Gene Association: GLYCTK
UniProt Search:
GLYCTK (PROTEIN_CODING)
Function Description: glycerate kinase
found 35 associated metabolites with current gene based on the text mining result from the pubmed database.
Allantoin
Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
Antirrhinin
Cyanidin 3-O-rutinoside chloride is a member of the class of anthocyanin chlorides that has cyanidin 3-O-rutinoside as the cationic counterpart. It contains a cyanidin 3-O-rutinoside. See also: Keracyanin cation (has active moiety); Asparagus (part of). C26170 - Protective Agent > C275 - Antioxidant
D-Glycerate 3-phosphate
3-phospho-d-glyceric acid, also known as 3-phosphoglycerate or D-glycerate 3-phosphate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-phospho-d-glyceric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceric acid can be found in a number of food items such as towel gourd, orange mint, guava, and mulberry, which makes 3-phospho-d-glyceric acid a potential biomarker for the consumption of these food products. 3-phospho-d-glyceric acid can be found primarily in saliva. 3-phospho-d-glyceric acid exists in all living species, ranging from bacteria to humans. (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate, also known as 3-phospho-(R)-glycerate or D-glycerate 3-phosphate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate is a drug (2R)-2-hydroxy-3-(phosphonatooxy)propanoate has been detected, but not quantified, in several different foods, such as poppies, small-leaf lindens, lupines, pomegranates, and kombus. These are compounds containing a saccharide unit which bears a carboxylic acid group.
Glycerate
Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Glycolic acid
Glycolic acid (or hydroxyacetic acid) is the smallest alpha-hydroxy acid (AHA). This colourless, odourless, and hygroscopic crystalline solid is highly soluble in water. Due to its excellent capability to penetrate skin, glycolic acid is often used in skin care products, most often as a chemical peel. It may reduce wrinkles, acne scarring, and hyperpigmentation and improve many other skin conditions, including actinic keratosis, hyperkeratosis, and seborrheic keratosis. Once applied, glycolic acid reacts with the upper layer of the epidermis, weakening the binding properties of the lipids that hold the dead skin cells together. This allows the outer skin to dissolve, revealing the underlying skin. It is thought that this is due to the reduction of calcium ion concentrations in the epidermis and the removal of calcium ions from cell adhesions, leading to desquamation. Glycolic acid is a known inhibitor of tyrosinase. This can suppress melanin formation and lead to a lightening of skin colour. Acute doses of glycolic acid on skin or eyes leads to local effects that are typical of a strong acid (e.g. dermal and eye irritation). Glycolate is a nephrotoxin if consumed orally. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. Glycolic acids renal toxicity is due to its metabolism to oxalic acid. Glycolic and oxalic acid, along with excess lactic acid, are responsible for the anion gap metabolic acidosis. Oxalic acid readily precipitates with calcium to form insoluble calcium oxalate crystals. Renal tissue injury is caused by widespread deposition of oxalate crystals and the toxic effects of glycolic acid. Glycolic acid does exhibit some inhalation toxicity and can cause respiratory, thymus, and liver damage if present in very high levels over long periods of time. Elevated glycolic acid without elevated oxalic acid is most likely a result of GI yeast overgrowth (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). (http://drweyrich.weyrich.com/labs/oat.html). Glycolic acid has also been found to be a metabolite in Acetobacter, Acidithiobacillus, Alcaligenes, Corynebacterium, Cryptococcus, Escherichia, Gluconobacter, Kluyveromyces, Leptospirillum, Pichia, Rhodococcus, Rhodotorula and Saccharomyces (PMID: 11758919; PMID: 26360870; PMID: 14390024). D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Found in sugar cane (Saccharum officinarum) KEIO_ID G012 Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.
Glyceraldehyde
DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
Methyl beta-D-glucopyranoside
Methyl beta-D-glucopyranoside is found in cereals and cereal products. Methyl beta-D-glucopyranoside is present in Medicago sativa (alfalfa Methyl β-D-Galactopyranoside is an endogenous metabolite.
2-Phospho-D-glyceric acid
2-Phosphoglyceric acid (2PG), or 2-phosphoglycerate, is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate.; 2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site. (PMID: 8994873, Wikipedia). 2-Phosphoglycerate is found in rice. 2-Phospho-D-glycerate or 2PG is an intermediate in gluconeogenesis. It is a glyceric acid which serves as the substrate in the ninth step of glycolysis. 2PG is converted by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. More specifically, 2PG can be generated from Glycerate-3-phosphate via phosphoglycerate mutase or from phosphoenolpyrvate via alpha enolase. KEIO_ID P029
D-ribulose-1,5-bisphosphate
D-ribulose-1,5-bisphosphate, also known as ribulose-1,5-diphosphoric acid or ribulose-1,5 diphosphate, (D)-isomer, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. D-ribulose-1,5-bisphosphate is soluble (in water) and a moderately acidic compound (based on its pKa). D-ribulose-1,5-bisphosphate can be found in a number of food items such as bamboo shoots, bog bilberry, chestnut, and other cereal product, which makes D-ribulose-1,5-bisphosphate a potential biomarker for the consumption of these food products. D-ribulose-1,5-bisphosphate may be a unique E.coli metabolite. Ribulose 1,5-bisphosphate (RuBP) is an organic substance that is involved in photosynthesis. It is a colourless anion, a double phosphate ester of the ketopentose (ketone-containing sugar with five carbon atoms) called ribulose. Salts of RuBP can be isolated, but its crucial biological function happens in solution. To simplify the presentation, the image in the above table depicts the acid form of this anion . KEIO_ID R005
Glyceraldehyde 3-phosphate
Glyceraldehyde 3-phosphate (G3P) (CAS: 591-59-3), also known as triose phosphate, belongs to the class of organic compounds known as glyceraldehyde-3-phosphates. Glyceraldehyde-3-phosphates are compounds containing a glyceraldehyde substituted at position O3 by a phosphate group. Glyceraldehyde 3-phosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Glyceraldehyde 3-phosphate has been detected, but not quantified in, several different foods, such as sea-buckthorn berries, lingonberries, prunus (cherry, plum), quinoa, and sparkleberries. This could make glyceraldehyde 3-phosphate a potential biomarker for the consumption of these foods. Glyceraldehyde 3-phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from fructose 1,6-bisphosphate, dihydroxyacetone phosphate (DHAP), and 1,3-bisphosphoglycerate (1,3BPG). This is the process by which glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. Glyceraldehyde 3-phosphate (G3P) or triose phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from Fructose-1,6-bisphosphate, Dihydroxyacetone phosphate (DHAP),and 1,3-bisphosphoglycerate, (1,3BPG), and this is how glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. D-Glyceraldehyde 3-phosphate is found in many foods, some of which are quince, chinese cabbage, carob, and peach. Acquisition and generation of the data is financially supported in part by CREST/JST.
Hydroxypyruvic acid
3-hydroxypyruvic acid, also known as beta-hydroxypyruvate or oh-pyr, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. 3-hydroxypyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-hydroxypyruvic acid can be found in a number of food items such as fox grape, black mulberry, elliotts blueberry, and silver linden, which makes 3-hydroxypyruvic acid a potential biomarker for the consumption of these food products. 3-hydroxypyruvic acid can be found primarily in blood and urine. 3-hydroxypyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-hydroxypyruvic acid is involved in the glycine and serine metabolism. 3-hydroxypyruvic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), 3-phosphoglycerate dehydrogenase deficiency, hyperglycinemia, non-ketotic, and non ketotic hyperglycinemia. Hydroxypyruvic acid is a pyruvic acid derivative with the formula C3H4O4 and a neutral charge with an atomic mass of 104.06146 . Hydroxypyruvic acid is an intermediate in the metabolism of Glycine, serine and threonine. It is a substrate for Serine--pyruvate aminotransferase and Glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.
Glyceric acid 1,3-biphosphate
Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
oxalyl-CoA
An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of oxalic acid.
(S)-Ureidoglycolic acid
(S)-Ureidoglycolic acid is a substrate of enzyme ureidoglycolate dehydrogenase [EC 1.1.1.154] in purine metabolism pathway (KEGG). [HMDB] (S)-Ureidoglycolic acid is a substrate of enzyme ureidoglycolate dehydrogenase [EC 1.1.1.154] in purine metabolism pathway (KEGG).
Malyl-CoA
Malyl-CoA is a substrate of enzyme malyl-CoA lyase [EC 4.1.3.24] in glyoxylate and dicarboxylate metabolism pathway (KEGG). [HMDB] Malyl-CoA is a substrate of enzyme malyl-CoA lyase [EC 4.1.3.24] in glyoxylate and dicarboxylate metabolism pathway (KEGG).
Glyceraldehyde
Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colourless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word "glyceraldehyde" comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. Glyceraldehyde is produced from the action of the enzyme glyceraldehyde dehydrogenase, which converts glycerol to glyceraldehyde using NADP as a cofactor. When present at sufficiently high levels, glyceraldehyde can be a cytotoxin and a mutagen. A cytotoxin is a compound that kills cells. A mutagen is a compound that causes mutations in DNA. Glyceraldehyde is a highly reactive compound that can modify and cross-link proteins. Glyceraldehyde-modified proteins appear to be cytotoxic, depress intracellular glutathione levels, and induce reactive oxygen species (ROS) production (PMID:14981296). Glyceraldehyde has been shown to cause chromosome damage to human cells in culture and is mutagenic in the Ames bacterial test. Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet colorless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. [HMDB] DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
2-Phosphoglyceric acid
2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site. (PMID: 8994873, Wikipedia) [HMDB] 2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site (PMID: 8994873, Wikipedia). 2-Phosphoglyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2553-59-5 (retrieved 2024-11-04) (CAS RN: 2553-59-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Methyl alpha-D-galactopyranoside
Present in Medicago sativa (alfalfa). Methyl beta-D-glucopyranoside is found in cereals and cereal products.
3-phosphoglycerate
A monophosphoglyceric acid having the phospho group at the 3-position. It is an intermediate in metabolic pathways like glycolysis and calvin cycle.
Allantoin
C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent C78284 - Agent Affecting Integumentary System > C29700 - Astringent D003879 - Dermatologic Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; POJWUDADGALRAB-UHFFFAOYSA-N_STSL_0150_Allantoin_8000fmol_180425_S2_LC02_MS02_50; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
Glyceraldehyde
An aldotriose comprising propanal having hydroxy groups at the 2- and 3-positions. It plays role in the formation of advanced glycation end-products (AGEs), a deleterious accompaniment to ageing. DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
GLYCERIC ACID
A trionic acid that consists of propionic acid substituted at positions 2 and 3 by hydroxy groups.
glycolic acid
A 2-hydroxy monocarboxylic acid that is acetic acid where the methyl group has been hydroxylated. D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.
D-Ribulose 1,5-bisphosphate
A ribulose phosphate that is D-ribulose attached to phosphate groups at positions 1 and 5. It is an intermediate in photosynthesis.
hydroxypyruvic acid
A 2-oxo monocarboxylic acid that is pyruvic acid in which one of the methyl hydrogens is substituted by a hydroxy group. It is an intermediate involved in the glycine and serine metabolism. Hydroxypyruvic acid (β-Hydroxypyruvic acid) is an intermediate in the metabolism of glycine, serine and threonine. Hydroxypyruvic acid is a substrate for serine-pyruvate aminotransferase and glyoxylate reductase/hydroxypyruvate reductase. Hydroxypyruvic acid is involved in the metabolic disorder which is the dimethylglycine dehydrogenase deficiency pathway.
2-Phospho-D-glyceric acid
A 2-phosphoglyceric acid in which the glyceric acid moiety has D (R) configuration.
3-phospho-D-glyceroyl dihydrogen phosphate
The (R)-enantiomer of 3-phosphoglyceroyl dihydrogen phosphate.