Gene Association: GALT

UniProt Search: GALT (PROTEIN_CODING)
Function Description: galactose-1-phosphate uridylyltransferase

found 49 associated metabolites with current gene based on the text mining result from the pubmed database.

Raffinose

(2R,3R,4S,5S,6R)-2-((2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yloxy)-6-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.169)


Raffinose is a complex carbohydrate. It is a trisaccharide composed of galactose, fructose, and glucose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose is hydrolyzed to D-galactose and sucrose by D-galactosidase (D-GAL). D-GAL also hydrolyzes other D-galactosides such as stachyose, verbascose, and galactinol [1-O-(D-galactosyl)-myoinositol], if present. The enzyme does not cleave linked galactose, as in lactose. Raffinose is also known as melitose and may be thought of as galactose and sucrose connected via an alpha(1->6) glycosidic linkage. Thus, raffinose can be broken down into galactose and sucrose via the enzyme alpha-galactosidase. Human intestines do not contain this enzyme. Raffinose is a trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Raffinose is a trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. It has a role as a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a trisaccharide. Raffinose is a natural product found in Teucrium polium, Populus tremula, and other organisms with data available. A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. See also: Oligosaccharide (related). A trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 230 Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].

   

beta-Lactose

(2R,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Beta-lactose is the beta-anomer of lactose. beta-Lactose contains a Lactosylceramide motif and is often attached to a Cer aglycon. beta-Lactose is a natural product found in Hypericum perforatum with data available. A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Beta-Lactose is the beta-pyranose form of the compound lactose [CCD]. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Beta-pyranose form of the compound lactose [CCD] The beta-anomer of lactose. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2]. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2].

   

N-Acetyllactosamine

N-[(2R,3R,4R,5S,6R)-2,4-dihydroxy-6-(hydroxymethyl)-5-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]acetamide

C14H25NO11 (383.1428)


N-Acetyllactosamine, also known as galb1-4glcnacb or lacnac, belongs to the class of organic compounds known as acylaminosugars. These are organic compounds containing a sugar linked to a chain through N-acyl group. N-Acetyllactosamine exists in all living organisms, ranging from bacteria to humans. Structural unit in higher oligosaccharides present in human milk N-Acetyllactosamine (LacNAc), a nitrogen-containing disaccharide, is an important component of various oligosaccharides such as glycoproteins and sialyl Lewis X. N-Acetyllactosamine can be used as the starting material for the synthesis of various oligosaccharides. N-Acetyllactosamine has prebiotic effects[1][2].

   

N-Glycolylneuraminic acid

(2S,4S,5R,6R)-2,4-dihydroxy-5-(2-hydroxyacetamido)-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C11H19NO10 (325.1009)


N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid found in most mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells and biofluids. Humans cannot synthesize Neu5Gc because the human gene CMAH is irreversibly mutated, though it is found in apes. This loss of the CMAH gene was estimated to have occurred two to three million years ago, just before the emergence of the genus Homo. A dietary origin of Neu5Gc was suggested by human volunteer studies. These trace amounts of Neu5Gc were determined to come from the consumption of animals in the human diet (i.e. red meats such as lamb, pork, and beef). Neu5Gc can also be found in dairy products, but to a lesser extent. Neu5Gc is not found in poultry and is found in only trace amounts in fish (Wikipedia). Isolated from beef serum KEIO_ID G062

   

Adenosine phosphosulfate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]sulfonic acid

C10H14N5O10PS (427.0199)


Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups. Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).

   

α-D-Glucose-1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate

C6H13O9P (260.0297)


Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase. *Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map KEIO_ID G020 Corona-virus KEIO_ID G115 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Guanosine diphosphate mannose

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

C16H25N5O16P2 (605.0772)


Guanosine diphosphate mannose, also known as gdp-D-mannose or guanosine pyrophosphoric acid mannose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Guanosine diphosphate mannose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate mannose can be found in a number of food items such as sorrel, common persimmon, citrus, and butternut, which makes guanosine diphosphate mannose a potential biomarker for the consumption of these food products. Guanosine diphosphate mannose exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate mannose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Guanosine diphosphate mannose is also involved in fructosuria, which is a metabolic disorder. Guanosine diphosphate mannose or GDP-mannose is a nucleotide sugar that is a substrate for glycosyltransferase reactions in metabolism. This compound is a substrate for enzymes called mannosyltransferases . GDP-mannose is a nucleoside diphosphate sugar that is important in the production of fucosylated oligosaccharides. In particular, GDP-mannose is converted to GDP-fucose, which is the fucose donor in the construction of all mammalian fucosylated glycans. GDP-mannose is transformed to GDP-fucose via three enzymatic reactions carried out by two proteins, GDP-mannose 4,6-dehydratase (GMD) and a second enzyme, GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase. GDP-mannose 4,6-dehydratase (EC 4.2.1.47) catalyzes the chemical reaction: GDP-mannose <--> GDP-4-dehydro-6-deoxy-D-mannose + H2O. The epimerase converts the GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose (PMID: 12651883). GDP-mannose is also synthesized from mannose 1-phosphate via the enzyme ATP-mannose-1-phosphate-guanyltransferase and GTP. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Colchicoside

N-[(7S)-1,2,10-trimethoxy-9-oxo-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-6,7-dihydro-5H-benzo[d]heptalen-7-yl]acetamide

C27H33NO11 (547.2054)


   

Lignoceric acid (C24)

Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Diguanosine tetraphosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C20H28N10O21P4 (868.0381)


P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).

   

Uridine 5'-diphosphate

[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H14N2O12P2 (404.0022)


Uridine 5-diphosphate, also known as 5-UDP, UDP or uridine diphosphoric acid, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. UDP is also classified as a nucleotide diphosphate. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of a pyrophosphate group, a pentose sugar ribose, and the nucleobase uracil. UDP exists in all living species, ranging from bacteria to plants to humans. In mammals UDP is an important factor in glycogenesis or the formation of glycogen in the liver. Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP-glucose unit by combining glucose 1-phosphate with uridine triphosphate, cleaving a pyrophosphate ion in the process. Then, the enzyme glycogen synthase combines UDP-glucose units to form a glycogen chain. UDP is also an important extracellular pyrimidine signaling molecule that mediates diverse biological effects via P1 and P2 purinergic receptors, such as the uptake of thymidine and proliferation of gliomas. UDP plays a key role in the function of Uridine 5-diphospho-glucuronosyltransferases (UDP-glucuronosyltransferases, UGTs) which catalyze the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. UDP-Glucuronosyltransferases are responsible for the process of glucuronidation, a major part of phase II metabolism. The reaction catalyzed by UGT enzymes involves the addition of a glucuronic acid moiety to xenobiotics and is the most important pathway for the human bodys elimination of the most frequently prescribed drugs. It is also the major pathway for foreign chemical (dietary, environmental, pharmaceutical) removal for most drugs, dietary substances, toxins and endogenous substances. UGT is present in humans, other animals, plants, and bacteria. Famously, UGT enzymes are not present in the genus Felis (PMID: 10862526) and this accounts for a number of unusual toxicities in the cat family. Uridine-5-diphosphate, also known as udp or uridine 5-diphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. Uridine-5-diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Uridine-5-diphosphate can be found in a number of food items such as napa cabbage, lichee, tea leaf willow, and parsnip, which makes uridine-5-diphosphate a potential biomarker for the consumption of these food products. Uridine-5-diphosphate can be found primarily in blood, as well as in human placenta, prostate and thyroid gland tissues. Uridine-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine-5-diphosphate is involved in several metabolic pathways, some of which include morphine action pathway, androgen and estrogen metabolism, estrone metabolism, and amino sugar metabolism. Uridine-5-diphosphate is also involved in several metabolic disorders, some of which include 17-beta hydroxysteroid dehydrogenase III deficiency, acute intermittent porphyria, beta ureidopropionase deficiency, and g(m2)-gangliosidosis: variant B, tay-sachs disease. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Melibiose

(2S,3R,4S,5S,6R)-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C12H22O11 (342.1162)


Melibiose (CAS: 585-99-9) is a disaccharide consisting of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. This sugar is produced and metabolized only by enteric and lactic acid bacteria and other microbes, such as Dickeya dadantii, Escherichia, Leuconostoc, and Saccharomyces (PMID: 19734309, 28453942). It is not an endogenous metabolite but may be obtained from the consumption of partially fermented molasses, brown sugar, or honey. Antibodies to melibiose will appear in individuals affected by Chagas disease (Trypanosoma cruzi infection). Melibiose is not metabolized by humans but can be broken down by gut microflora, such as E. coli. In fact, E. coli is able to utilize melibiose as a sole source of carbon. Melibiose is first imported by the melibiose permease, MelB and then converted into β-D-glucose and β-D-galactose by the α-galactosidase encoded by melA. Because of its poor digestibility, melibiose (along with rhamnose) can be used together for noninvasive intestinal mucosa barrier testing. This test can be used to assess malabsorption or impairment of intestinal permeability. Recent studies with dietary melibiose have shown that it can strongly affect the Th cell responses to an ingested antigen. It has been suggested that melibiose could be used to enhance the induction of oral tolerance (PMID: 17986780). Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.

   

Man(a3)Man(b4)GlcNAc

alpha-D-Galactosyl-1,3-beta-D-galactosyl-1,4-N-acetyl-D-glucosamine

C20H35NO16 (545.1956)


   

N-Acetyl-D-Glucosamine 6-Phosphate

{[(2R,3S,4R,5R)-5-acetamido-3,4,6-trihydroxyoxan-2-yl]methoxy}phosphonic acid

C8H16NO9P (301.0563)


N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. [HMDB] N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. KEIO_ID A144

   

L-Phosphoarginine

2-amino-5-(1-phosphonocarbamimidamido)pentanoic acid

C6H15N4O5P (254.078)


L-Phosphoarginine is found in crustaceans. L-Phosphoarginine is a constituent of crayfish muscle KEIO_ID P105

   

GDP-L-fucose

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})phosphinic acid

C16H25N5O15P2 (589.0822)


GDP-L-fucose is a sugar nucleotide and a readily available source of fucose. Fucose is a deoxyhexose that is found in nearly all plant and animal species. The monosaccharide plays several important metabolic roles in complex carbohydrates and in glycoproteins. Fucosylated oligosaccharides are involved in cell-cell recognition, selectin-mediated leukocyte-endothelial adhesion, and mouse embryogenesis. They form the basis of the Lewis-type blood group antigens, are involved in the formation of atherosclerosis, and mediate host-bacterial interactions. A decrease in the availability of fucose is associated with leukocyte adhesion deficiency type-II disorder, and fucosylated glycoproteins have been implicated in memory processes. Fucose is made available during the synthesis of fucosylated glycolipids, oligosaccharides, and glycoproteins via a sugar nucleotide intermediate, specifically GDP-L-fucose. GTP-L-fucose pyrophosphorylase (GFPP, E. C. 2.7.7.30) catalyzes the reversible condensation of guanosine triphosphate and beta-L-fucose-1-phosphate to form the nucleotide-sugar GDP-L-fucose. The enzyme functions primarily in the mammalian liver and kidney to salvage free L-fucose during the breakdown of glycolipids and glycoproteins. (PMID: 16086588). Gdp-l-fucose, also known as gdp fucose or guanosine diphosphate fucose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Gdp-l-fucose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Gdp-l-fucose can be found in a number of food items such as breadnut tree seed, okra, pineapple, and pitanga, which makes gdp-l-fucose a potential biomarker for the consumption of these food products. Gdp-l-fucose can be found primarily throughout most human tissues. Gdp-l-fucose exists in all living organisms, ranging from bacteria to humans. In humans, gdp-l-fucose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Gdp-l-fucose is also involved in fructosuria, which is a metabolic disorder. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Gulonolactone

(3S,4R,5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.

   

Fraxin

InChI=1/C16H18O10/c1-23-7-4-6-2-3-9(18)25-14(6)15(11(7)20)26-16-13(22)12(21)10(19)8(5-17)24-16/h2-4,8,10,12-13,16-17,19-22H,5H2,1H3/t8-,10-,12+,13-,16+/m1/s

C16H18O10 (370.09)


Fraxin is a beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. It has a role as a plant metabolite, an anti-inflammatory agent and a hepatoprotective agent. It is a beta-D-glucoside, a hydroxycoumarin and an aromatic ether. It is functionally related to a fraxetin. Fraxin is a natural product found in Acer nikoense, Prunus prostrata, and other organisms with data available. A beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. Origin: Plant, Coumarins Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2]. Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2].

   

Diadenosine tetraphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid

C20H28N10O19P4 (836.0483)


Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP4A is the only APnA that can induce a considerable increase in [Ca2+] in endothelial cells, indicating that its vasoactive effects are comparable to the known effects of arginine vasopressin, Angiotensin II, and ATP. AP4A is a ubiquitous ApnA is a signal molecule for DNA replication in mammalian cells. AP4A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP4A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 9694344, 9351706, 1953194). Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

4-Carboxy-4-hydroxy-2-oxoadipate

2-hydroxy-4-oxobutane-1,2,4-tricarboxylic acid

C7H8O8 (220.0219)


   

Diadenosine triphosphate

{[(2S,3R,4S,5S)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid

C20H27N10O16P3 (756.0819)


Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors. AP3A FHIT (Fragile histidine Triad) is a human tumor suppressor gene. The Fhit protein is believed to inhibit tumor growth by inducing apoptosis through interaction with AP3A. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 12833632, 11896678). Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors.

   

HexNAc-(Hex)3

O-beta-delta-galactopyranosyl-(1->3)-O-2-acetamido-2-deoxy-beta-delta-glucopyranosyl-(1->3)-O-beta-delta-galactopyranosyl-(1->4)-delta-Glucopyranonse

C26H45NO21 (707.2484)


   

D-Gulono-1,4-lactone

5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-one

C6H10O6 (178.0477)


Acquisition and generation of the data is financially supported in part by CREST/JST. 1,4-D-Gulonolactone is an endogenous metabolite.

   

Melibiose

6-O-(alpha-D-Galactopyranosyl)-D-glucopyranose

C12H22O11 (342.1162)


A glycosylglucose formed by an alpha-(1->6)-linkage between D-galactose and D-glucose. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Melibiose is a disaccharide which is composed of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. D-Melibiose is a disaccharide which is composed of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.

   

NeuNGc

(4S,5R,6R)-2,4-dihydroxy-5-(2-hydroxyacetamido)-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C11H19NO10 (325.1009)


NeuNGc, also known as N-Glycolylneuraminic acid or Neu5GC, is classified as a member of the N-acylneuraminic acids. N-acylneuraminic acids are neuraminic acids carrying an N-acyl substituent. NeuNGc is considered to be soluble (in water) and acidic

   

AP3A-lyophilized

bis[({[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H27N10O16P3 (756.0819)


   

(5-Acetamido-3,4,6-trihydroxyoxan-2-yl)methyl dihydrogen phosphate

(5-Acetamido-3,4,6-trihydroxyoxan-2-yl)methyl dihydrogen phosphate

C8H16NO9P (301.0563)


   

Raffinose

d-(+)-Raffinose

C18H32O16 (504.169)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].

   

Glucose 1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate

C6H13O9P (260.0297)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lignoceric acid

Tetracosanoic acid

C24H48O2 (368.3654)


A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

N-acetyllactosamine

N-Acetyl-D-lactosamine

C14H25NO11 (383.1428)


A beta-D-galactopyranosyl-(1->4)-N-acetyl-D-glucosamine having beta-configuration at the reducing end anomeric centre. N-Acetyllactosamine (LacNAc), a nitrogen-containing disaccharide, is an important component of various oligosaccharides such as glycoproteins and sialyl Lewis X. N-Acetyllactosamine can be used as the starting material for the synthesis of various oligosaccharides. N-Acetyllactosamine has prebiotic effects[1][2].

   

N-Glycolylneuraminic acid

N-Glycolyl-Neuraminic acid

C11H19NO10 (325.1009)


   

Diguanosine tetraphosphate

Diguanosine tetraphosphate

C20H28N10O21P4 (868.0381)


   

FA 7:3;O6

2-hydroxy-4-oxobutane-1,2,4-tricarboxylic acid

C7H8O8 (220.0219)


   

D-Galactonic acid, gamma-lactone

D-Galactonic acid, gamma-lactone

C6H10O6 (178.0477)


   

557-59-5

N-Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Gossypose

(2R,3R,4S,5S,6R)-2-[[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)-2-tetrahydrofuranyl]oxy]-6-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxymethyl]tetrahydropyran-3,4,5-triol

C18H32O16 (504.169)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].

   

Diadenosine tetraphosphate

p(1),p(4)-Bis(5-adenosyl) tetraphosphate

C20H28N10O19P4 (836.0483)


A diadenosyl tetraphosphate compound having the two 5-adenosyl residues attached at the P(1)- and P(4)-positions. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

ADENOSINE-5-phosphosulfATE

ADENOSINE-5-phosphosulfATE

C10H14N5O10PS (427.0199)


   

Uridine-5-diphosphate

Uridine-5-diphosphate

C9H14N2O12P2 (404.0022)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

GDP-L-fucose

GDP-L-fucose

C16H25N5O15P2 (589.0822)


A GDP-fucose in which the fucosyl residue has L-configuration.

   

N-Acetyl-D-Glucosamine 6-Phosphate

N-Acetyl-D-Glucosamine 6-Phosphate

C8H16NO9P (301.0563)


An N-acyl-D-glucosamine 6-phosphate that is the N-acetyl derivative of D-glucosamine 6-phosphate. It is a component of the aminosugar metabolism.

   

lacto-n-tetraose

lacto-n-tetraose

C26H45NO21 (707.2484)


   

Phospho-L-arginine

Nω-phospho-L-arginine

C6H15N4O5P (254.078)


   

2-hydroxy-4-oxobutane-1,2,4-tricarboxylic acid

2-hydroxy-4-oxobutane-1,2,4-tricarboxylic acid

C7H8O8 (220.0219)


   

Diadenosine triphosphate

Diadenosine triphosphate

C20H27N10O16P3 (756.0819)


   

Galalpha1-3Galbeta1-4GlcNAcbeta

Galalpha1-3Galbeta1-4GlcNAcbeta

C20H35NO16 (545.1956)


   

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

C12H22O11 (342.1162)


   

GDP-D-Mannose

GDP-D-Mannose

C16H25N5O16P2 (605.0772)


A GDP-mannose in which the mannose fragment has D-configuration.