Gene Association: PIM2

UniProt Search: PIM2 (PROTEIN_CODING)
Function Description: Pim-2 proto-oncogene, serine/threonine kinase

found 12 associated metabolites with current gene based on the text mining result from the pubmed database.

Abrine

(2S)-3-(1H-indol-3-yl)-2-(methylamino)propanoic acid

C12H14N2O2 (218.1055)


N(alpha)-methyl-L-tryptophan is a N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. It has a role as an Escherichia coli metabolite. It is a L-tryptophan derivative and a N-methyl-L-alpha-amino acid. It is a tautomer of a N(alpha)-methyl-L-tryptophan zwitterion. N-Methyltryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.216 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.210 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin. L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin.

   

Azelaic acid

nonanedioic acid

C9H16O4 (188.1049)


Nonanedioic acid is an alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. It has a role as an antibacterial agent, an antineoplastic agent, a dermatologic drug and a plant metabolite. It is a dicarboxylic fatty acid and an alpha,omega-dicarboxylic acid. It is a conjugate acid of an azelaate(2-) and an azelaate. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is also produced by Malassezia furfur, also known as Pityrosporum ovale, which is a species of fungus that is normally found on human skin. Azelaic acid is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. Azelaic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The physiologic effect of azelaic acid is by means of Decreased Protein Synthesis, and Decreased Sebaceous Gland Activity. Azelaic Acid is a naturally occurring dicarboxylic acid produced by Malassezia furfur and found in whole grain cereals, rye, barley and animal products. Azelaic acid possesses antibacterial, keratolytic, comedolytic, and anti-oxidant activity. Azelaic acid is bactericidal against Proprionibacterium acnes and Staphylococcus epidermidis due to its inhibitory effect on the synthesis of microbial cellular proteins. Azelaic acid exerts its keratolytic and comedolytic effects by reducing the thickness of the stratum corneum and decreasing the number of keratohyalin granules by reducing the amount and distribution of filaggrin in epidermal layers. Azelaic acid also possesses a direct anti-inflammatory effect due to its scavenger activity of free oxygen radical. This drug is used topically to reduce inflammation associated with acne and rosacea. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is a natural substance that is produced by Malassezia furfur (also known as Pityrosporum ovale), a yeast that lives on normal skin. It is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. See also: Azelaic acid; niacinamide (component of) ... View More ... Azelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781, 8961845). An alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. Plants biology In plants, azelaic acid serves as a "distress flare" involved in defense responses after infection.[7] It serves as a signal that induces the accumulation of salicylic acid, an important component of a plant's defensive response.[8] Human biology The mechanism of action in humans is thought to be through the inhibition of hyperactive protease activity that converts cathelicidin into the antimicrobial skin peptide LL-37.[9] Polymers and related materials Esters of this dicarboxylic acid find applications in lubrication and plasticizers. In lubricant industries it is used as a thickening agent in lithium complex grease. With hexamethylenediamine, azelaic acid forms Nylon-6,9, which finds specialized uses as a plastic.[4] Medical Azelaic acid is used to treat mild to moderate acne, both comedonal acne and inflammatory acne.[10][11] It belongs to a class of medication called dicarboxylic acids. It works by killing acne bacteria that infect skin pores. It also decreases the production of keratin, which is a natural substance that promotes the growth[clarification needed] of acne bacteria.[12] Azelaic acid is also used as a topical gel treatment for rosacea, due to its ability to reduce inflammation.[11] It clears the bumps and swelling caused by rosacea. In topical pharmaceutical preparations and scientific research AzA is typically used in concentrations between 15\\\% and 20\\\% but some research demonstrates that in certain vehicle formulations the pharmaceutical effects of 10\\\% Azelaic acid has the potential to be fully comparable to that of some 20\\\% creams.[13] Acne treatment Azelaic acid is effective for mild to moderate acne when applied topically at a 15\\\%-20\\\% concentration.[14][15][16][17] In patients with moderate acne, twice daily application over 3 months of 20\\\% AzA significantly reduced the number of comedones, papules, and pustules;[18][19] at this strength, it’s considered to be as effective as benzoyl peroxide 5\\\%, tretinoin 0.05\\\%, erythromycin 2\\\%, and oral tetracycline at 500 mg-1000 mg.[20][21] In a comparative review of effects of topical AzA, Salicylic acid, Nicotinamide, Sulfur, Zinc, and alpha-hydroxy acid, AzA had more high-quality evidence of effectiveness than the rest.[22] Results can be expected after 4 weeks of twice-daily treatment. The effectiveness of long term use is unclear, but it’s been recommended that AzA be used for at least 6 months continuously for maintenance.[20] Whitening agent Azelaic acid is used for treatment of skin pigmentation, including melasma and postinflammatory hyperpigmentation, particularly in those with darker skin types. It has been recommended as an alternative to hydroquinone.[23] As a tyrosinase inhibitor,[5] azelaic acid reduces synthesis of melanin.[24] According to one report in 1988, azelaic acid in combination with zinc sulfate in vitro was found to be a potent (90\\\% inhibition) 5α-reductase inhibitor, similar to the hair loss drugs finasteride and dutasteride.[25] In vitro research during mid-1980s evaluating azelaic acid's depigmenting (whitening) capability concluded it is effective (cytotoxic to melanocytes) at only high concentrations.[26] A 1996 review claimed 20\\\% AzA is as potent as 4\\\% hydroquinone after a period of application of three months without the latter's adverse effects and even more effective if applied along with tretinoin for the same period of time.[27][19] Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0736)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Suberic acid

octanedioic acid

C8H14O4 (174.0892)


Suberic acid, also octanedioic acid, is a dicarboxylic acid, with formula C6H12(COOH)2. It is present in the urine of patients with fatty acid oxidation disorders (PMID 10404733). A metabolic breakdown product derived from oleic acid. Elevated levels of this unstaruated dicarboxylic acid are found in individuals with medium-chain acyl-CoA dehydrogenase deficiency (MCAD). Suberic acid is also found to be associated with carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency, which are also inborn errors of metabolism. Isolated from the roots of Phaseolus vulgaris (kidney bean) CONFIDENCE standard compound; INTERNAL_ID 153 KEIO_ID S013 Suberic acid (Octanedioic acid) is found to be associated with carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency. Suberic acid (Octanedioic acid) is found to be associated with carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency.

   

quercetagetin

3,3,4,5,6,7-Hexahydroxyflavone

C15H10O8 (318.0376)


D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Tuberculostearic acid

10R-methyl-octadecanoic acid

C19H38O2 (298.2872)


Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256). Tuberculostearic acid (TBSA) is a mycobacterial cell wall constituent that is possible to measure in plasma samples of patients with active tuberculosis. (PMID 14723350). Detection of tuberculostearic acid in cerebrospinal fluid by use of gas chromatography-mass spectrometry has proven to be a very rapid, sensitive, and specific test for tuberculous meningitis. (PMID 8438134). Tuberculostearic acid can also be found in Actinomycetales (PMID: 109465). Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256)

   

Quercetagetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-

C15H10O8 (318.0376)


Quercetagetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. It has a role as an antioxidant, an antiviral agent and a plant metabolite. It is a member of flavonols and a hexahydroxyflavone. It is functionally related to a quercetin. Quercetagetin is a natural product found in Calanticaria bicolor, Tagetes subulata, and other organisms with data available. See also: Chaste tree fruit (part of). A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Azelaic Acid

Azelaic Acid

C9H16O4 (188.1049)


D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000970 - Antineoplastic Agents D003879 - Dermatologic Agents Annotation level-2 Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].

   

pimelic acid

6-Carboxyhexanoate

C7H12O4 (160.0736)


An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Suberic acid

Octanedioic acid

C8H14O4 (174.0892)


An alpha,omega-dicarboxylic acid that is the 1,6-dicarboxy derivative of hexane. Suberic acid (Octanedioic acid) is found to be associated with carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency. Suberic acid (Octanedioic acid) is found to be associated with carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency.

   

90-18-6

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy- (9CI)

C15H10O8 (318.0376)


D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Tuberculostearic acid

10-Methyloctadecanoic acid

C19H38O2 (298.2872)


A methyl-branched fatty acid, the structure of which is that of stearic acid carrying a methyl group at C-10.