito, Yasushi Hoshikawa, Yoshinori Okada, Hiroaki Shimokawa. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target. Circulation. 2018 08; 138(6):600-623. doi: 10.1161/circulationaha.117.033113. [PMID: 29636330]
  • Alvin Lim. Black salve treatment of skin cancer: a review. The Journal of dermatological treatment. 2018 Jun; 29(4):388-392. doi: 10.1080/09546634.2017.1395795. [PMID: 29098921]
  • Fuzhan Zhang, Jile Xie, Genlin Wang, Ge Zhang, Huilin Yang. Anti-osteoporosis activity of Sanguinarine in preosteoblast MC3T3-E1 cells and an ovariectomized rat model. Journal of cellular physiology. 2018 06; 233(6):4626-4633. doi: 10.1002/jcp.26187. [PMID: 28926099]
  • Xianling Gong, Zhihong Chen, Qinrui Han, Chunhui Chen, Linlin Jing, Yawei Liu, Liang Zhao, Xueqing Yao, Xuegang Sun. Sanguinarine triggers intrinsic apoptosis to suppress colorectal cancer growth through disassociation between STRAP and MELK. BMC cancer. 2018 May; 18(1):578. doi: 10.1186/s12885-018-4463-x. [PMID: 29783958]
  • W Wang, L C Dolan, S von Alvensleben, M Morlacchini, G Fusconi. Safety of standardized Macleaya cordata extract in an eighty-four-day dietary study in dairy cows. Journal of animal physiology and animal nutrition. 2018 Feb; 102(1):e61-e68. doi: 10.1111/jpn.12702. [PMID: 28247552]
  • Matthew Prescott, James Mitchell, Stella Totti, Judy Lee, Eirini Velliou, Madeleine Bussemaker. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro. Ultrasonics sonochemistry. 2018 Jan; 40(Pt B):72-80. doi: 10.1016/j.ultsonch.2017.05.018. [PMID: 28533126]
  • Igor V Almeida, Liliane M Fernandes, Bruna I Biazi, Veronica E P Vicentini. Evaluation of the Anticancer Activities of the Plant Alkaloids Sanguinarine and Chelerythrine in Human Breast Adenocarcinoma Cells. Anti-cancer agents in medicinal chemistry. 2017 Nov; 17(11):1586-1592. doi: 10.2174/1871520617666170213115132. [PMID: 28270066]
  • M Bavarsadi, A H Mahdavi, S Ansari-Mahyari, E Jahanian. Effects of different levels of sanguinarine on antioxidant indices, immunological responses, ileal microbial counts and jejunal morphology of laying hens fed diets with different levels of crude protein. Journal of animal physiology and animal nutrition. 2017 Oct; 101(5):936-948. doi: 10.1111/jpn.12528. [PMID: 27272257]
  • Yingzhi Hu, Huaidong Peng, Youshao Yan, Shuyu Guan, Shumei Wang, Paul C H Li, Yue Sun. Integration of laminar flow extraction and capillary electrophoretic separation in one microfluidic chip for detection of plant alkaloids in blood samples. Analytica chimica acta. 2017 Sep; 985(?):121-128. doi: 10.1016/j.aca.2017.05.036. [PMID: 28864182]
  • Xiubin Liu, Yisong Liu, Peng Huang, Yongshuo Ma, Zhixing Qing, Qi Tang, Huifen Cao, Pi Cheng, Yajie Zheng, Zejun Yuan, Yuan Zhou, Jinfeng Liu, Zhaoshan Tang, Yixiu Zhuo, Yancong Zhang, Linlan Yu, Jialu Huang, Peng Yang, Qiong Peng, Jinbo Zhang, Wenkai Jiang, Zhonghua Zhang, Kui Lin, Dae-Kyun Ro, Xiaoya Chen, Xingyao Xiong, Yi Shang, Sanwen Huang, Jianguo Zeng. The Genome of Medicinal Plant Macleaya cordata Provides New Insights into Benzylisoquinoline Alkaloids Metabolism. Molecular plant. 2017 07; 10(7):975-989. doi: 10.1016/j.molp.2017.05.007. [PMID: 28552780]
  • Iman W Achkar, Fatima Mraiche, Ramzi M Mohammad, Shahab Uddin. Anticancer potential of sanguinarine for various human malignancies. Future medicinal chemistry. 2017 06; 9(9):933-950. doi: 10.4155/fmc-2017-0041. [PMID: 28636454]
  • Amrita Banerjee, Sulagna Sanyal, Shreyasi Dutta, Payal Chakraborty, Prajna Paramita Das, Kuladip Jana, Madavan Vasudevan, Chandrima Das, Dipak Dasgupta. The plant alkaloid chelerythrine binds to chromatin, alters H3K9Ac and modulates global gene expression. Journal of biomolecular structure & dynamics. 2017 May; 35(7):1491-1499. doi: 10.1080/07391102.2016.1188154. [PMID: 27494525]
  • Hua Zhong, Dan-Dan Hu, Gan-Hai Hu, Juan Su, Shuang Bi, Zhuo-Er Zhang, Zheng Wang, Ri-Li Zhang, Zheng Xu, Yuan-Ying Jiang, Yan Wang. Activity of Sanguinarine against Candida albicans Biofilms. Antimicrobial agents and chemotherapy. 2017 05; 61(5):. doi: 10.1128/aac.02259-16. [PMID: 28223387]
  • Aneta Żabka, Konrad Winnicki, Justyna Teresa Polit, Janusz Maszewski. Sanguinarine-induced oxidative stress and apoptosis-like programmed cell death(AL-PCD) in root meristem cells of Allium cepa. Plant physiology and biochemistry : PPB. 2017 Mar; 112(?):193-206. doi: 10.1016/j.plaphy.2017.01.004. [PMID: 28088021]
  • Jorge Xool-Tamayo, Germán Serrano-Gamboa, Miriam Monforte-González, Gumersindo Mirón-López, Felipe Vázquez-Flota. Development of newly sanguinarine biosynthetic capacity in in vitro rootless shoots of Argemone mexicana L. Mexican prickly poppy. Biotechnology letters. 2017 Feb; 39(2):323-330. doi: 10.1007/s10529-016-2250-9. [PMID: 27837372]
  • Qing Sun, Weifeng Li, Huani Li, Xiumei Wang, Yu Wang, Xiaofeng Niu. Preparation, Characterization and Anti-Ulcer Efficacy of Sanguinarine Loaded Solid Lipid Nanoparticles. Pharmacology. 2017; 100(1-2):14-24. doi: 10.1159/000454882. [PMID: 28334726]
  • Jia Yang, Zhihong Fang, Jianchun Wu, Xiaoling Yin, Yuan Fang, Fanchen Zhao, Shiguo Zhu, Yan Li. Construction and application of a lung cancer stem cell model: antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016 Oct; 37(10):13871-13883. doi: 10.1007/s13277-016-5152-5. [PMID: 27485114]
  • Adeline Y Robin, Cécile Giustini, Matthieu Graindorge, Michel Matringe, Renaud Dumas. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. The Plant journal : for cell and molecular biology. 2016 09; 87(6):641-53. doi: 10.1111/tpj.13225. [PMID: 27232113]
  • F Ling, Z-Q Wu, C Jiang, L Liu, G-X Wang. Antibacterial efficacy and pharmacokinetic evaluation of sanguinarine in common carp (Cyprinus carpio) following a single intraperitoneal administration. Journal of fish diseases. 2016 Aug; 39(8):993-1000. doi: 10.1111/jfd.12433. [PMID: 26763075]
  • Elsayed Mickdam, Ratchaneewan Khiaosa-Ard, Barbara U Metzler-Zebeli, Fenja Klevenhusen, Remigius Chizzola, Qendrim Zebeli. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe. 2016 Jun; 39(?):4-13. doi: 10.1016/j.anaerobe.2016.02.002. [PMID: 26868619]
  • Li-Fei Zhu, Zhe Hou, Kun Zhou, Zong-Bo Tong, Qian Kuang, Hui-Ling Geng, Le Zhou. Synthesis, bioactivity and structure-activity relationships of new 2-aryl-8-OR-3,4-dihydroisoquinolin-2-iums salts as potential antifungal agents. Bioorganic & medicinal chemistry letters. 2016 05; 26(10):2413-2417. doi: 10.1016/j.bmcl.2016.04.001. [PMID: 27072907]
  • Pritha Basu, Gopinatha Suresh Kumar. Sanguinarine and Its Role in Chronic Diseases. Advances in experimental medicine and biology. 2016; 928(?):155-172. doi: 10.1007/978-3-319-41334-1_7. [PMID: 27671816]
  • Rica Capistrano I, An Wouters, Filip Lardon, Claudia Gravekamp, Sandra Apers, Luc Pieters. In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Dec; 22(14):1279-87. doi: 10.1016/j.phymed.2015.10.013. [PMID: 26626193]
  • Yue Sun, Yuanyuan Li, Jiajian Zeng, Qixian Lu, Paul C H Li. Microchip electrophoretic separation and fluorescence detection of chelerythrine and sanguinarine in medicinal plants. Talanta. 2015 Sep; 142(?):90-6. doi: 10.1016/j.talanta.2015.04.008. [PMID: 26003696]
  • Yasuyuki Yamada, Yukiya Motomura, Fumihiko Sato. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells. Plant & cell physiology. 2015 May; 56(5):1019-30. doi: 10.1093/pcp/pcv027. [PMID: 25713177]
  • Chandra K Singh, Satwinderjeet Kaur, Jasmine George, Minakshi Nihal, Molly C Pellitteri Hahn, Cameron O Scarlett, Nihal Ahmad. Molecular signatures of sanguinarine in human pancreatic cancer cells: A large scale label-free comparative proteomics approach. Oncotarget. 2015 Apr; 6(12):10335-48. doi: 10.18632/oncotarget.3231. [PMID: 25929337]
  • Issam Al-Ani, Stefan Zimmermann, Jürgen Reichling, Michael Wink. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Feb; 22(2):245-55. doi: 10.1016/j.phymed.2014.11.019. [PMID: 25765829]
  • Razan Hamoud, Jürgen Reichling, Michael Wink. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. The Journal of pharmacy and pharmacology. 2015 Feb; 67(2):264-73. doi: 10.1111/jphp.12326. [PMID: 25495516]
  • Michael Heinze, Wolfgang Brandt, Sylvestre Marillonnet, Werner Roos. 'Self' and 'non-self' in the control of phytoalexin biosynthesis: plant phospholipases A2 with alkaloid-specific molecular fingerprints. The Plant cell. 2015 Feb; 27(2):448-62. doi: 10.1105/tpc.114.135343. [PMID: 25670767]
  • Li Ying, Gang Li, Si-si Wei, Hong Wang, Pei An, Xun Wang, Kai Guo, Xian-jin Luo, Ji-min Gao, Qing Zhou, Wei Li, Ying Yu, Yi-gang Li, Jun-li Duan, Yue-peng Wang. Sanguinarine inhibits Rac1b-rendered cell survival enhancement by promoting apoptosis and blocking proliferation. Acta pharmacologica Sinica. 2015 Feb; 36(2):229-40. doi: 10.1038/aps.2014.115. [PMID: 25544362]
  • Fang-Jun Cao, Rui Yang, Chao Lv, Qun Ma, Ming Lei, Hui-Ling Geng, Le Zhou. Pseudocyanides of sanguinarine and chelerythrine and their series of structurally simple analogues as new anticancer lead compounds: Cytotoxic activity, structure-activity relationship and apoptosis induction. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2015 Jan; 67(?):45-54. doi: 10.1016/j.ejps.2014.10.020. [PMID: 25444843]
  • Dimitrios Kantas, Vasileios G Papatsiros, Panagiotis D Tassis, Labrini V Athanasiou, Eleni D Tzika. Effect of a natural feed additive (Macleaya cordata), containing sanguinarine, on the performance and health status of weaning pigs. Animal science journal = Nihon chikusan Gakkaiho. 2015 Jan; 86(1):92-8. doi: 10.1111/asj.12240. [PMID: 25228334]
  • Da-Sheng Zhang, Yuan-Yi Li, Xiao-Jun Chen, Yu-Juan Li, Zhao-Ying Liu, Wen-Jian Xie, Zhi-Liang Sun. BCL2 promotor methylation and miR-15a/16-1 upregulation is associated with sanguinarine-induced apoptotic death in rat HSC-T6 cells. Journal of pharmacological sciences. 2015 Jan; 127(1):135-44. doi: 10.1016/j.jphs.2014.11.012. [PMID: 25704029]
  • Chang-lil Min, Xue-jun Wang, Meng-fan Zhao, Wen-wei Chen. [Isolation of endophytic fungi from Macleaya cordata and screening of sanguinarine-producing strains]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2014 Nov; 39(22):4288-92. doi: ". [PMID: 25850254]
  • Priyanka Verma, Shamshad Ahmad Khan, Ajay K Mathur, Sumit Ghosh, Karuna Shanker, Alok Kalra. Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma. 2014 Nov; 251(6):1359-71. doi: 10.1007/s00709-014-0638-8. [PMID: 24677097]
  • Jia-jia Yu, Deng-li Cong, Ying Jiang, Yuan Zhou, Yan Wang, Chun-fang Zhao. [Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Oct; 37(10):1795-8. doi: . [PMID: 25895386]
  • Brendan Borrell. Seeds of a cure. Scientific American. 2014 Jun; 310(6):64-9. doi: 10.1038/scientificamerican0614-64. [PMID: 25004577]
  • Soumitra Hazra, Gopinatha Suresh Kumar. Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin. The journal of physical chemistry. B. 2014 Apr; 118(14):3771-84. doi: 10.1021/jp409764z. [PMID: 24635139]
  • Natalie C Ong, Eric Sham, Brandon M Adams. Use of unlicensed black salve for cutaneous malignancy. The Medical journal of Australia. 2014 Apr; 200(6):314. doi: 10.5694/mja14.00041. [PMID: 24702079]
  • Weifeng Li, Huani Li, Huan Yao, Qingli Mu, Guilan Zhao, Yongmei Li, Hua Hu, Xiaofeng Niu. Pharmacokinetic and anti-inflammatory effects of sanguinarine solid lipid nanoparticles. Inflammation. 2014 Apr; 37(2):632-8. doi: 10.1007/s10753-013-9779-8. [PMID: 24272172]
  • Yizhong Shen, Shaopu Liu, Youqiu He. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application. Luminescence : the journal of biological and chemical luminescence. 2014 Mar; 29(2):176-82. doi: 10.1002/bio.2525. [PMID: 23640753]
  • Xue-Jun Wang, Chang-Li Min, Mei Ge, Rui-Hua Zuo. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Current microbiology. 2014 Mar; 68(3):336-41. doi: 10.1007/s00284-013-0482-7. [PMID: 24166154]
  • Ingeborg Schütz, Gerald B Moritz, Werner Roos. Alkaloid metabolism in thrips-Papaveraceae interaction: recognition and mutual response. Journal of plant physiology. 2014 Jan; 171(2):119-26. doi: 10.1016/j.jplph.2013.10.009. [PMID: 24331426]
  • Yit-Lai Chow, Yuriko Kawasaki, Fumihiko Sato. Knockdown of the NHR-8 nuclear receptor enhanced sensitivity to the lipid-reducing activity of alkaloids in Caenorhabditis elegans. Bioscience, biotechnology, and biochemistry. 2014; 78(12):2008-13. doi: 10.1080/09168451.2014.940278. [PMID: 25052035]
  • Safaa Yehia Eid, Mahmoud Zaki El-Readi, Essam Eldin Mohamed Nour Eldin, Sameer Hassan Fatani, Michael Wink. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and colon cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2013 Dec; 21(1):47-61. doi: 10.1016/j.phymed.2013.07.019. [PMID: 23999162]
  • Aklilu Azazh. Special issue on epidemic dropsy. Ethiopian medical journal. 2013 Oct; Suppl 2(?):2p preceding 1. doi: ". [PMID: 24654503]