Classification Term: 169730

Pyrrolines (ontology term: 1bede2c82b5975ca4aca0a53818f6d01)

found 19 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Pyrrolines

Child Taxonomies: There is no child term of current ontology term.

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0476762)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

1-Pyrroline-2-carboxylic acid

3,4-dihydro-2H-pyrrol-1-ium-5-carboxylate

C5H7NO2 (113.0476762)


1-Pyrroline-2-carboxylic acid is a terminal product of D-proline metabolism. Specifically D-proline is converted to 1-Pyrroline-2-carboxylic acid via D-amino acid oxidase. This spontaneously breaks down to 2-oxo-5-amino-valerate. [HMDB] 1-Pyrroline-2-carboxylic acid is a terminal product of D-proline metabolism. Specifically D-proline is converted to 1-Pyrroline-2-carboxylic acid via D-amino acid oxidase. This spontaneously breaks down to 2-oxo-5-amino-valerate.

   

1-Pyrroline-4-hydroxy-2-carboxylate

4-hydroxy-4,5-dihydro-3H-pyrrole-2-carboxylic acid

C5H7NO3 (129.0425912)


Much or all of the pyrrole-2-carboxylate (PCA) in human urine may be formed in urine from a labile precursor, presumably delta(1)-pyrroline-4-hydroxy-2-carboxylate. Normal human values for endogenous urinary PCA in 16 individuals averaged 0.51 mumol/day, with a range of 0.20-1.3 mumol and a SD of 0.31 mumol. The probable source of human PCA is free hydroxy-L-proline, as inferred from the high value for PCA in the urine of a subject with hereditary hydroxyprolinemia, and from the threeto eightfold elevation in PCA excretion by two normal subjects after a large oral load of hydroxyl-L-proline. (PMID: 4430715). Much or all of the pyrrole-2-carboxylate (PCA) in human urine may be formed in urine from a labile precursor, presumably delta(1)-pyrroline-4-hydroxy-2-carboxylate.

   

1-Methylpyrrolinium

1-Methyl-delta(1)-pyrrolinium, 2-(14)C-labeled

C5H10N1+ (84.08132)


This compound belongs to the family of Pyrrolines. These are compounds containing a pyrroline ring, which is a five-member unsaturated aliphatic ring with one nitrogen atom and four carbon atoms.

   

Ethosuximide

3-Ethyl-3-methyl-2,5-pyrrolidinedione

C7H11NO2 (141.0789746)


Ethosuximide is only found in individuals that have used or taken this drug. It is an anticonvulsant especially useful in the treatment of absence seizures unaccompanied by other types of seizures. [PubChem]Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Tenuazonic acid

3-Acetyl-1,5-dihydro-4-hydroxy-5-(1-methylpropyl)-2H-pyrrol-2-one, 9ci

C10H15NO3 (197.105188)


Tenuazonic acid is produced by Aspergillus species Causes rice leaf rot Tenuazonic acid is a mycotoxin. It is a toxic secondary metabolite, produced by Alternaria (e. g. Alternaria alternata or Alternaria tenuis) and Phoma species. It inhibits the protein synthesis machinery D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Production by Aspergillus subspecies Causes rice leaf rot D000970 - Antineoplastic Agents

   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578462)


Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.

   

1-Pyrroline-5-carboxylic acid

3,4-dihydro-2H-pyrrole-2-carboxylic acid

C5H7NO2 (113.0476762)


A 1-pyrrolinecarboxylic acid that is 1-pyrroline in which one of the hydrogens at position 5 is replaced by a carboxy group. The stereoisomer (S)-1-pyrroline-5-carboxylate (also referred to as L-P5C) is an intermediate metabolite in the biosynthesis and degradation of proline and arginine.[4][5][6] In prokaryotic proline biosynthesis, GSA is synthesized from γ-glutamyl phosphate by the enzyme γ-glutamyl phosphate reductase. In most eukaryotes, GSA is synthesised from the amino acid glutamate by the bifunctional enzyme 1-pyrroline-5-carboxylate synthase (P5CS). The human P5CS is encoded by the ALDH18A1 gene.[7][8] The enzyme pyrroline-5-carboxylate reductase converts P5C into proline. In proline degradation, the enzyme proline dehydrogenase produces P5C from proline, and the enzyme 1-pyrroline-5-carboxylate dehydrogenase converts GSA to glutamate. In many prokaryotes, proline dehydrogenase and P5C dehydrogenase form a bifunctional enzyme that prevents the release of P5C during proline degradation. 1-Pyrroline-5-carboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2906-39-0 (retrieved 2024-07-09) (CAS RN: 2906-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pyrroline

2,3-dihydro-1H-pyrrole

C4H7N (69.0578462)


Pyrroline, also known as delta(2)-pyrroline or dihydropyrrole, is a member of the class of compounds known as pyrrolines. Pyrrolines are compounds containing a pyrroline ring, which is a five-member unsaturated aliphatic ring with one nitrogen atom and four carbon atoms. Pyrroline is soluble (in water) and a very strong basic compound (based on its pKa). Pyrroline can be found in common pea, which makes pyrroline a potential biomarker for the consumption of this food product.

   

Pyrroline

2-pyrroline

C4H7N (69.0578462)


   

tenuazonic acid

Tenuazonic acid-(Copper salt)

C10H15NO3 (197.105188)


A member of the class of pyrrolidin-2-ones that is 5-(butan-2-yl)pyrrolidine-2,4-dione carrying an additional acetyl group at position 3. A mycotoxin produced by various plant pathogenic fungi. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) D000970 - Antineoplastic Agents

   

ethosuximide

ethosuximide

C7H11NO2 (141.0789746)


N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

1-Pyrroline-2-carboxylic acid

3,4-Dihydro-2H-pyrrole-5-carboxylic acid

C5H7NO2 (113.0476762)


The product resulting from formal oxidation of DL-proline by loss of hydrogen from the nitrogen and from the carbon alpha to the carboxylic acid, with the formation of a C=N bond.

   

1-Pyrroline-4-hydroxy-2-carboxylate

1-Pyrroline-4-hydroxy-2-carboxylate

C5H7NO3 (129.0425912)


   

1-Methylpyrrolinium

1-Methyl-delta(1)-Pyrrolinium

C5H10N+ (84.08132)


An organic cation that is 1-pyrroline bearing an N-methyl substituent.

   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578462)


   

Methylpyrrolinium

Methylpyrrolinium

C5H10N (84.08132)


   

Pyrrolinecarboxylic acid

Pyrrolinecarboxylic acid

C5H7NO2 (113.0476762)


   

Pyrrolinehydroxycarboxylate

Pyrrolinehydroxycarboxylate

C5H7NO3 (129.0425912)