Gene Association: NAA10

UniProt Search: NAA10 (PROTEIN_CODING)
Function Description: N-alpha-acetyltransferase 10, NatA catalytic subunit

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

Acetyl-CoA

{[(2R,3S,4R,5R)-2-({[({[(3R)-3-[(2-{[2-(acetylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-5-(6-amino-9H-purin-9-yl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C23H38N7O17P3S (809.1258)


The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)

   

Homocitric acid

(2R)-2-hydroxybutane-1,2,4-tricarboxylic acid

C7H10O7 (206.0427)


Homocitric acid (CAS: 3562-74-1) is a normal urinary organic acid (PMID: 14708889). Homocitric acid is a citric acid analogue found as a minor metabolite in urine samples from patients with propionic acidaemia. Homocitric acid is formed by citrate synthase due to propionyl-CoA carboxylase deficiency (by the citrate synthase condensation reaction of alpha-ketoglutarate with acetyl coenzyme A and propionyl coenzyme A) (PMID: 7850997). Homocitric acid has been identified in the human placenta (PMID: 32033212). Homocitric acid is a normal urinary organic acid. (PMID: 14708889)

   

Ethosuximide

3-Ethyl-3-methyl-2,5-pyrrolidinedione

C7H11NO2 (141.079)


Ethosuximide is only found in individuals that have used or taken this drug. It is an anticonvulsant especially useful in the treatment of absence seizures unaccompanied by other types of seizures. [PubChem]Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   
   

ethosuximide

ethosuximide

C7H11NO2 (141.079)


N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

3-Hydroxy-3-Carboxy-Adipic Acid

3-Hydroxy-3-Carboxy-Adipic Acid

C7H10O7 (206.0427)