4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473418)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.105642)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Sinapic acid

3,5-Dimethoxy-4-hydroxycinnamic acid, 4-Hydroxy-3,5-dimethoxy-cinnamic acid, Sinapinic acid

C11H12O5 (224.06847019999998)


Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].

   

Tyrosol

4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol

C8H10O2 (138.06807600000002)


Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

5-Hydroxyferulic acid

2-Propenoic acid, 3-(3,4-dihydroxy-5-methoxyphenyl)-, (2E)-

C10H10O5 (210.052821)


5-Hydroxyferulic acid (CAS: 1782-55-4), also known as 3-(3,4-dihydroxy-5-methoxy)-2-propenoic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing a cinnamic acid where the benzene ring is hydroxylated. Outside of the human body, 5-hydroxyferulic acid has been detected, but not quantified in, several different foods, such as common salsifies, napa cabbages, sparkleberries, nectarines, and Chinese chestnuts. This could make 5-hydroxyferulic acid a potential biomarker for the consumption of these foods. 5-Hydroxyferulic acid is found in green vegetables. 5-Hydroxyferulic acid is isolated from bamboo (Phyllostachys edulis). 5-hydroxyferulic acid is ferulic acid in which the ring hydrogen at position 5 is substituted by a hydroxy group. It is a hydroxycinnamic acid and a methoxycinnamic acid. It is a conjugate acid of a 5-hydroxyferulate. 5-Hydroxyferulic acid is a natural product found in Arabidopsis thaliana, Sabia japonica, and other organisms with data available. Isolated from bamboo (Phyllostachys edulis). 5-Hydroxyferulic acid is found in many foods, some of which are napa cabbage, chervil, common bean, and saskatoon berry. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3]. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].

   

Hydroxytyrosol

InChI=1/C8H10O3/c9-4-3-6-1-2-7(10)8(11)5-6/h1-2,5,9-11H,3-4H2

C8H10O3 (154.062991)


Hydroxytyrosol is a member of the class of catechols that is benzene-1,2-diol substituted by a 2-hydroxyethyl group at position 4. Isolated from Olea europaea, it exhibits antioxidant and antineoplastic activities. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a member of catechols and a primary alcohol. It is functionally related to a 2-(4-hydroxyphenyl)ethanol. Hydroxytyrosol has been used in trials studying the prevention of Breast Cancer. Hydroxytyrosol is a natural product found in Teucrium polium, Syringa reticulata, and other organisms with data available. Hydroxytyrosol is a phenolic phytochemical naturally occurring in extra virgin olive oil, with potential antioxidant, anti-inflammatory and cancer preventive activities. Although the mechanisms of action through which hydroxytyrosol exerts its effects have yet to be fully determined, this agent affects the expression of various components of the inflammatory response, possibly through the modulation of the nuclear factor-kappa B (NF-kB) pathway. The effects include the modulation of pro-inflammatory cytokines, such as the inhibition of interleukin-1alpha (IL-1a), IL-1beta, IL-6, IL-12, and tumor necrosis factor-alpha (TNF-a); increased secretion of the anti-inflammatory cytokine IL-10; inhibition of the production of certain chemokines, such as C-X-C motif chemokine ligand 10 (CXCL10/IP-10), C-C motif chemokine ligand 2 (CCL2/MCP-1), and macrophage inflammatory protein-1beta (CCL4/MIP-1b); and inhibition of the expression of the enzymes inducible nitric oxide synthase (iNOS/NOS2) and prostaglandin E2 synthase (PGES), which prevent the production of nitric oxide (NO) and prostaglandin E (PGE2), respectively. In addition, hydroxytyrosol is able to regulate the expression of other genes involved in the regulation of tumor cell proliferation, such as extracellular signal-regulated and cyclin-dependent kinases. Also, hydroxytyrosol scavenges free radicals and prevents oxidative DNA damage. This induces apoptosis and inhibits proliferation in susceptible cancer cells. Hydroxytyrosol is a polyphenol extracted from virgin olive oil and a natural antioxidant. It has a protective effect in preventing protein damage induced by ultraviolet radiation (PMID: 15749387). Research results suggest that Hydroxytyrosol could exert its antioxidant effect by scavenging hydrogen peroxide but not superoxide anion released during the respiratory burst (PMID: 15476671). Hydroxytyrosol has been found to be a metabolite of Escherichia (PMID: 22948011). A member of the class of catechols that is benzene-1,2-diol substituted by a 2-hydroxyethyl group at position 4. Isolated from Olea europaea, it exhibits antioxidant and antineoplastic activities. Indicator of maturity in olives which increases as the fruit ripens [DFC]. Hydroxytyrosol is found in many foods, some of which are fruits, olive, cloves, and grape wine. C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000890 - Anti-Infective Agents Hydroxytyrosol (DOPET) is a phenolic compound with anti-oxidant, anti-atherogenic, anti-thrombotic, antimicrobial, anti-inflammatory and anti-tumour effects[1][2]. Hydroxytyrosol (DOPET) is a phenolic compound with anti-oxidant, anti-atherogenic, anti-thrombotic, antimicrobial, anti-inflammatory and anti-tumour effects[1][2].

   

N-trans-Feruloyloctopamine

(2E)-N-[2-Hydroxy-2-(4-hydroxyphenyl)ethyl]-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidate

C18H19NO5 (329.1263164)


N-trans-Feruloyloctopamine is a member of methoxybenzenes and a member of phenols. N-trans-Feruloyloctopamine is a natural product found in Capnoides sempervirens and Allium sativum with data available. Constituent of roots of bell pepper (Capsicum annuum variety grossum). N-trans-Feruloyloctopamine is found in many foods, some of which are yellow bell pepper, potato, red bell pepper, and eggplant. N-trans-Feruloyloctopamine is found in eggplant. N-trans-Feruloyloctopamine is a constituent of roots of bell pepper (Capsicum annuum var. grossum). N-Feruloyloctopamine is an antioxidant constituent. N-Feruloyloctopamine significantly decreases the?phosphorylation?levels of Akt and p38?MAPK[1]. N-Feruloyloctopamine is an antioxidant constituent. N-Feruloyloctopamine significantly decreases the?phosphorylation?levels of Akt and p38?MAPK[1]. N-Feruloyloctopamine is an antioxidant constituent. N-Feruloyloctopamine significantly decreases the?phosphorylation?levels of Akt and p38?MAPK[1].

   

Pentacosanoic acid

P-NITROPHENYLPHOSPHATETRISBUFFERSALT

C25H50O2 (382.38106)


Pentacosanoic acid, also known as pentacosanoate or hyenate, is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Pentacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentacosanoic acid is a potentially toxic compound. Pentacosanoic acid is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid is a natural product found in Staphisagria macrosperma, Rhizophora apiculata, and other organisms with data available. Isolated from Citrus bergamia (bergamot orange) Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

3-(3,4-Dimethoxyphenyl)-2-propenoic acid

InChI=1/C11H12O4/c1-14-9-5-3-8(4-6-11(12)13)7-10(9)15-2/h3-7H,1-2H3,(H,12,13)/b6-4

C11H12O4 (208.0735552)


3,4-dimethoxycinnamic acid is a methoxycinnamic acid that is trans-cinnamic acid substituted by methoxy groups at positions 3 and 4 respectively. It is functionally related to a trans-cinnamic acid. 3,4-Dimethoxycinnamic acid is a natural product found in Sibiraea angustata, Verbesina gigantea, and other organisms with data available. 3-(3,4-Dimethoxyphenyl)-2-propenoic acid is found in beverages. 3-(3,4-Dimethoxyphenyl)-2-propenoic acid is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002 Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].

   

Quercetin 3-(2-glucosylrhamnoside)

3-[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C27H30O16 (610.153378)


Quercetin 3-(2-glucosylrhamnoside) is found in fats and oils. Quercetin 3-(2-glucosylrhamnoside) is isolated from Ginkgo biloba (ginkgo). Isolated from Ginkgo biloba (ginkgo). Quercetin 3-(2-glucosylrhamnoside) is found in ginkgo nuts and fats and oils.

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


   

Methyl ferulate

Methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C11H12O4 (208.0735552)


Methyl ferulate, also known as methyl ferulic acid, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Methyl ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Methyl ferulate can be found in garden onion, which makes methyl ferulate a potential biomarker for the consumption of this food product. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].

   

Methyl ferulate

(E)-Methyl-4-hydroxy-3-methoxycinnamate

C11H12O4 (208.0735552)


Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C11H12O4 (208.0735552)


   
   

3,4-Dimethoxycinnamic acid

3,4-Dimethoxycinnamic acid

C11H12O4 (208.0735552)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.105642)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.057906)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Pentacosylic acid

Pentacosanoic acid

C25H50O2 (382.38106)


Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


Annotation level-1

   

1-isothiocyanato-7-methanesulfinylheptane

1-Isothiocyanato-7-(methylsulfinyl)heptane

C9H17NOS2 (219.0751512)


Annotation level-3

   

Nonacosanol

Nonacosan-1-ol

C29H60O (424.464391)


   

dopet

beta-3,4-dihydroxyphenylethyl alcohol

C8H10O3 (154.062991)


C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000890 - Anti-Infective Agents Hydroxytyrosol (DOPET) is a phenolic compound with anti-oxidant, anti-atherogenic, anti-thrombotic, antimicrobial, anti-inflammatory and anti-tumour effects[1][2]. Hydroxytyrosol (DOPET) is a phenolic compound with anti-oxidant, anti-atherogenic, anti-thrombotic, antimicrobial, anti-inflammatory and anti-tumour effects[1][2].

   

Quercetin 3-(2-glucosylrhamnoside)

3-[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C27H30O16 (610.153378)


   

Hydroxycinnamic acid

Hydroxycinnamic acid

C9H8O3 (164.0473418)


The cis-stereoisomer of 3-coumaric acid.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

506-38-7

n-Pentacosanoic acid

C25H50O2 (382.38106)


Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

Tyrosol

InChI=1\C8H10O2\c9-6-5-7-1-3-8(10)4-2-7\h1-4,9-10H,5-6H

C8H10O2 (138.06807600000002)


Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

1782-55-4

(E)-3-(3,4-dihydroxy-5-methoxy-phenyl)prop-2-enoic acid

C10H10O5 (210.052821)


5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3]. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].

   

5-Hydroxyferulate

5-Hydroxyferulate

C10H9O5- (209.0449964)


   

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


   

2-Propenoic acid, 3-(3,4-dimethoxyphenyl)-

2-Propenoic acid, 3-(3,4-dimethoxyphenyl)-

C11H12O4 (208.0735552)


   

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C33H40O18 (724.221454)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[4-(5-hydroxy-7-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-2-yl)phenoxy]oxan-2-yl]methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[4-(5-hydroxy-7-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-2-yl)phenoxy]oxan-2-yl]methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C49H50O23 (1006.274275)


   

6-[(2s,3r,4r,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]-5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

6-[(2s,3r,4r,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]-5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C49H50O23 (1006.274275)


   

methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C12H14O5 (238.08411940000002)


   

5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C32H30O14 (638.163548)


   

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C22H30O15 (534.158463)


   

5-hydroxy-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

5-hydroxy-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C38H40O19 (800.216369)


   

1-isothiocyanato-6-[(s)-methanesulfinyl]hexane

1-isothiocyanato-6-[(s)-methanesulfinyl]hexane

C8H15NOS2 (205.05950199999998)


   

(2s,3s,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

(2s,3s,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C34H42O19 (754.2320182000001)


   

5-hydroxy-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

5-hydroxy-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C38H40O19 (800.216369)


   

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C34H42O19 (754.2320182000001)


   

6-{[(3-{[3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

6-{[(3-{[3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C32H38O19 (726.2007198)


   

methyl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

methyl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C11H12O5 (224.06847019999998)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C33H40O18 (724.221454)


   

{3,4,5-trihydroxy-6-[4-(5-hydroxy-7-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-2-yl)phenoxy]oxan-2-yl}methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

{3,4,5-trihydroxy-6-[4-(5-hydroxy-7-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-4-oxo-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-2-yl)phenoxy]oxan-2-yl}methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C49H50O23 (1006.274275)


   
   

methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C12H14O5 (238.08411940000002)


   

5,7-dihydroxy-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

5,7-dihydroxy-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

C27H30O15 (594.158463)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C22H30O15 (534.158463)


   

6-(6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)-5-hydroxy-4-oxo-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

6-(6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)-5-hydroxy-4-oxo-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C55H60O28 (1168.327096)


   

6-(6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

6-(6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C49H50O23 (1006.274275)


   

5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

C27H30O15 (594.158463)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6s)-6-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

(2r,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6s)-6-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C32H38O18 (710.2058048)


   

5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C32H30O14 (638.163548)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6s)-6-{[(2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2r,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6s)-6-{[(2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C32H38O18 (710.2058048)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

2-[(6-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl)methoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

2-[(6-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl)methoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C32H38O18 (710.2058048)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-3-{[(2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-3-{[(2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C32H38O19 (726.2007198)


   

2-[(6-{[3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl)methoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

2-[(6-{[3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxyoxan-2-yl)methoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C32H38O18 (710.2058048)


   

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

6-{[(4,5-dihydroxy-3-{[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C33H40O19 (740.216369)


   

6-[(2s,3r,4r,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]-5-hydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

6-[(2s,3r,4r,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]-5-hydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-7-yl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C55H60O28 (1168.327096)


   
   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (2e)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C33H40O19 (740.216369)


   

methyl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

methyl 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoate

C11H12O5 (224.06847019999998)


   

1-isothiocyanato-7-[(s)-methanesulfinyl]heptane

1-isothiocyanato-7-[(s)-methanesulfinyl]heptane

C9H17NOS2 (219.0751512)