Classification Term: 593
Quinoline carboxylic acids (ontology term: CHEMONTID:0002552)
Quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions." []
found 73 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Quinolines and derivatives
Child Taxonomies: There is no child term of current ontology term.
Kynurenic acid
Kynurenic acid is a quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. It has a role as a G-protein-coupled receptor agonist, a NMDA receptor antagonist, a nicotinic antagonist, a neuroprotective agent, a human metabolite and a Saccharomyces cerevisiae metabolite. It is a monohydroxyquinoline and a quinolinemonocarboxylic acid. It is a conjugate acid of a kynurenate. Kynurenic Acid is under investigation in clinical trial NCT02340325 (FS2 Safety and Tolerability Study in Healthy Volunteers). Kynurenic acid is a natural product found in Ephedra foeminea, Ephedra intermedia, and other organisms with data available. Kynurenic acid is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (A3279, A3280).... Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375 , 16088227). KYNA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375, 16088227) [HMDB] D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists A quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. [Raw Data] CBA11_Kynurenic-acid_pos_30eV_1-3_01_673.txt [Raw Data] CBA11_Kynurenic-acid_pos_50eV_1-3_01_675.txt [Raw Data] CBA11_Kynurenic-acid_pos_40eV_1-3_01_674.txt [Raw Data] CBA11_Kynurenic-acid_neg_30eV_1-3_01_726.txt [Raw Data] CBA11_Kynurenic-acid_pos_20eV_1-3_01_672.txt [Raw Data] CBA11_Kynurenic-acid_pos_10eV_1-3_01_671.txt [Raw Data] CBA11_Kynurenic-acid_neg_20eV_1-3_01_725.txt [Raw Data] CBA11_Kynurenic-acid_neg_50eV_1-3_01_728.txt [Raw Data] CBA11_Kynurenic-acid_neg_40eV_1-3_01_727.txt [Raw Data] CBA11_Kynurenic-acid_neg_10eV_1-3_01_724.txt Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8.
Ofloxacin
C18H20FN3O4 (361.14377720000005)
Ofloxacin is only found in individuals that have used or taken this drug. It is a synthetic fluoroquinolone (fluoroquinolones) antibacterial agent that inhibits the supercoiling activity of bacterial DNA gyrase, halting DNA replication. [PubChem]Ofloxacin acts on DNA gyrase and toposiomerase IV, enzymes which, like human topoisomerase, prevents the excessive supercoiling of DNA during replication or transcription. By inhibiting their function, the drug thereby inhibits normal cell division. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3073 CONFIDENCE standard compound; INTERNAL_ID 4075 CONFIDENCE standard compound; INTERNAL_ID 1033
Xanthurenic acid
Xanthurenic acid, also known as xanthurenate or 8-hydroxykynurenic acid, is a member of the class of compounds known as quinoline carboxylic acids. Quinoline carboxylic acids are quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions. Xanthurenic acid is slightly soluble (in water). Xanthurenic acid can be found primarily in blood, feces, and urine, as well as in human epidermis tissue. Within the cell, xanthurenic acid is primarily located in the membrane. Xanthurenic acid exists in all eukaryotes, ranging from yeast to humans. In humans, xanthurenic acid is involved in the tryptophan metabolism. Moreover, xanthurenic acid is found to be associated with citrullinemia type I, which is an inborn error of metabolism. Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases (EC 2.1.1.-) in pathway tryptophan metabolism (KEGG). Xanthurenic acid is a metabolite from tryptophan catabolism. It is a substrate of the enzyme methyltransferases [EC 2.1.1.-] in pathway tryptophan metabolism (KEGG). [HMDB] D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents [Raw Data] CBA13_Xanthurenic-aci_neg_40eV_1-5_01_737.txt [Raw Data] CBA13_Xanthurenic-aci_neg_50eV_1-5_01_738.txt [Raw Data] CBA13_Xanthurenic-aci_neg_10eV_1-5_01_734.txt [Raw Data] CBA13_Xanthurenic-aci_neg_30eV_1-5_01_736.txt [Raw Data] CBA13_Xanthurenic-aci_pos_40eV_1-5_01_684.txt [Raw Data] CBA13_Xanthurenic-aci_pos_50eV_1-5_01_685.txt [Raw Data] CBA13_Xanthurenic-aci_pos_30eV_1-5_01_683.txt [Raw Data] CBA13_Xanthurenic-aci_pos_10eV_1-5_01_681.txt [Raw Data] CBA13_Xanthurenic-aci_pos_20eV_1-5_01_682.txt [Raw Data] CBA13_Xanthurenic-aci_neg_20eV_1-5_01_735.txt Xanthurenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-00-7 (retrieved 2024-07-01) (CAS RN: 59-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Xanthurenic acid is a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.
Ciprofloxacin
C17H18FN3O3 (331.13321300000007)
Ciprofloxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum antimicrobial carboxyfluoroquinoline.The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, strand supercoiling repair, and recombination. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 276 KEIO_ID C133; [MS3] KO008906 KEIO_ID C133; [MS2] KO008905 KEIO_ID C133 Ciprofloxacin (Bay-09867) is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin has anti-proliferative activity and induces apoptosis. Ciprofloxacin is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity[1][2][3][4]. Ciprofloxacin (Bay-09867) is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin has anti-proliferative activity and induces apoptosis. Ciprofloxacin is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity[1][2][3][4].
Quinaldic acid
Quinaldic acid, also known as quinaldate, 2-carboxyquinoline, or quinoline-2-carboxylic acid, belongs to the class of organic compounds known as quinoline carboxylic acids. These are quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions. The quinoline ring system is a double-ring structure composed of a benzene and a pyridine ring fused at two adjacent carbon atoms. Quinaldic acid is a quinoline having a carboxy group at the 2-position. It is a solid that is moderately soluble in water with a melting point of 156°C. Quinaldic acid is a metabolite of tryptophan degradation that is formed via the kynurenine pathway; it is formed through the dehydroxylation of the intermediate kynurenic acid (PMID: 13385219). It is excreted in urine, and its urine concentration is decreased in individuals suffering from chronic alcoholism (PMID: 25754126). Quinaldic acid has been shown to inhibit proinsulin synthesis in pancreatic islet cells (PMID: 373355). Quinaldic acid has been shown to have anti-proliferative or anti-tumour effects and has been found to alter the expression of the p53 tumour suppressor gene as well as the phosphorylation of the p53 protein in in vitro studies (PMID: 30780127). A product of l-tryptophan catabolism, via kynurenic acid, found in human urine. [HMDB] Quinoline-2-carboxylic acid is an endogenous metabolite.
fleroxacin
C17H18F3N3O3 (369.13001940000004)
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Sparfloxacin
Sparfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. Sparfloxacin exerts its antibacterial activity by inhibiting DNA gyrase, a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, deactivation, and transcription. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Quinclorac
C10H5Cl2NO2 (240.96973300000002)
CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7880; ORIGINAL_PRECURSOR_SCAN_NO 7877 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7876; ORIGINAL_PRECURSOR_SCAN_NO 7873 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7833; ORIGINAL_PRECURSOR_SCAN_NO 7831 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7836; ORIGINAL_PRECURSOR_SCAN_NO 7833 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7792; ORIGINAL_PRECURSOR_SCAN_NO 7790 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7882; ORIGINAL_PRECURSOR_SCAN_NO 7879 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Oxolinic acid
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3609 CONFIDENCE standard compound; INTERNAL_ID 1034 D004791 - Enzyme Inhibitors
Quinmerac
CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6893; ORIGINAL_PRECURSOR_SCAN_NO 6889 CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6909; ORIGINAL_PRECURSOR_SCAN_NO 6907 CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6942; ORIGINAL_PRECURSOR_SCAN_NO 6938 CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6944; ORIGINAL_PRECURSOR_SCAN_NO 6942 CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6876; ORIGINAL_PRECURSOR_SCAN_NO 6873 CONFIDENCE standard compound; INTERNAL_ID 240; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6911; ORIGINAL_PRECURSOR_SCAN_NO 6909 INTERNAL_ID 240; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6944; ORIGINAL_PRECURSOR_SCAN_NO 6942 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3720 CONFIDENCE standard compound; INTERNAL_ID 8469 CONFIDENCE standard compound; INTERNAL_ID 2552
Moxifloxacin
Moxifloxacin is only found in individuals that have used or taken this drug. It is a synthetic fluoroquinolone antibiotic agent. Bayer AG developed the drug (initially called BAY 12-8039) and it is marketed worldwide (as the hydrochloride) under the brand name Avelox (in some countries also Avalox) for oral treatment.The bactericidal action of moxifloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV. DNA gyrase is an essential enzyme that is involved in the replication, transcription and repair of bacterial DNA. Topoisomerase IV is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Rufloxacin
C17H18FN3O3S (363.1052850000001)
Rufloxacin belongs to the family of Phenylpiperazines. These are compounds containing a phenylpiperazine skeleton, which consists of a piperazine bound to a phenyl group. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474
4,6-Dihydroxy-2-quinolinecarboxylic acid
4,6-Dihydroxy-2-quinolinecarboxylic acid is found in fats and oils. 4,6-Dihydroxy-2-quinolinecarboxylic acid is an alkaloid from Ginkgo biloba (ginkgo). Alkaloid from Ginkgo biloba (ginkgo). 4,6-Dihydroxy-2-quinolinecarboxylic acid is found in fats and oils.
8-Methoxykynurenate
This compound belongs to the family of Quinoline Carboxylic Acids. These are Quinolines in which the quinoline ring system is substituted by a carboxyl group at at least one position.
Gatifloxacin
C19H22FN3O4 (375.15942640000003)
Gatifloxacin is an antibiotic of the fourth-generation fluoroquinolone family, that like other members of that family, inhibits the bacterial enzymes DNA gyrase and topoisomerase IV. Bristol-Myers Squibb introduced Gatifloxacin in 1999 under the proprietary name Tequin for the treatment of respiratory tract infections, having licensed the medication from Kyorin Pharmaceutical Company of Japan. Allergan produces an eye-drop formulation called Zymar. Gatifloxacin is available as tablets and in various aqueous solutions for intravenous therapy. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D019999 - Pharmaceutical Solutions > D009883 - Ophthalmic Solutions D004791 - Enzyme Inhibitors
Grepafloxacin
C19H22FN3O3 (359.16451140000004)
Grepafloxacin hydrochloride (Raxar®, Glaxo Wellcome) is an oral broad-spectrum quinoline antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn in the United States due to its side effect of lengthening the QT interval on the electrocardiogram, leading to cardiac events and sudden death. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11
Ulifloxacin
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Levofloxacin
C18H20FN3O4 (361.14377720000005)
Levofloxacin is a synthetic fluoroquinolone antibacterial agent that inhibits the supercoiling activity of bacterial DNA gyrase, halting DNA replication. Levofloxacin is marketed by Ortho-McNeil under the trade name Levaquin. Chemically, levofloxacin is the S-enantiomer (L-isomer) of ofloxacin. -- Wikipedia [HMDB] Levofloxacin is a synthetic fluoroquinolone antibacterial agent that inhibits the supercoiling activity of bacterial DNA gyrase, halting DNA replication. Levofloxacin is marketed by Ortho-McNeil under the trade name Levaquin. Chemically, levofloxacin is the S-enantiomer (L-isomer) of ofloxacin. -- Wikipedia. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Enrofloxacin
C19H22FN3O3 (359.16451140000004)
Enrofloxacin is a veterinary antibacterial agent, used in poultry. Enrofloxacin is a fluoroquinolone antibiotic sold by the Bayer Corporation under the trade name Baytril(r). Enrofloxacin is currently FDA-approved for treatment of individual pets and domestic animals in the United States. In September 2005, the FDA withdrew approval of Baytril for use in water to treat flocks of poultry, as this practice was noted to promote the evolution of fluoroquinolone-resistant strains of the bacterium Campylobacter, a human pathogen. Fluoroquinolones such as ciprofloxacin are widely used in the treatment of human disease. Enrofloxacin is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. It is a bactericidal agent. The bactericidal activity of enrofloxacin is concentration dependent, with susceptible bacteria cell death occurring within 20-30 minutes of exposure. Enrofloxacin has demonstrated a significant post-antibiotic effect for both Gram-negative and Gram-positive bacteria and is active in both stationary and growth phases of bacterial replication. http://www.fda.gov/cvm/Documents/baytrilDDL.pdf is a broken lin D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
Pefloxacin
C17H20FN3O3 (333.14886220000005)
Pefloxacin is only found in individuals that have used or taken this drug. It is a synthetic broad-spectrum fluoroquinolone antibacterial agent active against most gram-negative and gram-positive bacteria. [PubChem]The bactericidal action of pefloxacin results from interference with the activity of the bacterial enzymes DNA gyrase and topoisomerase IV, which are needed for the transcription and replication of bacterial DNA. DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms. Interference with these two topoisomerases results in strand breakage of the bacterial chromosome, supercoiling, and resealing. As a result DNA replication and transcription is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
Flumequine
Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria. It functions by inhibiting DNA gyrase, a type II topoisomerase, and topoisomerase IV, enzymes necessary to separate bacterial DNA, thereby inhibiting cell division. Flumequine is a 9-fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[ij]quinolizine-2-carboxylic acid. The molecular formula is C14H12FNO3 It is a white powder, odorless, flavorless, insoluble in water but soluble in organic solvent. Flumequine is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections (all infections of the intestinal tract), as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France (and a few other European Countries) to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved. The first quinolone used was nalidixic acid (was marketed in many countries as Negram) followed by the fluoroquinolone flumequine. The first-generation fluoroquinolone agents, such as flumequine, had poor distribution into the body tissues and limited activity. As such they were used mainly for treatment of urinary tract infections. Flumequine (benzo quinolizine) was first patented in 1973, (German Patent) by Rikker Labs. Flumequine is a known antimicrobial compound described and claimed in U.S. Pat. No. 3,896,131 (Example 3), July 22, 1975. Flumequine is the first quinolone compound with a fluorine atom at the C6-position of the related quinolone basic molecular structure. Even though this was the first fluoroquinolone, it is oftentimes overlooked when classifying the drugs within this class by generations and excluded from such a list. There continues to be considerable debate as to whether or not this DNA damage is to be considered one of the mechanisms of action concerning the severe adverse reactions experienced by some patients following fluoroquinolone therapy. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Zeanic acid
Zeanic acid is found in cereals and cereal products. Zeanic acid is isolated from corn steep liquor. Isolated from corn steep liquor. Zeanic acid is found in cereals and cereal products.
Rosoxacin
C17H14N2O3 (294.10043740000003)
Rosoxacin is a quinolone derivative antibiotic for the treatment of bacterial infection of respiratory tract, urinary tract, GI, CNS and immuno compromised patients. Rosoxacin is known to be effective against penicillin resistant strains and is a single dose orally administered drug, which avoids all complications of parenteral administration seen with penicillin, especially anaphylactic shock. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents
xanthurenic acid 8-O-sulfate
Xanthurenic acid 8-O-sulfate belongs to the family of Hydroxyquinolines. These are compounds containing a quinoline moiety bearing an hydroxyl group.
Pefloxacin N-oxide
C17H20FN3O4 (349.14377720000005)
Pefloxacin N-oxide is a metabolite of pefloxacin. Pefloxacin is a synthetic chemotherapeutic agent used to treat severe and life threatening bacterial infections. Pefloxacin is commonly referred to as a fluoroquinolone drug and is a member of the fluoroquinolone class of antibacterials. It is an analog of norfloxacin. It is a synthetic fluoroquinolone, belonging to the 3rd generation of quinolones. Pefloxacin is extensively prescribed in France. Pefloxacin has not been approved for use in the United States. (Wikipedia) D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
2,8-bis-Trifluoromethyl-4-quinoline carboxylic acid
2,8-bis-Trifluoromethyl-4-quinoline carboxylic acid is a metabolite of mefloquine. Mefloquine hydrochloride (also known as Lariam or Mefaquin) is an orally administered medication used in the prevention and treatment of malaria. Mefloquine was developed in the 1970s at the United States Department of Defenses Walter Reed Army Institute of Research as a synthetic analogue of quinine. The brand name drug, Lariam, is manufactured by the Swiss company Hoffmann–La Roche. In August 2009, Roche stopped marketing Lariam in the United States. (Wikipedia)
Sulfociprofloxacin
C17H18FN3O6S (411.09003000000007)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
[2,2'-Biquinoline]-4,4'-dicarboxylic acid
C20H12N2O4 (344.07970320000004)
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
5,7-Dichlorokynurenic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists 5,7-Dichlorokynurenic acid (5,7-DCKA) is a selective and competitive antagonist of the glycine site on NMDA receptor with a KB of 65 nM. 5,7-Dichlorokynurenic acid, a derivative of kynurenic acid, reduced NMDA-induced neuron injury in rat cortical cell cultures[1].
7-Chlorokynurenic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents 7-Chlorokynurenic acid (7-CKA) is a potent and selective antagonist of the glycine B coagonist site of the N-methyl-D-aspartate (NMDA) receptor (IC50=0.56 μM). 7-Chlorokynurenic acid is also a potent inhibitor of the reuptake of glutamate into synaptic vesicles with a Ki of 0.59 μM. 7-Chlorokynurenic acid has potent antinociceptive actions after neuraxial delivery[1][2].
7-Hydroxyflumequine
7H-Pyrido(1,2,3-de)-1,4-benzoxazine-6-carboxylic acid, 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-, N-oxide
C18H20FN3O5 (377.13869220000004)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
Acorafloxacin
Antofloxacin
Balofloxacin
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Besifloxacin
C19H21ClFN3O3 (393.12553980000007)
Cadazolid
C29H29F2N3O8 (585.1922618000001)
Ciprofloxacin-7-ethylenediamine
C15H16FN3O3 (305.11756379999997)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
Clinafloxacin
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Danofloxacin
C19H20FN3O3 (357.14886220000005)
Delafloxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
6-Fluoro-1-methyl-1,4-dihydro-7-(1-piperazinyl)-4-oxoquinoline-3-carboxylic acid
C15H16FN3O3 (305.11756379999997)
Desethylenenorfloxacin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
Desmethylofloxacin
C17H18FN3O4 (347.12812800000006)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
7-[(7S)-7-Amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(2S)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid
DV 7751a
C20H22FN3O4 (387.15942640000003)
3-Quinolinecarboxylic acid, 7-((3R)-3-(1-aminocyclopropyl)-1-pyrrolidinyl)-1-((1R,2S)-2-fluorocyclopropyl)-1,4-dihydro-8-methoxy-4-oxo-
Elvitegravir
C23H23ClFNO5 (447.12487100000004)
Finafloxacin
Garenoxacin
C23H20F2N2O4 (426.13910640000006)
Ibafloxacin
MANNICH BASES
C40H38F2N8O7 (780.2831381999999)
Marbofloxacin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
Merafloxacin
C19H23F2N3O3 (379.17073919999996)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
Nemonoxacin
Olamufloxacin
C20H23FN4O3 (386.17540999999994)
Oxo-ciprofloxacin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
Oxociprofloxacin
Oxonorfloxacin
Pazufloxacin
3-Quinolinecarboxylic acid, 7-(3-amino-1-pyrrolidinyl)-1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxo-
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones
Pradofloxacin
C21H21FN4O3 (396.15976079999996)
Prulifloxacin
C21H20FN3O6S (461.10567920000005)
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo(H)quinoline-4-carboxylic acid
QUINOLONE DERIVATIVE
Sulfo-ciprofloxacin
C17H18FN3O6S (411.09003000000007)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones