Tacrolimus (BioDeep_00000000218)

 

Secondary id: BioDeep_00000399326

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs natural product


代谢物信息卡片


15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-

化学式: C44H69NO12 (803.482)
中文名称: 他克莫司
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 67.16%

分子结构信息

SMILES: C=CCC1C=C(C)CC(C)CC(OC)C2OC(O)(C(=O)C(=O)N3CCCCC3C(=O)OC(C(C)=CC3CCC(O)C(OC)C3)C(C)C(O)CC1=O)C(C)CC2OC
InChI: InChI=1S/C44H69NO12/c1-10-13-31-19-25(2)18-26(3)20-37(54-8)40-38(55-9)22-28(5)44(52,57-40)41(49)42(50)45-17-12-11-14-32(45)43(51)56-39(29(6)34(47)24-35(31)48)27(4)21-30-15-16-33(46)36(23-30)53-7/h10,19,21,26,28-34,36-40,46-47,52H,1,11-18,20,22-24H2,2-9H3/b25-19+,27-21+/t26-,28+,29+,30-,31+,32-,33+,34-,36+,37-,38-,39+,40+,44+/m0/s1

描述信息

Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription.
It is used in foods as emulsifier, stabiliser, thickener, gelling agent, formulation aid and firming agent; ice-cream stabiliser, used to improve the yield of curds in soft cheese, to increase the yield of doughs and baked products, as a binder and lubricant in sausages, and as thickener or viscosity control agent in beverages, salad dressings and relishes
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus
D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors
Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite.
Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription.
Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor.
Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury.
Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available.
Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent.
Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent.
A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro.
D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids
L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

74 个代谢物同义名

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-Hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone; (1R,9S,12S,13R,14S,17R,18Z,21S,23S,24R,25S,27R)-1,14-dihydroxy-12-[(1E)-1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0^{4,9}]octacos-18-ene-2,3,10,16-tetrone; Fujisawa brand OF tacrolimus; Janssen brand OF tacrolimus; Cilag brand OF tacrolimus; Tacrolimus, anhydrous; Anhydrous, Tacrolimus; Tacrolimus anhydrous; Anhydrous Tacrolimus; Tacrolimus; Guar gum; Prograft; Prograf; 15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-; 15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-; 15,19-Epoxy-3H-pyrido(2,1-c)(1,4)oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-(2-(4-hydroxy-3-methoxycyclohexyl)-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propenyl)-, (3S-(3R*(E(1S*,3S*,4S*)),4S*,5R*,8S*,9E,12R*,14R*,15S*,16R*,18S*,19S*,26aR*))-; (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-Hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)tetrone; (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,19-dihydroxy-3-{(1E)-1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl}-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(prop-2-en-1-yl)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-3H-15,19-epoxypyrido[2,1-c][1,4]oxazacyclotricosine-1,7,20,21(4H,23H)-tetrone; (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,19-dihydroxy-3-{(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl}-14,16-dimethoxy-4,10,12,18-tetramethyl-8-prop-2-en-1-yl-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-3H-15,19-epoxypyrido[2,1-c][1,4]oxazacyclotricosine-1,7,20,21(4H,23H)-tetrone; (1R,9S,12S,13R,14S,17R,18E,21S,23S,24R,25S,27R)-1,14-dihydroxy-12-[(E)-1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-17-prop-2-enyl-11,28-dioxa-4-azatricyclo[22.3.1.04,9]octacos-18-ene-2,3,10,16-tetrone; (1R,9S,12S,13R,14S,17R,21S,23S,24R,25S,27R)-1,14-dihydroxy-12-{1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl}-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0,4,9]octacos-18-ene-2,3,10,16-tetrone; (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26AS)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26A-HEXADECAHYDRO-5,19-DIHYDROXY-3-[(1E)-2-[(1R,3R,4R)-4-HYDROXY-3-METHOXYCYCLOHEXYL]-1-METHYLETHENYL]-14,16-DIMETHOXY-4,10,12,18-TETRAMETHYL-8-(2-PROPEN-1-YL)-15,19; (E)-(1R,9S,12S,13R,14R,21S,23S,24R,25S,27R)-17-Allyl-1,14-dihydroxy-12-[(E)-2-((3R,4R)-4-hydroxy-3-methoxy-cyclohexyl)-1-methyl-vinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-aza-tricyclo[22.3.1.0*4,9*]octacos-18-ene-2,3,10,16-tetraone; 15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyc; lohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-; dimethoxy-4,10,12,18-tetramethyl-8-(2-propenyl)-,(3S,4R,5S,8R,12S,14S,15R,16S,18R,19R,26aS)-; 4,5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-heptadecahydro-5,19-dihydroxy-3-; 15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(23H)-tetrone,; [(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-; TACROLIMUS MONOHYDRATE (EP MONOGRAPH); 8-DEETHYL-8-(BUT-3-ENYL)-ASCOMYCIN; 8-DEETHYL-8-[BUT-3-ENYL]-ASCOMYCIN; Tacrolimus in whole human blood; QJJXYPPXXYFBGM-LFZNUXCKSA-N; TACROLIMUS (USP MONOGRAPH); Tacrolimus (anhydrous); Tacrolimus [USAN:INN]; TACROLIMUS [WHO-DD]; TACROLIMUS (USP-RS); TACROLIMUS [MART.]; TACROLIMUS (MART.); Tacrolimus [USAN]; Tacrolimus (INN); TACROLIMUS [INN]; UNII-Y5L2157C4J; TACROLIMUS [MI]; UNII-WM0HAQ4WNM; Tsukubaenolide; C44H69NO12.H2O; tacrolimusum; Prograf (TN); Tox21_112056; IDI1_001040; Astagraf XL; Envarsus XR; ENVARSUS-XR; Y5L2157C4J; Graceptor; Fujimycin; LCP-Tacro; Advagraf; Envarsus; Protopic; PROGRAPH; Modigraf; Avagraf; Hecoria; L04AD02; Protopy; Talymus; D11AH01; Fk-506; TACRO; Tacrolimus



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

167 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ACE, CD34, DMD, NR3C1
Peripheral membrane protein 2 DMD, SRL
Endosome membrane 1 HLA-A
Endoplasmic reticulum membrane 2 CD4, HLA-A
Nucleus 3 DMD, FKBP3, NR3C1
cytosol 2 DMD, NR3C1
centrosome 1 NR3C1
nucleoplasm 2 MS4A1, NR3C1
Cell membrane 7 ACE, CD19, CD4, CD40LG, HLA-A, MS4A1, SLCO1B1
Lipid-anchor 1 MS4A1
Cytoplasmic side 1 DMD
Early endosome membrane 1 HLA-A
Multi-pass membrane protein 2 MS4A1, SLCO1B1
Synapse 2 DMD, NR3C1
cell surface 4 CD40LG, DMD, HLA-A, MS4A1
Golgi apparatus 2 CD40LG, HLA-A
Golgi membrane 1 HLA-A
lysosomal membrane 1 HLA-A
sarcolemma 1 DMD
Lysosome 2 ACE, CD34
endosome 1 ACE
plasma membrane 12 ACE, CD19, CD34, CD4, CD40LG, CSF2, DMD, HLA-A, IL2RA, MS4A1, REN, SLCO1B1
Membrane 11 ACE, CD19, CD34, CD40LG, DMD, HLA-A, IL2RA, MS4A1, NR3C1, REN, SLCO1B1
apical plasma membrane 1 CD34
basolateral plasma membrane 1 SLCO1B1
extracellular exosome 4 ACE, CD19, HLA-A, MS4A1
Lysosome membrane 1 HLA-A
endoplasmic reticulum 1 HLA-A
extracellular space 11 ACE, CCL2, CD40LG, CSF2, CSF3, CXCL8, HLA-A, MS4A1, REN, TCN1, TG
lysosomal lumen 1 CSF3
perinuclear region of cytoplasm 1 CD34
mitochondrion 1 NR3C1
protein-containing complex 3 CD19, DMD, NR3C1
intracellular membrane-bounded organelle 1 CSF2
filopodium 1 DMD
Single-pass type I membrane protein 6 ACE, CD19, CD34, CD4, HLA-A, IL2RA
Secreted 8 ACE, CCL2, CD40LG, CSF2, CSF3, CXCL8, REN, TG
extracellular region 9 ACE, CCL2, CD34, CSF2, CSF3, CXCL8, REN, TCN1, TG
Single-pass membrane protein 1 HLA-A
mitochondrial matrix 1 NR3C1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
external side of plasma membrane 8 ACE, CD19, CD34, CD4, CD40LG, HLA-A, IL2RA, MS4A1
Z disc 1 DMD
Early endosome 1 CD4
apical part of cell 1 REN
Single-pass type II membrane protein 1 CD40LG
postsynaptic membrane 1 DMD
Cell membrane, sarcolemma 1 DMD
Membrane raft 3 CD19, CD4, DMD
Cytoplasm, cytoskeleton 1 DMD
Cytoplasm, cytoskeleton, spindle 1 NR3C1
spindle 1 NR3C1
nuclear speck 1 NR3C1
Nucleus outer membrane 1 DMD
nuclear outer membrane 1 DMD
Postsynaptic cell membrane 1 DMD
chromatin 1 NR3C1
phagocytic vesicle membrane 1 HLA-A
Chromosome 1 NR3C1
cytoskeleton 1 DMD
brush border membrane 1 ACE
sperm midpiece 1 ACE
Basolateral cell membrane 1 SLCO1B1
intercellular bridge 1 CD34
Recycling endosome membrane 1 HLA-A
Nucleus, nucleoplasm 1 NR3C1
filopodium membrane 1 DMD
basal plasma membrane 3 ACE, CD34, SLCO1B1
plasma membrane raft 1 MS4A1
endoplasmic reticulum lumen 1 CD4
specific granule lumen 1 TCN1
tertiary granule lumen 1 TCN1
Sarcoplasmic reticulum membrane 1 SRL
endoplasmic reticulum exit site 1 HLA-A
Single-pass type IV membrane protein 1 DMD
ER to Golgi transport vesicle membrane 1 HLA-A
clathrin-coated endocytic vesicle membrane 1 CD4
Sarcoplasmic reticulum lumen 1 SRL
costamere 1 DMD
Basal cell membrane 1 SLCO1B1
lumenal side of endoplasmic reticulum membrane 1 HLA-A
MHC class I peptide loading complex 1 HLA-A
dystrophin-associated glycoprotein complex 1 DMD
cell-substrate junction 1 DMD
granulocyte macrophage colony-stimulating factor receptor complex 1 CSF2
[Isoform Alpha]: Cytoplasm 1 NR3C1
Golgi medial cisterna 1 HLA-A
endocytic vesicle lumen 1 CSF3
interleukin-2 receptor complex 1 IL2RA
T cell receptor complex 1 CD4
MHC class I protein complex 1 HLA-A
MHC class II protein complex 1 HLA-A
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
neuron projection terminus 1 DMD
syntrophin complex 1 DMD
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
glomerular endothelium fenestra 1 CD34
[CD40 ligand, soluble form]: Secreted 1 CD40LG
organelle 1 DMD
plasma membrane bounded cell projection 1 DMD


文献列表

  • Na Lei, Xuechen Cao, Yifei Feng, Guoyan Liu, Jianqing Feng, Yidong Zhao, Zhiming Zhao, Ziyu Li, Lebin Song, Yan Lu. A novel reverse perilesional home phototherapy can promote the repigmentation of vitiligo patches with complete leukotrichia: A 12-week, open-label, double-arm, multicenter, randomized clinical trial. Photodermatology, photoimmunology & photomedicine. 2024 May; 40(3):e12974. doi: 10.1111/phpp.12974. [PMID: 38728444]
  • Yue Du, Yundi Zhang, Zhiyan Yang, Yue Li, Xinyu Wang, Ziqiang Li, Lei Ren, Yan Li. Artificial Neural Network Analysis of Determinants of Tacrolimus Pharmacokinetics in Liver Transplant Recipients. The Annals of pharmacotherapy. 2024 May; 58(5):469-479. doi: 10.1177/10600280231190943. [PMID: 37559252]
  • Ashwani Mehta. Managing dyslipidemia in solid organ transplant patients. Indian heart journal. 2024 Mar; 76 Suppl 1(?):S93-S95. doi: 10.1016/j.ihj.2024.01.004. [PMID: 38199560]
  • Ting Hui Woon, Melissa Jia Hui Tan, Yu Heng Kwan, Warren Fong. Evidence of the interactions between immunosuppressive drugs used in autoimmune rheumatic diseases and Chinese herbal medicine: A scoping review. Complementary therapies in medicine. 2024 Mar; 80(?):103017. doi: 10.1016/j.ctim.2024.103017. [PMID: 38218549]
  • Alexandra Bergen, James Herrmann, Christopher M Reilly. Xanthogranulomatous keratitis in a mixed-breed dog. Journal of the American Veterinary Medical Association. 2024 Jan; ?(?):1-4. doi: 10.2460/javma.23.10.0548. [PMID: 38266392]
  • Katja S Gümüs, Anna Teegelbekkers, Max Sauter, Andreas D Meid, Jürgen Burhenne, Johanna Weiss, Antje Blank, Walter E Haefeli, David Czock. Effect of Tacrolimus Formulation (Prolonged-Release vs Immediate-Release) on Its Susceptibility to Drug-Drug Interactions with St. John's Wort. Clinical pharmacology in drug development. 2024 Jan; ?(?):. doi: 10.1002/cpdd.1364. [PMID: 38176912]
  • Mingdan Zhao, Fujun Huang, Lei Tang, Xun Zhou, Miao Zhang, Mengxue Liao, Lirong Liu, Mengya Huang. Case report: Successful treatment of acute generalized pustular psoriasis with multiple comorbidities with oral tacrolimus. Frontiers in immunology. 2024; 15(?):1354578. doi: 10.3389/fimmu.2024.1354578. [PMID: 38566985]
  • Yu Zhu, Junyi Chen, Yao Zhang, Xiaoai Wang, Jingjing Wang. Immunosuppressive agents for frequently relapsing/steroid-dependent nephrotic syndrome in children: a systematic review and network meta-analysis. Frontiers in immunology. 2024; 15(?):1310032. doi: 10.3389/fimmu.2024.1310032. [PMID: 38464533]
  • Juliana Viegas, Sofia Dias, Ana Margarida Carvalho, Bruno Sarmento. Characterization of a human lesioned-skin model to assess the influence of skin integrity on drug permeability. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 169(?):115841. doi: 10.1016/j.biopha.2023.115841. [PMID: 37944442]
  • Violetta Dziedziejko, Krzysztof Safranow, Mirosława Kijko-Nowak, Damian Malinowski, Leszek Domanski, Andrzej Pawlik. Leptin receptor gene polymorphisms in kidney transplant patients with post-transplant diabetes mellitus treated with tacrolimus. International immunopharmacology. 2023 Sep; 124(Pt B):110989. doi: 10.1016/j.intimp.2023.110989. [PMID: 37776770]
  • Wei Luo, Yu He, Mao Gang Wei, Guang Bing Lu, Qun Yi. Paxlovid-tacrolimus drug-drug interaction caused severe diarrhea that induced combined diabetic ketoacidosis and a hyperglycemic hyperosmolar state in a kidney transplant patient: a case report. Journal of medical case reports. 2023 Sep; 17(1):406. doi: 10.1186/s13256-023-04135-1. [PMID: 37742028]
  • Yundi Zhang, Yue Du, Shuyu Ren, Yue Li, Xiaoming Zhang, Xiaohong Cao, Fengxi Liu, Huiying Zong, Yan Li. CYP3A5 Genotype-Dependent Drug-Drug Interaction Between Tacrolimus and Voriconazole in Chinese Kidney Transplant Patients. The Annals of pharmacotherapy. 2023 Sep; ?(?):10600280231197399. doi: 10.1177/10600280231197399. [PMID: 37702380]
  • Nguyen Thi Hai Yen, Nguyen Ky Phat, Jung-Hwa Oh, Se-Myo Park, Kyoung-Sik Moon, Vo Thuy Anh Thu, Yong-Soon Cho, Jae-Gook Shin, Nguyen Phuoc Long, Dong Hyun Kim. Pathway-level multi-omics analysis of the molecular mechanisms underlying the toxicity of long-term tacrolimus exposure. Toxicology and applied pharmacology. 2023 08; 473(?):116597. doi: 10.1016/j.taap.2023.116597. [PMID: 37321324]
  • Li-Jian Chen, Yang Xin, Miao-Xian Yuan, Chun-Yi Ji, Yu-Ming Peng, Qiang Yin. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. American journal of physiology. Cell physiology. 2023 Aug; ?(?):. doi: 10.1152/ajpcell.00462.2022. [PMID: 37575056]
  • Yujie Li, Hui Ren, Fanlong Wang, Jianjun Chen, Lian Ma, Yang Chen, Xianbi Li, Yanhua Fan, Dan Jin, Lei Hou, Yonghong Zhou, Nemat O Keyhani, Yan Pei. Cell detoxification of secondary metabolites by P4-ATPase-mediated vesicle transport. eLife. 2023 07; 12(?):. doi: 10.7554/elife.79179. [PMID: 37405392]
  • Junmiao Xu, Sihui Wang. Successful complementary therapy with Chinese herbal medicine in a patient with refractory symptoms from systemic lupus erythematosus: A case report. Explore (New York, N.Y.). 2023 Jun; ?(?):. doi: 10.1016/j.explore.2023.06.010. [PMID: 37385892]
  • T Tan, Y Zheng, Y Li, Y Zeng. [Pharmacogenetic testing improves treatment responses in patients with PLA2R-related membranous nephropathy]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2023 Jun; 43(6):1047-1050. doi: 10.12122/j.issn.1673-4254.2023.06.23. [PMID: 37439180]
  • Zhensheng Zhang, Li Xu, Xun Qiu, Xinyu Yang, Zhengxing Lian, Xuyong Wei, Di Lu, Xiao Xu. Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy. Journal of Zhejiang University. Science. B. 2023 Jun; 24(6):485-495. doi: 10.1631/jzus.b2200562. [PMID: 37309040]
  • Berk Goktepe, Aygul Celtik, Goktug Kivratma, Taylan Ozgur Sezer, Gulay Asci, Huseyin Toz. Is Serum Magnesium Level Associated With Serum Lipid Levels in Kidney Transplant Recipients?. Transplantation proceedings. 2023 Apr; ?(?):. doi: 10.1016/j.transproceed.2023.01.041. [PMID: 37045703]
  • Neng Zhang, Shiqian Feng, Ye Tian, Ling Zhuang, Gan Cha, Saiya Duan, Hongmei Li, Xiangqun Nong, Zehua Zhang, Xiongbing Tu, Guangjun Wang. Identification, characterization and spatiotemporal expression analysis of the FKBP family genes in Locusta migratoria. Scientific reports. 2023 03; 13(1):4048. doi: 10.1038/s41598-023-30889-1. [PMID: 36899085]
  • Xiang Zheng, Weijie Zhang, Hua Zhou, Ronghua Cao, Zhangfei Shou, Shuwei Zhang, Ying Cheng, Xuchun Chen, Chenguang Ding, Ning Li, Shaohua Shi, Qiang Zhou, Qiuyuan Chen, Gang Chen, Zheng Chen, Peijun Zhou, Xiaopeng Hu, Wujun Xue, Xiaodong Zhang, Ning Na, Wei Wang. A multi-center randomized controlled trial to evaluate efficacy and safety of early conversion to a low-dose calcineurin inhibitor combined with sirolimus in renal transplant patients. Chinese medical journal. 2023 03; 136(5):607-609. doi: 10.1097/cm9.0000000000002604. [PMID: 36921118]
  • Maryam Salari, Mohammad Ali Yaghoubi, Maryam Miri, Hassan Mehrad-Majd, Maryam Hami. Association of Metabolic Syndrome and Hyperuricemia in the Recipients of Kidney Transplants: A Single-Center Study. Iranian journal of kidney diseases. 2023 03; 1(2):100-107. doi: ". [PMID: 37060344]
  • Jie Bai, Chao Zhang. Metabolic interaction between biflavonoids in Ginkgo biloba leaves and tacrolimus. Biopharmaceutics & drug disposition. 2023 Feb; ?(?):. doi: 10.1002/bdd.2350. [PMID: 36840704]
  • Burcu Azak Pazarlar, Cansu Bilister Egilmez, Mumin Alper Erdogan, Oytun Erbas. Immunosuppressant Tacrolimus Treatment Delays Acute Seizure Occurrence, Reduces Elevated Oxidative Stress, and Reverses PGF2α Burst in the Brain of PTZ-Treated Rats. Neurochemical research. 2023 Feb; ?(?):. doi: 10.1007/s11064-023-03885-0. [PMID: 36780043]
  • Yongqiang Dong, Jinmin Shi, Shanshan Wang, Yanhong Liu, Shirong Yu, Lijun Zhao. The efficacy of immunosuppressive drugs induction therapy for lupus nephritis: a systematic review and network meta-analysis. Renal failure. 2023; 45(2):2290365. doi: 10.1080/0886022x.2023.2290365. [PMID: 38087473]
  • Minghuan He, Naijia Bao, Rui-Qun Qi, Yan Wu, Min Liu. A randomized, prospective pilot study for comparison of a triple combination of 2940 nm Er:YAG Laser and triamcinolone acetonide solution with either 308 nm excimer laser or 0.1\% tacrolimus in treatment of stable segmental vitiligo. Dermatologic therapy. 2022 11; 35(11):e15875. doi: 10.1111/dth.15875. [PMID: 36181292]
  • Joseph M Collins, Adaeze C Nworu, Somayya J Mohammad, Liang Li, Chengcheng Li, Chuanjiang Li, Ethan Schwendeman, Mattew Cefalu, Mahmoud Abdel-Rasoul, Jessie W Sun, Sakima A Smith, Danxin Wang. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clinical and translational science. 2022 11; 15(11):2720-2731. doi: 10.1111/cts.13398. [PMID: 36045613]
  • Ajit Kumar Singh, Ketul Saharan, Somanath Baral, Dileep Vasudevan. The plant nucleoplasmin AtFKBP43 needs its extended arms for histone interaction. Biochimica et biophysica acta. Gene regulatory mechanisms. 2022 10; 1865(7):194872. doi: 10.1016/j.bbagrm.2022.194872. [PMID: 36058470]
  • Shan Caifeng, Zhang Jingsheng, Lin Yi, Huang Xueshi, Wang Zhanyou, Pan Haiou, Qiao Wenjun. Effect of treatment with Fufang Huangqi decoction on dose reductions and discontinuation of pyridostigmine bromide tablets, prednisone, and tacrolimus in patients with type I or II myasthenia gravis. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2022 10; 42(5):810-817. doi: 10.19852/j.cnki.jtcm.20220719.004. [PMID: 36083490]
  • Zhonghua Tian, Yuxia Li, Yehong Xie, Yalin Yang, Jiangyan Xu. Efficacy and safety of tacrolimus combined with corticosteroids in patients with idiopathic membranous nephropathy: a systematic review and meta-analysis of randomized controlled trials. International urology and nephrology. 2022 Oct; 54(10):2555-2566. doi: 10.1007/s11255-022-03169-6. [PMID: 35277831]
  • Lina Shao, Chuxuan Luo, Chaoyun Yuan, Xiaolan Ye, Yuqun Zeng, Yan Ren, Binxian Ye, Yiwen Li, Juan Jin, Qiang He, Xiaogang Shen. LASSO-derived nomogram predicting new-onset diabetes mellitus in patients with kidney disease receiving immunosuppressive drugs. Journal of clinical pharmacy and therapeutics. 2022 Oct; 47(10):1627-1635. doi: 10.1111/jcpt.13713. [PMID: 35791031]
  • Trung Q Ky, Norman P Silas, Robin M Taylor, Abdurahman O Barakat, Rawan Harb, Nathan C Laviste, Jeong M Park. Evaluation of a Standardized Tacrolimus Therapeutic Drug Monitoring Protocol in Stable Kidney Transplant Recipients. Progress in transplantation (Aliso Viejo, Calif.). 2022 Sep; 32(3):212-218. doi: 10.1177/15269248221107043. [PMID: 35695240]
  • Xiangling Feng, Youquan Shi, Yufeng Ding, Heng Zheng. Inhibitory effects of traditional Chinese medicine colquhounia root tablet on the pharmacokinetics of tacrolimus in rats. Journal of ethnopharmacology. 2022 Aug; 294(?):115358. doi: 10.1016/j.jep.2022.115358. [PMID: 35551976]
  • Yujiro Geka, Yukihiro Hamada, Shohei Fuchinoue, Toshimi Kimura. Evaluation of factors influencing the ratio of the trough blood concentration to dose level of everolimus in Japanese kidney transplant recipients. Transplant immunology. 2022 Aug; 73(?):101609. doi: 10.1016/j.trim.2022.101609. [PMID: 35500848]
  • Sukesh Edavalath, Mohit Kumar Rai, Vikas Gupta, Ravi Mishra, Durga Prasanna Misra, Latika Gupta, Vikas Agarwal. Tacrolimus induces remission in refractory and relapsing lupus nephritis by decreasing P-glycoprotein expression and function on peripheral blood lymphocytes. Rheumatology international. 2022 08; 42(8):1347-1354. doi: 10.1007/s00296-021-05057-1. [PMID: 34993577]
  • M I Francke, W J Visser, D Severs, A M E de Mik-van Egmond, D A Hesselink, B C M De Winter. Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients. European journal of clinical pharmacology. 2022 Aug; 78(8):1273-1287. doi: 10.1007/s00228-022-03323-0. [PMID: 35567629]
  • Xi-Han Wang, Kun Shao, Hui-Min An, Xiao-Hui Zhai, Pei-Jun Zhou, Bing Chen. The pharmacokinetics of tacrolimus in peripheral blood mononuclear cells and limited sampling strategy for estimation of exposure in renal transplant recipients. European journal of clinical pharmacology. 2022 Aug; 78(8):1261-1272. doi: 10.1007/s00228-021-03215-9. [PMID: 35536394]
  • Michelle Liu, Ciara M Shaver, Kelly A Birdwell, Stephanie A Heeney, Christian M Shaffer, Sara L Van Driest. Composite CYP3A phenotypes influence tacrolimus dose-adjusted concentration in lung transplant recipients. Pharmacogenetics and genomics. 2022 07; 32(5):209-217. doi: 10.1097/fpc.0000000000000472. [PMID: 35389944]
  • Stephanie Witek, Gregory Malat, Deirdre Sawinski, Chelsea Sammons, Christopher LaFratte, Abigail Forte, Rahul Samudralwar, Sandra Lyle, Jamal Rashid, Jennifer Trofe-Clark. Tolerability of mycophenolate mofetil in elderly kidney transplant recipients: A retrospective cohort study. Clinical transplantation. 2022 07; 36(7):e14671. doi: 10.1111/ctr.14671. [PMID: 35416337]
  • Howard J Huang, Kenneth Schechtman, Medhat Askar, Cory Bernadt, Brigitte Mittler, Peter Dore, Chad Witt, Derek Byers, Rodrigo Vazquez-Guillamet, Laura Halverson, Ruben Nava, Varun Puri, Andrew Gelman, Daniel Kreisel, Ramsey R Hachem. A pilot randomized controlled trial of de novo belatacept-based immunosuppression following anti-thymocyte globulin induction in lung transplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2022 07; 22(7):1884-1892. doi: 10.1111/ajt.17028. [PMID: 35286760]
  • Shuqiao Cheng, Mimi Tang, Jie Du, Tao Yin. Effects of antifungal drugs on the plasma concentrations and dosage of tacrolimus in kidney transplant patients. European journal of hospital pharmacy : science and practice. 2022 Jul; 29(4):202-206. doi: 10.1136/ejhpharm-2020-002385. [PMID: 33020057]
  • Anna Chen, Thomas Stringer, Maria Ajaimy, Holly Kanavy. Hand-foot skin-like reaction associated with tacrolimus therapy in a kidney transplant patient. Clinical transplantation. 2022 Jul; 36(7):e14693. doi: 10.1111/ctr.14693. [PMID: 35491540]
  • Holly Mansell, Ahmed Shoker, Jane Alcorn, Mark E Fenton, Julian S Tam, William Semchuk, Babar Bashir, Walter K Kraft, Shenzhen Yao, James D Douketis. Pharmacokinetics of apixaban and tacrolimus or cyclosporine in kidney and lung transplant recipients. Clinical and translational science. 2022 Jul; 15(7):1687-1697. doi: 10.1111/cts.13284. [PMID: 35439353]
  • Stella Kilduff, Jonathan Butler, Hiroshi Sogawa, Sonia Solomon. Practice patterns and outcomes for pediatric ANCA vasculitis transplant recipients in a national cohort. Pediatric nephrology (Berlin, Germany). 2022 Jul; 37(7):1667-1673. doi: 10.1007/s00467-021-05341-z. [PMID: 34796388]
  • Dengyan Wu, Rui Ma, Xingmin Wang, Yonghong Yang. Efficacy and Safety of Tacrolimus in the Treatment of Pediatric Henoch-Schönlein Purpura Nephritis. Paediatric drugs. 2022 Jul; 24(4):389-401. doi: 10.1007/s40272-022-00506-1. [PMID: 35508891]
  • Linda G Franken, Marith I Francke, Louise M Andrews, Ron H N van Schaik, Yi Li, Lucia E A de Wit, Carla C Baan, Dennis A Hesselink, Brenda C M de Winter. A Population Pharmacokinetic Model of Whole-Blood and Intracellular Tacrolimus in Kidney Transplant Recipients. European journal of drug metabolism and pharmacokinetics. 2022 Jul; 47(4):523-535. doi: 10.1007/s13318-022-00767-8. [PMID: 35442010]
  • Binu Susan Mathew, Sumith K Mathew, Blessed Winston Aruldhas, Ratna Prabha, Naveen Gangadharan, Vinoi George David, Santosh Varughese, George Tharayil John. Analytical and clinical validation of dried blood spot and volumetric absorptive microsampling for measurement of tacrolimus and creatinine after renal transplantation. Clinical biochemistry. 2022 Jul; 105-106(?):25-34. doi: 10.1016/j.clinbiochem.2022.04.014. [PMID: 35490728]
  • Hyeyoung Lee, Ji Won Min, Hyunhye Kang, Hanbi Lee, Sang Hun Eum, Yohan Park, Chul Woo Yang, Byung Ha Chung, Eun-Jee Oh. Combined Analysis of HLA Class II Eplet Mismatch and Tacrolimus Levels for the Prediction of De Novo Donor Specific Antibody Development in Kidney Transplant Recipients. International journal of molecular sciences. 2022 Jul; 23(13):. doi: 10.3390/ijms23137357. [PMID: 35806362]
  • Shintaro Yoneda, Tatsuya Fukuta, Mizune Ozono, Kentaro Kogure. Enhancement of cerebroprotective effects of lipid nanoparticles encapsulating FK506 on cerebral ischemia/reperfusion injury by particle size regulation. Biochemical and biophysical research communications. 2022 06; 611(?):53-59. doi: 10.1016/j.bbrc.2022.04.080. [PMID: 35477093]
  • Erik Ames, Raffick A R Bowen. Unexpectedly low tacrolimus concentrations attributed to inappropriately labeled water container from the instrument manufacturer. Clinical chemistry and laboratory medicine. 2022 Jun; 60(7):e159-e160. doi: 10.1515/cclm-2022-0204. [PMID: 35405044]
  • Zhipeng Yan, Jiang Wang, Tianlun Huang, Xin Liu, Li Wang, Gaosi Xu. Effectiveness and safety of tacrolimus treatment for IgA nephropathy: A prospective cohort study. Medicina clinica. 2022 06; 158(12):596-602. doi: 10.1016/j.medcli.2021.07.030. [PMID: 34838267]
  • Carlo Massimetti, Anteo Di Napoli, Sandro Feriozzi. [Long-term efficacy and safety of treatment with cinacalcet in hypercalcemic persistent secondary hyperparathyroidism in renal transplant]. Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia. 2022 Jun; 39(3):. doi: . [PMID: 35819043]
  • Kanitha Tiankanon, Stephen J Kerr, Siriwan Thongthip, Suwasin Udomkarnjananun, Pimpayao Sodsai, Athaya Vorasittha, Kamol Panumatrassamee, Kullaya Takkavatakarn, Kriang Tungsanga, Somchai Eiam-Ong, Kearkiat Praditpornsilpa, Yingyos Avihingsanon, Natavudh Townamchai. Tacrolimus dose adjustment is not necessary in dose to dose conversion from a twice daily to a prolonged release once daily dose form. Scientific reports. 2022 06; 12(1):10051. doi: 10.1038/s41598-022-14317-4. [PMID: 35710816]
  • Justin C M Chua, Peter F Mount, Darren Lee. Lower versus higher starting tacrolimus dosing in kidney transplant recipients. Clinical transplantation. 2022 06; 36(6):e14606. doi: 10.1111/ctr.14606. [PMID: 35137970]
  • Stefanie W Benoit, Pooja Khandelwal, Michael S Grimley. A case of treatment-resistant membranous nephropathy associated with graft versus host disease successfully treated with daratumumab. Pediatric transplantation. 2022 06; 26(4):e14263. doi: 10.1111/petr.14263. [PMID: 35249254]
  • Eun Jeong Ko, Yoo Jin Shin, Sheng Cui, Sun Woo Lim, Byung Ha Chung, Chul Woo Yang. Effect of dual inhibition of DPP4 and SGLT2 on tacrolimus-induced diabetes mellitus and nephrotoxicity in a rat model. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2022 06; 22(6):1537-1549. doi: 10.1111/ajt.17035. [PMID: 35294797]
  • Chi Yuen Cheung, Sydney Chi Wai Tang. Personalized immunosuppression after kidney transplantation. Nephrology (Carlton, Vic.). 2022 Jun; 27(6):475-483. doi: 10.1111/nep.14035. [PMID: 35238110]
  • Kristen E Lindauer, Ashlee G Hamel. Case Report: Nirmatrelvir/Ritonavir and Tacrolimus in a Kidney Transplant Recipient With COVID-19. American family physician. 2022 06; 105(6):569-570. doi: NULL. [PMID: 35704835]
  • Paolo De Simone, Jessica Bronzoni, Caterina Martinelli. Everolimus versus mycophenolate mofetil in liver transplantation: every improvement in renal function matters. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva. 2022 06; 114(6):312-313. doi: 10.17235/reed.2022.8902/2022. [PMID: 35545915]
  • Nicholas E Heger. Commentary on Perplexingly High Tacrolimus Concentrations in a Renal Transplant Patient with HIV. Clinical chemistry. 2022 06; 68(6):769-770. doi: 10.1093/clinchem/hvac064. [PMID: 35642523]
  • Yuji Hidaka, Norihiko Goto, Shigeyoshi Yamanaga, Kohei Kinoshita, Kosuke Tanaka, Chiaki Kawabata, Mariko Toyoda, Toshihide Tomosugi, Kenta Futamura, Manabu Okada, Makoto Tsujita, Takahisa Hiramitsu, Hiroshi Yokomizo, Akira Miyata, Shunji Narumi, Takaaki Kobayashi, Yoshihiko Watarai. Two-year outcomes of low-exposure extended-release tacrolimus and mycophenolate mofetil regimen in de novo kidney transplantation: A multi-center randomized controlled trial. Clinical transplantation. 2022 06; 36(6):e14655. doi: 10.1111/ctr.14655. [PMID: 35343620]
  • Stephanie Shin, Margaret Lee, Elizabeth Dente, Nada Yazigi, Khalid M Khan, Stuart S Kaufman, Jaeil Ahn, Olga A Timofeeva, Udeme D Ekong. Mismatch epitope load predicts de novo-DSA-free survival in pediatric liver transplantation. Pediatric transplantation. 2022 06; 26(4):e14251. doi: 10.1111/petr.14251. [PMID: 35279919]
  • Nitender Goyal. Commentary on Perplexingly High Tacrolimus Concentrations in a Renal Transplant Patient with HIV. Clinical chemistry. 2022 06; 68(6):768-769. doi: 10.1093/clinchem/hvac063. [PMID: 35642521]
  • Victoria Higgins, Bhushan M Kapur, Daniel R Beriault, Sarah R Delaney. Perplexingly High Tacrolimus Concentrations in a Renal Transplant Patient with HIV. Clinical chemistry. 2022 06; 68(6):765-768. doi: 10.1093/clinchem/hvac062. [PMID: 35642522]
  • Miguel Gómez-Bravo, Martín Prieto Castillo, Miquel Navasa, Gloria Sánchez-Antolín, Laura Lladó, Alejandra Otero, Trinidad Serrano, Carlos Jiménez Romero, Miguel García González, Andrés Valdivieso, María Luisa González-Diéguez, Manuel de la Mata, José A Pons, Magdalena Salcedo, Juan M Rodrigo, Valentín Cuervas-Mons, Antonio González Rodríguez, Mireia Caralt, Fernando Pardo, Evaristo Varo Pérez, Gonzalo Crespo, Ángel Rubin, Magda Guilera, Anna Aldea, Julio Santoyo. Effects of everolimus plus minimized tacrolimus on kidney function in liver transplantation: REDUCE, a prospective, randomized controlled study. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva. 2022 06; 114(6):335-342. doi: 10.17235/reed.2022.8549/2021. [PMID: 35469409]
  • Ryo Yonezawa, Tomiko Sunaga. Signal of safety due to adverse drug reactions induced by tacrolimus with or without azithromycin. Transplant infectious disease : an official journal of the Transplantation Society. 2022 Jun; 24(3):e13833. doi: 10.1111/tid.13833. [PMID: 35385596]
  • Jay Erdman, Josephine Wolfram, David Nimke, Richard Croy, Xuegong Wang, Tim Weaver, David Schladt, William E Fitzsimmons. Lung Transplant Outcomes in Adults in the United States: Retrospective Cohort Study Using Real-world Evidence from the SRTR. Transplantation. 2022 06; 106(6):1233-1242. doi: 10.1097/tp.0000000000004011. [PMID: 34974456]
  • Aleixandra Mendoza Rojas, Dennis A Hesselink, Nicole M van Besouw, Marjolein Dieterich, Ronella de Kuiper, Carla C Baan, Teun van Gelder. High Tacrolimus Intrapatient Variability and Subtherapeutic Immunosuppression are Associated With Adverse Kidney Transplant Outcomes. Therapeutic drug monitoring. 2022 06; 44(3):369-376. doi: 10.1097/ftd.0000000000000955. [PMID: 35394988]
  • Durga Prasanna Misra, Vikas Agarwal. Management of refractory lupus nephritis: rationale to consider tacrolimus. Kidney international. 2022 06; 101(6):1293. doi: 10.1016/j.kint.2022.03.004. [PMID: 35597593]
  • Ravina Barrett. Calcineurin inhibitors and related medicines: a cohort study examining England's primary care prescription changes during the COVID-19 pandemic (January 2019 to March 2021). Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2022 Jun; 30(1):59-66. doi: 10.1007/s40199-021-00431-7. [PMID: 35075618]
  • Xiaoying He, Xi Yang, Xiaoting Yan, Mingzhu Huang, Zheng Xiang, Yan Lou. Individualized Dosage of Tacrolimus for Renal Transplantation Patients Based on Pharmacometabonomics. Molecules (Basel, Switzerland). 2022 May; 27(11):. doi: 10.3390/molecules27113517. [PMID: 35684454]
  • Paulina K Wells, Oleh Smutok, Zhong Guo, Kirill Alexandrov, Evgeny Katz. Nanostructured Interface Loaded with Chimeric Enzymes for Fluorimetric Quantification of Cyclosporine A and FK506. Analytical chemistry. 2022 05; 94(20):7303-7310. doi: 10.1021/acs.analchem.2c00650. [PMID: 35543230]
  • Shulin Yang, Juan Le, Rui Peng, Shaoting Wang, Yan Li. Influence of Tacrolimus on Serum Vitamin A Levels in Patients after Renal Transplantation. Laboratory medicine. 2022 May; 53(3):296-301. doi: 10.1093/labmed/lmab102. [PMID: 34878545]
  • Holger Jahr, Anna E van der Windt, Ufuk Tan Timur, Esther B Baart, Wei-Shiung Lian, Bernd Rolauffs, Feng-Sheng Wang, Thomas Pufe. Physosmotic Induction of Chondrogenic Maturation Is TGF-β Dependent and Enhanced by Calcineurin Inhibitor FK506. International journal of molecular sciences. 2022 May; 23(9):. doi: 10.3390/ijms23095110. [PMID: 35563498]
  • Qun Fu, Yan Jing, Guozhen Liu Mr, Xuehui Jiang Mr, Hong Liu, Ying Kong, Xiongjun Hou, Lei Cao, Pei Deng, Pin Xiao, Jiansheng Xiao, Hongwei Peng, Xiaohua Wei. Machine learning-based method for tacrolimus dose predictions in Chinese kidney transplant perioperative patients. Journal of clinical pharmacy and therapeutics. 2022 May; 47(5):600-608. doi: 10.1111/jcpt.13579. [PMID: 34802160]
  • Ajit Kumar Singh, Ketul Saharan, Somanath Baral, Sheng Luan, Dileep Vasudevan. Crystal packing reveals rapamycin-mediated homodimerization of an FK506-binding domain. International journal of biological macromolecules. 2022 May; 206(?):670-680. doi: 10.1016/j.ijbiomac.2022.02.107. [PMID: 35218805]
  • Hideki Ishida, Miyuki Furusawa, Kouhei Unagami, Kazuya Omoto, Jumpei Iizuka, Toshio Takagi. Antibody Response to SARS-CoV-2 mRNA Vaccine Among Kidney Transplant Recipients: A Retrospective Cohort Study at a Single Transplant Institute in Japan. Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation. 2022 05; 20(5):463-471. doi: 10.6002/ect.2022.0020. [PMID: 35607795]
  • Jennifer Lagoutte-Renosi, Mylène Flammang, Didier Ducloux, Jamal Bamoulid, Pierre-Yves Royer, Quentin Lepiller, Anne-Laure Clairet, Siamak Davani, Patrice Muret. Bictegravir/emtricitabine/tenofovir alafenamide combination in the management of kidney transplant patients with HIV receiving immunosuppressants. Journal of chemotherapy (Florence, Italy). 2022 May; 34(3):199-202. doi: 10.1080/1120009x.2021.1940436. [PMID: 34180378]
  • Amit Nair, Laia Coromina Hernandez, Shimul Shah, Xaralambos Zervos, Michael Zimmerman, Kazunari Sasaki, Teresa Diago, Koji Hashimoto, Masato Fujiki, Federico Aucejo, Jessica Bollinger, Tiffany L Kaiser, Charles M Miller, Cristiano Quintini, John J Fung, Bijan Eghtesad. Induction Therapy With Antithymocyte Globulin and Delayed Calcineurin Inhibitor Initiation for Renal Protection in Liver Transplantation: A Multicenter Randomized Controlled Phase II-B Trial. Transplantation. 2022 05; 106(5):997-1003. doi: 10.1097/tp.0000000000003904. [PMID: 34319926]
  • Siriorn P Watcharananan, Peera Jaru-Ampornpan, Suree Sahawongcharoen, Nattakan Naitook, Orawan Himananto, Anan Jongkaewwattana, Chavachol Setthaudom, Sasivimol Rattanasiri, Angsana Phuphuakrat, Ammarin Thakkinstian, Viroon Mavichak. Comparison of the immunogenicity of ChAdOx1 nCoV-19 vaccine against the wild-type and delta variants in kidney transplant recipients and healthy volunteers. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2022 05; 22(5):1459-1466. doi: 10.1111/ajt.16966. [PMID: 35090091]
  • Justa Friebus-Kardash, Ejona Nela, Birte Möhlendick, Andreas Kribben, Winfried Siffert, Falko Markus Heinemann, Ute Eisenberger. Development of De Novo Donor-specific HLA Antibodies and AMR in Renal Transplant Patients Depends on CYP3A5 Genotype. Transplantation. 2022 05; 106(5):1031-1042. doi: 10.1097/tp.0000000000003871. [PMID: 34241984]
  • Divya Bajpai, Nikhil Saxena, Chintan Gandhi, Tulsi Modi, Sreyashi Bose, Satarupa Deb, Nikhil Rao, Kruteesh Kumar, Abhinav Katyal, Ankita Patil, Sayali Thakare, Atim E Pajai, Ashwathy Haridas, Vaibhav S Keskar, Sunil Y Jawale, Amar G Sultan, Tukaram E Jamale. Does COVID-19 increase tacrolimus levels in kidney transplant recipients?. Journal of clinical pharmacy and therapeutics. 2022 05; 47(5):707-708. doi: 10.1111/jcpt.13586. [PMID: 34951043]
  • Xin-Fu Xie, Bing-Ying Xie, Wen-Hao Zhang, Ji-Hua Hou, Ding-Lin Liu, Li Zhang, Li-Xia Xu, Zhi-Lian Li, Rui-Zhao Li, Zhi-Ming Ye. The efficacy and safety of tacrolimus and entecavir combination therapy in the treatment of hepatitis B virus-associated glomerulonephritis: a multi-center, placebo controlled, and single-blind randomized trial. Annals of palliative medicine. 2022 May; 11(5):1762-1773. doi: 10.21037/apm-22-328. [PMID: 35672893]
  • A Salava, M Perälä, A Pelkonen, M Mäkelä, A Remitz. Safety of tacrolimus 0.03\% and 0.1\% ointments in young children with atopic dermatitis: a 36-month follow-up study. Clinical and experimental dermatology. 2022 May; 47(5):889-902. doi: 10.1111/ced.15024. [PMID: 34798685]
  • Matthew Oliver Brook, Joanna Hester, William Petchey, Ines Rombach, Susan Dutton, Matthew James Bottomley, Joanna Black, Seetha Abdul-Wahab, Andrew Bushell, Giovanna Lombardi, Kathryn Wood, Peter Friend, Paul Harden, Fadi Issa. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ open. 2022 04; 12(4):e061864. doi: 10.1136/bmjopen-2022-061864. [PMID: 35428650]
  • Peng Cao, Feilong Zhang, Jiandong Zhang, Xiang Zheng, Zejia Sun, Baozhong Yu, Wei Wang. CYP3a5 Genetic Polymorphism in Chinese Population With Renal Transplantation: A Meta-Analysis Review. Transplantation proceedings. 2022 Apr; 54(3):638-644. doi: 10.1016/j.transproceed.2021.10.031. [PMID: 35428510]
  • Wenwen Du, Xiaoxing Wang, Dan Zhang, Wenqian Chen, Xianglin Zhang, Pengmei Li. The impact of cytochrome P450 3A5 genotype on early tacrolimus metabolism and clinical outcomes in lung transplant recipients. International journal of clinical pharmacy. 2022 Apr; 44(2):418-427. doi: 10.1007/s11096-021-01359-3. [PMID: 34859357]
  • Burak Önal, Rukiye Ada Bender. Does Tacrolimus Use Have a Sexual Dysfunctional Effect in Women After Renal Transplant?. Transplantation proceedings. 2022 Apr; 54(3):685-689. doi: 10.1016/j.transproceed.2022.02.003. [PMID: 35248354]
  • Rangrang Wang, Yang Zhang, Junwei Fan, Zhaowen Wang, Yuan Liu. Risk Factors for New-Onset Diabetes Mellitus After Heart Transplantation: A Nomogram Approach. Transplantation proceedings. 2022 Apr; 54(3):762-768. doi: 10.1016/j.transproceed.2022.01.030. [PMID: 35256198]
  • Mengyu Zhang, Soichiro Tajima, Tomohiro Shigematsu, Hiroshi Noguchi, Keizo Kaku, Akihiro Tsuchimoto, Yasuhiro Okabe, Nobuaki Egashira, Ichiro Ieiri. Development and Validation of A Liquid Chromatography-Tandem Mass Spectrometry Method to Simultaneously Measure Tacrolimus and Everolimus Concentrations in Kidney Allograft Biopsies After Kidney Transplantation. Therapeutic drug monitoring. 2022 04; 44(2):275-281. doi: 10.1097/ftd.0000000000000912. [PMID: 34224536]
  • Zoran Sabljić, Nikolina Bašić-Jukić. Toxic myopathy and liver damage caused by concomitant therapy with remdesivir, atorvastatin, ezetimibe, and tacrolimus in a renal transplant patient with recently treated SARS-CoV-2 induced pneumonia: A case report. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2022 04; 26(2):478-479. doi: 10.1111/1744-9987.13748. [PMID: 34676979]
  • A Ningombam, S Handa, N Srivastava, R Mahajan, D De. Addition of oral fexofenadine to topical therapy leads to a significantly greater reduction in the serum interleukin-31 levels in mild to moderate paediatric atopic dermatitis. Clinical and experimental dermatology. 2022 Apr; 47(4):724-729. doi: 10.1111/ced.15032. [PMID: 34826148]
  • Fadime Çınar, Semra Bulbuloglu. The effect of adherence to immunosuppressant therapy on gastrointestinal complications after liver transplantation. Transplant immunology. 2022 04; 71(?):101554. doi: 10.1016/j.trim.2022.101554. [PMID: 35189354]
  • Jun Ding, Jian Jin, Yan Na Lei, Sheng Cui, Hui Ying Li, Hai Lan Zheng, Shang Guo Piao, Yu Ji Jiang, Mei Ying Xuan, Ji Zhe Jin, Ying Shun Jin, Jung Pyo Lee, Byung Ha Chung, Bum Soon Choi, Chul Woo Yang, Can Li. Exogenous pancreatic kininogenase protects against tacrolimus-induced renal injury by inhibiting PI3K/AKT signaling: The role of bradykinin receptors. International immunopharmacology. 2022 Apr; 105(?):108547. doi: 10.1016/j.intimp.2022.108547. [PMID: 35066448]
  • Fabian Echterdiek, Bernd Döhler, Joerg Latus, Vedat Schwenger, Caner Süsal. Influence of Calcineurin Inhibitor Choice on Outcomes in Kidney Transplant Recipients Aged ≥60 Y: A Collaborative Transplant Study Report. Transplantation. 2022 04; 106(4):e212-e218. doi: 10.1097/tp.0000000000004060. [PMID: 35066544]
  • Sabarinath Shanmugham, Narayan Prasad, Anupama Kaul, Dharmendra Bhadauria, Manas Patel, Monika Yaccha, Ravi Kushwaha, Manas Behera, Vinita Agrawal, Aneesh Srivastava. Evanescing renal allograft cortical necrosis from living donor renal transplantation: A lesson learned over two decades. Transplant immunology. 2022 04; 71(?):101558. doi: 10.1016/j.trim.2022.101558. [PMID: 35217167]
  • Shili Ge, Maggie Chu, Jacqueline Tang, Joseph Kahwaji, Artur Karasyov, Darly Lovato, Ashley Vo, Jua Choi, Stanley C Jordan, Ruan Zhang, Mieko Toyoda. Viral-specific cytotoxic T-cell responses in HLA-sensitized kidney transplant patients maintained on everolimus and low-dose tacrolimus. Transplant infectious disease : an official journal of the Transplantation Society. 2022 Apr; 24(2):e13805. doi: 10.1111/tid.13805. [PMID: 35213773]
  • Yuting He, Yixiao Ma, Qian Fu, Jianbo Liang, Xuegao Yu, Hao Huang, Liangying Zhong, Bin Huang. The CYP3A5 and ABCB1 Gene Polymorphisms in Kidney Transplant Patients and Establishment of Initial Daily Tacrolimus Dosing Formula. The Annals of pharmacotherapy. 2022 Apr; 56(4):393-400. doi: 10.1177/10600280211023495. [PMID: 34362271]
  • Paul Gabarre, Christopher Loens, Yanis Tamzali, Benoit Barrou, Frédéric Jaisser, Jérôme Tourret. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2022 04; 22(4):1014-1030. doi: 10.1111/ajt.16836. [PMID: 34510717]