NCBI Taxonomy: 58524

Senecio inaequidens (ncbi_taxid: 58524)

found 61 associated metabolites at species taxonomy rank level.

Ancestor: Senecio

Child Taxonomies: none taxonomy data.

Senecionine

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-5,6-dimethyl-, (3Z,5R,6R,14aR,14bR)-

C18H25NO5 (335.1733)


Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].

   

alpha-Farnesene

3,7,11-Trimethyl-1,3,6,10-dodecatetraene, (trans,trans)-

C15H24 (204.1878)


alpha-Farnesene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (3E,6E)-alpha-Farnesene, also known as trans-alpha-Farnesene, is a sweet, bergamot, and citrus tasting flavouring ingredient. (3E,6E)-alpha-Farnesene is a constituent of the natural coating of apples and pears and other fruit. It has been identified in gingers, cottonseeds, common oregano, sweet oranges, spearmints, guava, pomes, and pears. This could make (3E,6E)-alpha-farnesene a potential biomarker for the consumption of these foods. Alpha-farnesene is a farnesene that is 1,3,6,10-tetraene substituted by methyl groups at positions 3, 7 and 11 respectively. alpha-Farnesene is a natural product found in Eupatorium cannabinum, Lonicera japonica, and other organisms with data available. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of). Constituent of the natural coating of apples and pears and other fruit. Flavouring ingredient. (3E,6E)-alpha-Farnesene is found in many foods, some of which are cottonseed, spearmint, ginger, and fruits.

   

trans-beta-Farnesene

TRANS-.BETA.-FARNESENE (CONSTITUENT OF CHAMOMILE) [DSC]

C15H24 (204.1878)


Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Retronecine

(1R,8R)-7-(hydroxymethyl)-2,3,5,8-tetrahydro-1H-pyrrolizin-1-ol

C8H13NO2 (155.0946)


Retronecine is a member of pyrrolizines. Retronecine is a natural product found in Senecio nebrodensis, Lappula spinocarpos, and other organisms with data available. Retronecine is a pyrrolizidine alkaloid found in a variety of plants in the genera Senecio and Crotalaria, and the family Boraginaceae. It is the most common central core for other pyrrolizidine alkaloids. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids

   

Retrorsine

(1R,4Z,6R,7S,17R)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid found in certain plants. Despite its toxicity, it may have several biological functions, both in the plants that produce it and in the organisms that ingest it. Here are some possible biological functions of Retrorsine: Defense Mechanism: In plants, Retrorsine likely serves as a chemical defense against herbivores and pathogens. Its toxicity can deter animals from feeding on the plant and can inhibit the growth of microbial pathogens. Allelopathy: Retrorsine may be involved in allelopathy, which is the process by which plants release chemicals into the environment to inhibit the growth of competing plants. This can help the producing plant secure resources such as light, water, and nutrients. Insecticidal Properties: The compound may have insecticidal properties, helping to protect the plant from insect pests. Medicinal Uses: In traditional medicine, plants containing Retrorsine have been used for their supposed medicinal properties, although the use is cautioned due to the compound's toxicity. Ecological Role: Retrorsine may play a role in the ecological interactions of the plant, affecting the behavior and population dynamics of herbivores and other organisms in the ecosystem. Cell Cycle Inhibition: In biological systems, Retrorsine has been shown to inhibit cell proliferation, particularly in liver cells. This property is of interest in medical research for understanding liver toxicity and cancer. Genotoxic Effects: Retrorsine can bind to DNA, causing genotoxic effects. This can lead to mutations and has implications for cancer research. Pharmacological Research: Due to its biological activity, Retrorsine is used in pharmacological research to study the mechanisms of toxicity, carcinogenesis, and potential therapeutic targets. It's important to note that while Retrorsine has these potential biological functions, its toxicity makes it hazardous to humans and animals, and it is not used in modern medicine due to the risks associated with its ingestion. Research on Retrorsine is typically focused on understanding its mechanisms of action and toxicity to inform safety guidelines and potential therapeutic applications. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-54-6 (retrieved 2025-03-17) (CAS RN: 480-54-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Spartioidine

Seneciphylline

C18H23NO5 (333.1576)


A pyrrolizine alkaloid that is 13,19-didehydrosenecionane carrying a hydroxy substituent at position 12 and two oxo substituents at positions 11 and 16. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2297 [Raw Data] CB082b_Seneciphylline_pos_40eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_30eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_20eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_10eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_50eV_CB000034.txt Seneciphylline is a toxic pyrrolizidine alkaloid in Gynura japonica[1]. Seneciphylline significantly increases the activities of epoxide hydrase and glutathione-S-transferase but causes reduction of cytochrome P-450 and related monooxygenase activities[2].

   

Senecionine N-oxide

(1R,4Z,6R,7R,17R)-4-ethylidene-7-hydroxy-6,7-dimethyl-14-oxido-2,9-dioxa-14-azoniatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2301 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 146 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 176 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 116 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 136 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 166 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 156 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 106 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 126 Senecionine n-oxide is the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Senecionine N-oxide has anti-cancer activity

   

Senkirkin

Senkirkine

C19H27NO6 (365.1838)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 178 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 168 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 158 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 148 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 138 INTERNAL_ID 138; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 128 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 118 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 108 INTERNAL_ID 2283; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2283

   

Senecivernine

21-Norsenecionan-11,16-dione, 12-hydroxy-14-methyl-, (12zeta,13zeta)-

C18H25NO5 (335.1733)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2276

   

gamma-Humulene

(1E,6Z)-1,8,8-trimethyl-5-methylidenecycloundeca-1,6-diene (1E,6Z)-humula-1(11),4(13),5-triene

C15H24 (204.1878)


   

(-)-alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


1-[(2R)-hex-5-en-2-yl]-4-methylbenzene is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. (-)-alpha-Curcumene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.

   

Doronine

Doronine; 4,8-Secosenecionan-8,11,16-trione, 15,20-dihydro-12-(acetyloxy)-20-chloro-15-hydroxy-4-methyl-

C21H30ClNO8 (459.166)


   

Otonecine

1H-Pyrrolizinium, 2,3,5,7a-tetrahydro-1,7a-dihydroxy-7-(hydroxymethyl)-4-methyl-, (1R-(1alpha,4beta,7abeta))-

C9H15NO3 (185.1052)


   

Usaramine

(15E)-12,18-Dihydroxysenecionan-11,16-dione

C18H25NO6 (351.1682)


Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\\% of biofilm formation without killing the bacteria[1]. Usaramine is a pyrrolizidine alkaloid isolated from seeds of Crolatalaria pallida. Usaramine demonstrates a highlighted antibiofilm activity against Staphylococcus epidermidis by reducing more than 50\% of biofilm formation without killing the bacteria[1].

   

alpha-Curcumene

1-methyl-4-(6-methylhept-5-en-2-yl)benzene

C15H22 (202.1721)


alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units

   

beta-Farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.1878)


A mixture with 1,3,6,10-Farnesatetraene JXF60-O has been isolated from many plant sources and is used as a food flavourant (woodgreen flavour). beta-Farnesene is found in sweet basil. (E)-beta-Farnesene is found in anise. (E)-beta-Farnesene is a constituent of hop, camomile and other essential oils (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Integerrimine

4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.1733)


   

Cacalol

3,4,5-trimethyl-5H,6H,7H,8H-naphtho[2,3-b]furan-9-ol

C15H18O2 (230.1307)


   

Senecionine N-oxide

4-ethylidene-7-hydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate

C18H25NO6 (351.1682)


   

Seneciphylline

4-ethylidene-7-hydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H23NO5 (333.1576)


   

(E)-beta-farnesene

7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.1878)


(e)-beta-farnesene, also known as 7,11-dimethyl-3-methylenedodeca-1,6,10-triene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units (e)-beta-farnesene can be found in a number of food items such as safflower, lemon thyme, cauliflower, and root vegetables, which makes (e)-beta-farnesene a potential biomarker for the consumption of these food products. (e)-β-farnesene, also known as 7,11-dimethyl-3-methylenedodeca-1,6,10-triene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units (e)-β-farnesene can be found in a number of food items such as safflower, lemon thyme, cauliflower, and root vegetables, which makes (e)-β-farnesene a potential biomarker for the consumption of these food products. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

1ST14177

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-methyl-5-methylene-, (3Z,6R,14aR,14bR)-

C18H23NO5 (333.1576)


Seneciphylline is a white powder. (NTP, 1992) LSM-2853 is a citraconoyl group. Seneciphylline is a natural product found in Senecio bollei, Tussilago farfara, and other organisms with data available. Seneciphylline is a toxic pyrrolizidine alkaloid in Gynura japonica[1]. Seneciphylline significantly increases the activities of epoxide hydrase and glutathione-S-transferase but causes reduction of cytochrome P-450 and related monooxygenase activities[2].

   

12-Hydroxysenecionan-11,16-dione 4-oxide

(5R,6R,9a1R,14aR,Z)-3-ethylidene-6-hydroxy-5,6-dimethyl-2,7-dioxo-2,3,4,5,6,7,9,9a1,11,13,14,14a-dodecahydro-12H-[1,6]dioxacyclododecino[2,3,4-gh]pyrrolizine 12-oxide

C18H25NO6 (351.1682)


Senecionine N-oxide is a tertiary amine oxide. It is functionally related to a senecionine. Senecionine N-oxide is a natural product found in Dorobaea pimpinellifolia, Senecio gallicus, and other organisms with data available. Senecionine n-oxide is the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Senecionine N-oxide has anti-cancer activity[1][2].

   

Curcumene

alpha-Curcumene

C15H22 (202.1721)


   

Seneciphylline

Senenciphylline

C18H23NO5 (333.1576)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.402 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.399 Seneciphylline is a toxic pyrrolizidine alkaloid in Gynura japonica[1]. Seneciphylline significantly increases the activities of epoxide hydrase and glutathione-S-transferase but causes reduction of cytochrome P-450 and related monooxygenase activities[2].

   
   

Senecionine N-oxide

Senecionine N-oxide

C18H26NO6+ (352.176)


   

Renardin

2,9-DIOXA-14-AZABICYCLO(9.5.1)HEPTADEC-11-ENE-3,8,17-TRIONE, 4-ETHYLIDENE-7-HYDROXY-6,7,14-TRIMETHYL-, (1R,4Z,6R,7R)-

C19H27NO6 (365.1838)


Senkirkine is a macrolide. Senkirkine is a natural product found in Tussilago farfara, Senecio gallicus, and other organisms with data available. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of).

   

1ST40320

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methyl-, (3Z,5R,6S,14aR,14bR)-

C18H25NO6 (351.1682)


Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

Otosenine

(1R,3'S,4S,6R,7R,11Z)-7-hydroxy-3',6,7,14-tetramethylspiro[2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-4,2'-oxirane]-3,8,17-trione

C19H27NO7 (381.1787)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.260 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.248

   
   

retrorsine

retrorsine

C18H25NO6 (351.1682)


Annotation level-1

   

alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


Alpha-curcumene is also known as α-curcumene. Alpha-curcumene is a herb tasting compound and can be found in a number of food items such as pepper (spice), lovage, wild carrot, and rosemary, which makes alpha-curcumene a potential biomarker for the consumption of these food products.

   

Farnesene

1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-

C15H24 (204.1878)


Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

(1R,3S,4S,6R,7R,11Z)-3,6,7,14-tetramethyl-3,8,17-trioxospiro[2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-4,2-oxiran]-7-yl acetate

(1R,3S,4S,6R,7R,11Z)-3,6,7,14-tetramethyl-3,8,17-trioxospiro[2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-4,2-oxiran]-7-yl acetate

C21H29NO8 (423.1893)


   

(-)-alpha-Curcumene

(-)-alpha-Curcumene

C15H22 (202.1721)


An alpha-curcumene that has R configuration at the chiral centre.

   

5,6,7-trimethyl-4-methylidene-3,8,15-trioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadeca-11(17),12-dien-7-yl acetate

5,6,7-trimethyl-4-methylidene-3,8,15-trioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadeca-11(17),12-dien-7-yl acetate

C20H23NO7 (389.1474)


   

(5r,6s)-4-[(acetyloxy)methyl]-9-methoxy-3,5-dimethyl-5h,6h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

(5r,6s)-4-[(acetyloxy)methyl]-9-methoxy-3,5-dimethyl-5h,6h-naphtho[2,3-b]furan-6-yl (2z)-2-methylbut-2-enoate

C23H26O6 (398.1729)


   

1-[7-(acetyloxy)-4-hydroxy-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-4-yl]ethyl acetate

1-[7-(acetyloxy)-4-hydroxy-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-4-yl]ethyl acetate

C23H33NO10 (483.2104)


   

9-hydroxy-3,4,5-trimethyl-8-oxo-5h,6h,7h-naphtho[2,3-b]furan-7-yl 2-methylbut-2-enoate

9-hydroxy-3,4,5-trimethyl-8-oxo-5h,6h,7h-naphtho[2,3-b]furan-7-yl 2-methylbut-2-enoate

C20H22O5 (342.1467)


   

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.1733)


   

(1r,4e,6s,7r,11z)-4-ethylidene-7-hydroxy-6,7,14-trimethyl-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-3,8,17-trione

(1r,4e,6s,7r,11z)-4-ethylidene-7-hydroxy-6,7,14-trimethyl-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-3,8,17-trione

C19H27NO6 (365.1838)


   

(1r,3's,4s,6r,7r,11z)-3',6,7,14-tetramethyl-3,8,17-trioxo-2,9-dioxa-14-azaspiro[bicyclo[9.5.1]heptadecane-4,2'-oxiran]-11-en-7-yl acetate

(1r,3's,4s,6r,7r,11z)-3',6,7,14-tetramethyl-3,8,17-trioxo-2,9-dioxa-14-azaspiro[bicyclo[9.5.1]heptadecane-4,2'-oxiran]-11-en-7-yl acetate

C21H29NO8 (423.1893)


   

(1r,4z,6s,7r,11z)-4-ethylidene-7-hydroxy-6,7,14-trimethyl-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-3,8,17-trione

(1r,4z,6s,7r,11z)-4-ethylidene-7-hydroxy-6,7,14-trimethyl-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-ene-3,8,17-trione

C19H27NO6 (365.1838)


   

4-[(acetyloxy)methyl]-9-methoxy-3,5-dimethyl-5h,6h-naphtho[2,3-b]furan-6-yl 2-methylbut-2-enoate

4-[(acetyloxy)methyl]-9-methoxy-3,5-dimethyl-5h,6h-naphtho[2,3-b]furan-6-yl 2-methylbut-2-enoate

C23H26O6 (398.1729)


   

(1s,4z,7s,17s)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1s,4z,7s,17s)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.1733)


   

(1r,11s,12r)-12-hydroxy-1,3-dimethoxy-7,9,11-trimethyl-5,14,15-trioxatetracyclo[9.3.1.0²,¹⁰.0⁴,⁸]pentadeca-2(10),3,6,8-tetraen-13-one

(1r,11s,12r)-12-hydroxy-1,3-dimethoxy-7,9,11-trimethyl-5,14,15-trioxatetracyclo[9.3.1.0²,¹⁰.0⁴,⁸]pentadeca-2(10),3,6,8-tetraen-13-one

C17H18O7 (334.1052)


   

(5s)-3,4,5-trimethyl-5h,6h,7h,8h-naphtho[2,3-b]furan-9-ol

(5s)-3,4,5-trimethyl-5h,6h,7h,8h-naphtho[2,3-b]furan-9-ol

C15H18O2 (230.1307)


   

(1s,4e,6s,7r,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1s,4e,6s,7r,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


   

(1r,4s,6r,7r,11z)-4-[(1r)-1-chloroethyl]-4-hydroxy-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-7-yl acetate

(1r,4s,6r,7r,11z)-4-[(1r)-1-chloroethyl]-4-hydroxy-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-7-yl acetate

C21H30ClNO8 (459.166)


   

(5s,7s)-9-hydroxy-3,4,5-trimethyl-8-oxo-5h,6h,7h-naphtho[2,3-b]furan-7-yl (2z)-2-methylbut-2-enoate

(5s,7s)-9-hydroxy-3,4,5-trimethyl-8-oxo-5h,6h,7h-naphtho[2,3-b]furan-7-yl (2z)-2-methylbut-2-enoate

C20H22O5 (342.1467)


   

(1s,4e,7r)-4-ethylidene-7-hydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1s,4e,7r)-4-ethylidene-7-hydroxy-7-methyl-6-methylidene-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H23NO5 (333.1576)


   

(1r,6r,7s,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1r,6r,7s,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


   

(4ar,5s,8ar)-3,4a,5-trimethyl-9-oxo-4h,5h,6h,7h,8h-naphtho[2,3-b]furan-8a-yl 3-methylbutanoate

(4ar,5s,8ar)-3,4a,5-trimethyl-9-oxo-4h,5h,6h,7h,8h-naphtho[2,3-b]furan-8a-yl 3-methylbutanoate

C20H28O4 (332.1987)


   

12-hydroxy-1,3-dimethoxy-7,9,11-trimethyl-5,14,15-trioxatetracyclo[9.3.1.0²,¹⁰.0⁴,⁸]pentadeca-2(10),3,6,8-tetraen-13-one

12-hydroxy-1,3-dimethoxy-7,9,11-trimethyl-5,14,15-trioxatetracyclo[9.3.1.0²,¹⁰.0⁴,⁸]pentadeca-2(10),3,6,8-tetraen-13-one

C17H18O7 (334.1052)


   

(5r,10r,11r,12s,15r)-5,10,11,12-tetramethyl-3,8,14-trioxa-18-azatetracyclo[13.5.1.0⁵,¹⁰.0¹⁸,²¹]henicosa-1(21),19-diene-4,9,13,17-tetrone

(5r,10r,11r,12s,15r)-5,10,11,12-tetramethyl-3,8,14-trioxa-18-azatetracyclo[13.5.1.0⁵,¹⁰.0¹⁸,²¹]henicosa-1(21),19-diene-4,9,13,17-tetrone

C21H25NO7 (403.1631)


   

(1r,5s,6r,7r)-5,6,7-trimethyl-4-methylidene-3,8,15-trioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadeca-11(17),12-dien-7-yl acetate

(1r,5s,6r,7r)-5,6,7-trimethyl-4-methylidene-3,8,15-trioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadeca-11(17),12-dien-7-yl acetate

C20H23NO7 (389.1474)


   

(4s,6r,7r,11z)-4-hydroxy-4-[(1s)-1-hydroxyethyl]-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-7-yl acetate

(4s,6r,7r,11z)-4-hydroxy-4-[(1s)-1-hydroxyethyl]-6,7,14-trimethyl-3,8,17-trioxo-2,9-dioxa-14-azabicyclo[9.5.1]heptadec-11-en-7-yl acetate

C21H31NO9 (441.1999)


   

5,10,11,12-tetramethyl-3,8,14-trioxa-18-azatetracyclo[13.5.1.0⁵,¹⁰.0¹⁸,²¹]henicosa-1(21),19-diene-4,9,13,17-tetrone

5,10,11,12-tetramethyl-3,8,14-trioxa-18-azatetracyclo[13.5.1.0⁵,¹⁰.0¹⁸,²¹]henicosa-1(21),19-diene-4,9,13,17-tetrone

C21H25NO7 (403.1631)


   

(1r,3's,6r,7r,11z)-3',6,7,14-tetramethyl-3,8,17-trioxo-2,9-dioxa-14-azaspiro[bicyclo[9.5.1]heptadecane-4,2'-oxiran]-11-en-7-yl acetate

(1r,3's,6r,7r,11z)-3',6,7,14-tetramethyl-3,8,17-trioxo-2,9-dioxa-14-azaspiro[bicyclo[9.5.1]heptadecane-4,2'-oxiran]-11-en-7-yl acetate

C21H29NO8 (423.1893)


   

3,4a,5-trimethyl-9-oxo-4h,5h,6h,7h,8h-naphtho[2,3-b]furan-8a-yl 3-methylbutanoate

3,4a,5-trimethyl-9-oxo-4h,5h,6h,7h,8h-naphtho[2,3-b]furan-8a-yl 3-methylbutanoate

C20H28O4 (332.1987)