Classification Term: 170417
Isoquinoline alkaloids (ontology term: 486591765b5e56805ca06f04f028879e)
found 500 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Tyrosine alkaloids
Child Taxonomies: There is no child term of current ontology term.
Cephaeline
Cephaeline is a pyridoisoquinoline comprising emetam having a hydroxy group at the 6-position and methoxy substituents at the 7-, 10- and 11-positions. It derives from a hydride of an emetan. Cephaeline is a natural product found in Dorstenia psilurus, Pogonopus tubulosus, and other organisms with data available. Cephaeline is an alkaloid compound that belongs to the isoquinoline alkaloid family. It is naturally found in certain plant species, particularly those of the Cephalotaxus genus, which includes trees and shrubs native to East Asia and the Himalayas. Cephaeline is known for its pharmacological properties and has been the subject of various studies for its potential therapeutic applications. Chemically, cephaeline has a complex structure characterized by an isoquinoline core with additional functional groups attached. It is classified as a monoterpenoid indole alkaloid, reflecting its biosynthetic origin from the amino acid tryptophan. The presence of these functional groups contributes to its biological activity and pharmacological effects. In terms of its physical properties, cephaeline is typically a crystalline solid with a defined melting point. It is slightly soluble in water but more soluble in organic solvents, which is common for alkaloids of its class. The exact color and solubility characteristics can vary depending on the presence of impurities or derivatives. Cephaeline has been of interest in the field of pharmacognosy and drug discovery due to its potential therapeutic effects, including anti-cancer, anti-inflammatory, and neuroprotective properties. However, further research is needed to fully understand its mechanisms of action and potential uses in medicine. Annotation level-1 (-)-Cephaeline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=483-17-0 (retrieved 2024-07-12) (CAS RN: 483-17-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dihydrosanguinarine
Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine. Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3]. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].
Angoline
Angoline is a benzophenanthridine alkaloid. Angoline is a natural product found in Bocconia arborea, Zanthoxylum zanthoxyloides, and other organisms with data available. Angoline is a potent and selective IL6/STAT3 signaling pathway inhibitor with an IC50 of 11.56 μM. Angoline inhibits STAT3 phosphorylation and its target gene expression, and inhibits cancer cell proliferation[1].
Emetine
A pyridoisoquinoline comprising emetam having methoxy substituents at the 6-, 7-, 10- and 11-positions. It is an antiprotozoal agent and emetic. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics D005765 - Gastrointestinal Agents > D004639 - Emetics D002491 - Central Nervous System Agents Origin: Plant; Formula(Parent): C29H40N2O4; Bottle Name:Emetine dihydrochloride; PRIME Parent Name:Emetine; PRIME in-house No.:V0282; SubCategory_DNP: Isoquinoline alkaloids, Emetine alkaloids Annotation level-1 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2501; CONFIDENCE confident structure
Ethylmorphine
A narcotic analgesic and antitussive. It is metabolized in the liver by ethylmorphine-N-demethylase and used as an indicator of liver function. It is not marketed in the US but is approved for use in various countries around the world. In the US it is a schedule II drug (single-entity) and schedule III drug (in combination products). R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
Dihydromorphine
Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Hydrocodone
Hydrocodone is only found in individuals that have used or taken this drug. It is a narcotic analgesic related to codeine, but more potent and more addicting by weight. It is used also as cough suppressant. [PubChem]Hydrocodone acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Hydrocodone primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as hydrocodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Levallorphan
An opioid antagonist with properties similar to those of naloxone; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
Pentazocine
Pentazocine is only found in individuals that have used or taken this drug. It is the first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)The preponderance of evidence suggests that pentazocine antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
Cheilanthifoline
Cheilanthifoline is a natural product found in Fumaria densiflora, Fumaria judaica, and other organisms with data available.
(S)-scoulerine
(s)-scoulerine, also known as discretamine or aequaline, belongs to protoberberine alkaloids and derivatives class of compounds. Those are alkaloids with a structure based on a protoberberine moiety, which consists of a 5,6-dihydrodibenzene moiety fused to a quinolizinium and forming 5,6-Dihydrodibenzo(a,g)quinolizinium skeleton (s)-scoulerine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-scoulerine can be found in a number of food items such as rice, lemon grass, chinese bayberry, and sea-buckthornberry, which makes (s)-scoulerine a potential biomarker for the consumption of these food products.
Oripavine
Alkaloid from opium poppy (Papaver somniferum). Oripavine is found in many foods, some of which are redcurrant, teff, muscadine grape, and date. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids Oripavine is an alkaloid from opium poppy (Papaver somniferum
6-Hydroxyprotopine
A dibenzazecine alkaloid that is protopine bearing a hydroxy substituent at the 6-position.
Alangimarine
A member of the class of isoquinolinonaphthyridines that is 5,6-dihydroisoquinolino[2,1-b][2,7]naphthyridin-8-one bearing additional hydroxy, methoxy and vinyl substituents at positions 2, 3 and 12 respectively.
Neopine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids Neopine is found in opium poppy. Minor alkaloid of opium (Papaver somniferum
Protoemetine
Protoemetine has been reported in Alangium salviifolium and Carapichea ipecacuanha. Protoemetine (原吐根碱) is a monoterpenoid-derived tetrahydroisoquinoline alkaloid with significant biological functions, primarily observed in its role as a precursor to pharmacologically active compounds and its direct interactions in biological systems. Below is a detailed description of its biological functions based on available evidence: ### 1. **Precursor Role in Biosynthesis of Medicinal Alkaloids** Protoemetine serves as a critical intermediate in the biosynthesis of emetine and cephaeline, two major ipecac alkaloids with established therapeutic applications. These downstream alkaloids are widely recognized for their antiparasitic (e.g., against *Entamoeba histolytica*) and emetic properties. The non-enzymatic Pictet-Spengler reaction initiates protoemetine formation by condensing dopamine with monoterpenoid precursors (secologanin or secologanic acid). ### 2. **Antiviral Activity** While direct evidence for protoemetine's antiviral activity is limited, its structural analogs (e.g., emetine) exhibit potent inhibition against RNA viruses such as dengue virus (DENV). Emetine, derived from protoemetine, reduces viral RNA synthesis and protein translation at concentrations as low as 0.5 μM. This suggests protoemetine’s biosynthetic pathway may indirectly contribute to antiviral defense mechanisms in plants. ### 3. **Antiparasitic Effects** Protoemetine-related alkaloids, particularly emetine, are clinically used to treat parasitic infections like amoebic dysentery. Emetine disrupts protein synthesis in *Entamoeba histolytica* trophozoites by inhibiting ribosomal function. Although protoemetine itself is not directly administered, its metabolic conversion to emetine underscores its biological relevance in antiparasitic therapy. ### 4. **Cytotoxic and Anticancer Potential** Emetine, synthesized from protoemetine, demonstrates cytotoxic effects in cancer cells by inducing apoptosis via modulation of Bcl-2 family proteins (e.g., reducing Bcl-XL/Bcl-XS ratios). Protoemetine’s role in this pathway highlights its indirect contribution to anticancer mechanisms, though further studies are needed to confirm direct activity. ### 5. **Regulation of Plant Defense Mechanisms** In plants such as *Psychotria ipecacuanha* and *Alangium salviifolium*, protoemetine accumulation correlates with tissue-specific defense strategies. Its biosynthesis is spatially regulated (e.g., higher levels in roots and young leaves), suggesting a role in deterring herbivores or pathogens through alkaloid-mediated toxicity. ### Summary of Key Functions: • **Biosynthetic hub**: Central to producing emetine and cephaeline, compounds with antiparasitic and antitussive properties. • **Structural basis for drug activity**: Protoemetine’s tetrahydroisoquinoline scaffold enables interactions with biological targets (e.g., ribosomal machinery, viral polymerases). • **Ecological defense**: Contributes to plant chemical defense systems against pathogens and herbivores. For detailed mechanisms, refer to studies on ipecac alkaloid biosynthesis, emetine’s pharmacological actions, and evolutionary parallels in alkaloid production.
Isoliensinine
Isoliensinine is found in coffee and coffee products. Isoliensinine is an alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus). Alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus). Isoliensinine is found in coffee and coffee products. Isoliensinine is a bisbenzylisoquinoline alkaloid extracted from the seed embryo of Nelumbo nucifera, with anti-oxidant and anti-inflammatory and anti-cancer activities. Isoliensinine induces apoptosis in triple-negative human breast cancer cells[1][2]. Isoliensinine is a bisbenzylisoquinoline alkaloid extracted from the seed embryo of Nelumbo nucifera, with anti-oxidant and anti-inflammatory and anti-cancer activities. Isoliensinine induces apoptosis in triple-negative human breast cancer cells[1][2].
Neferine
Neferine is found in coffee and coffee products. Neferine is an alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus Alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus). Neferine is found in coffee and coffee products. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation.
(S)-Annocherine A
(R)-Annocherine A is found in fruits. (R)-Annocherine A is an alkaloid from the leaves of Annona cherimola (cherimoya).
xi-Anomuricine
xi-Anomuricine is found in fruits. Minor alkaloid from the root and stem barks of Annona muricata (soursop). Minor alkaloid from the root and stem barks of Annona muricata (soursop). xi-Anomuricine is found in fruits.
Coreximine
Coreximine is found in soursop. Coreximine is an alkaloid from Papaver somniferum (opium poppy Alkaloid from Papaver somniferum (opium poppy). Coreximine is found in soursop.
Cephaeline
Chondrocurine
Emetine
codeinone
Codeinone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Codeinone can be found in a number of food items such as japanese chestnut, leek, squashberry, and redcurrant, which makes codeinone a potential biomarker for the consumption of these food products. Codeinone is 1/3 as active as codeine as an analgesic but it is an important intermediate in the production of hydrocodone, a painkiller about 3/4 the potency of morphine; as well as of oxycodone. The latter can also be synthesized from thebaine, however .
salsolidine
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.156 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.138 Salsolidine is a tetrahydroisoquinoline alkaloid, acts as a stereoselective competitive MAO A inhibitor.
3-[(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]phenol
Hydrocodone
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3332
Laudanosine
D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.628 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.624 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2441; CONFIDENCE confident structure DL-Laudanosine, an Atracurium and Cisatracurium metabolite, crosses the blood–brain barrier and may cause excitement and seizure activity[1]. DL-Laudanosine, an Atracurium and Cisatracurium metabolite, crosses the blood–brain barrier and may cause excitement and seizure activity[1].
Pentazocine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
ethylmorphine
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
Oripavine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids A morphinane alkaloid with formula C18H19NO3. It is the major metabolite of thebaine.
Higenamine
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Klugine
An isoquinoline alkaloid that is emetan substituted by methoxy groups at positions 7 and 11 and hydroxy groups at positions 1, 6 and 10. Isolated from Psychotria klugii, it exhibits antileishmanial and antiplasmodial activities.
Ancistrotanzanine A
An isoquinoline alkaloid that is (3S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydroisoquinoline substituted by a 1-hydroxy-8-methoxy-3-methylnaphthalen-2-yl group at position 5. It is isolated from the leaves of Ancistrocladus tanzaniensis and exhibits antiplasmodial, antileishmanial and antitrypanocidal activities.
levallorphan
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
Dihydromorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics