Piperonylic acid (BioDeep_00000406542)

Main id: BioDeep_00000017465

 

natural product PANOMIX_OTCML-2023 Volatile Flavor Compounds


代谢物信息卡片


1,3-Benzodioxole-5-carboxylic acid, 9CI

化学式: C8H6O4 (166.0266076)
中文名称: 胡椒酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1OC2=C(O1)C=C(C=C2)C(=O)O
InChI: InChI=1S/C8H6O4/c9-8(10)5-1-2-6-7(3-5)12-4-11-6/h1-3H,4H2,(H,9,10)

描述信息

COVID info from PDB, Protein Data Bank
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Piperonylic acid is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. Piperonylic Acid is a selective, mechanism-based inactivator of the trans-cinnamate 4-Hydroxylase[1].
Piperonylic acid is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. Piperonylic Acid is a selective, mechanism-based inactivator of the trans-cinnamate 4-Hydroxylase[1].

同义名列表

14 个代谢物同义名

1,3-Benzodioxole-5-carboxylic acid, 9CI; 2H-1,3-Benzodioxole-5-Carboxylic Acid; Protocatechuic acid methylene ether; 1,3-Benzodioxole-5-carboxylic acid; 3,4-(Methylenedioxy)-Benzoic acid; 3, 4-(Methylenedioxy)benzoic acid; 3,4-(methylenedioxy)benzoic acid; 3,4-Methylene dioxybenzoic acid; 3,4-Dioxymethylenebenzoic acid; 3,4-Methylenedioxybenzoic acid; 5-Benzodioxolecarboxylic acid; Piperonylic acid; Heliotropic acid; Piperonylic acid



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

33 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ilias El Houari, Petr Klíma, Alexandra Baekelandt, Paul E Staswick, Veselina Uzunova, Charo I Del Genio, Ward Steenackers, Petre I Dobrev, Roberta Filepová, Ondrej Novák, Richard Napier, Jan Petrášek, Dirk Inzé, Wout Boerjan, Bartel Vanholme. Non-specific effects of the CINNAMATE-4-HYDROXYLASE inhibitor piperonylic acid. The Plant journal : for cell and molecular biology. 2023 Jul; 115(2):470-479. doi: 10.1111/tpj.16237. [PMID: 37036146]
  • Willem Desmedt, Wim Jonckheere, Viet Ha Nguyen, Maarten Ameye, Noémie De Zutter, Karen De Kock, Jane Debode, Thomas Van Leeuwen, Kris Audenaert, Bartel Vanholme, Tina Kyndt. The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants. Plant, cell & environment. 2021 09; 44(9):3122-3139. doi: 10.1111/pce.14119. [PMID: 34053100]
  • Dohyun Lee, Jinsun Lim, Kyung-Chul Woo, Kyong-Tai Kim. Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR). Scientific reports. 2018 01; 8(1):162. doi: 10.1038/s41598-017-18361-3. [PMID: 29317682]
  • Kiran Kamireddy, Pradeep Matam, Priyanka P S, Giridhar Parvatam. Biochemical characterization of a key step involved in 2H4MB production in Decalepis hamiltonii. Journal of plant physiology. 2017 Jul; 214(?):74-80. doi: 10.1016/j.jplph.2017.04.006. [PMID: 28460278]
  • Shiori Doi, Yoshiteru Hashimoto, Chiaki Tomita, Takuto Kumano, Michihiko Kobayashi. Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde. Scientific reports. 2016 12; 6(?):38021. doi: 10.1038/srep38021. [PMID: 27905507]
  • Ward Steenackers, Igor Cesarino, Petr Klíma, Mussa Quareshy, Ruben Vanholme, Sander Corneillie, Robert Peter Kumpf, Dorien Van de Wouwer, Karin Ljung, Geert Goeminne, Ondřej Novák, Eva Zažímalová, Richard Napier, Wout Boerjan, Bartel Vanholme. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis. Plant physiology. 2016 10; 172(2):874-888. doi: 10.1104/pp.15.01972. [PMID: 27506238]
  • Edouard Pesquet, Bo Zhang, András Gorzsás, Tuula Puhakainen, Henrik Serk, Sacha Escamez, Odile Barbier, Lorenz Gerber, Charleen Courtois-Moreau, Edward Alatalo, Lars Paulin, Jaakko Kangasjärvi, Björn Sundberg, Deborah Goffner, Hannele Tuominen. Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. The Plant cell. 2013 Apr; 25(4):1314-28. doi: 10.1105/tpc.113.110593. [PMID: 23572543]
  • Victor Hugo Salvador, Rogério Barbosa Lima, Wanderley Dantas dos Santos, Anderson Ricardo Soares, Paulo Alfredo Feitoza Böhm, Rogério Marchiosi, Maria de Lourdes Lucio Ferrarese, Osvaldo Ferrarese-Filho. Cinnamic acid increases lignin production and inhibits soybean root growth. PloS one. 2013; 8(7):e69105. doi: 10.1371/journal.pone.0069105. [PMID: 23922685]
  • Guo-Wei Zhao, Wen Xia, Ping Chen, En-Ji Han, Lan Xiang. [Study on the bioactive constituents of Piper wallichii]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Jan; 35(1):53-6. doi: . [PMID: 22734410]
  • Gisele Adriana Bubna, Rogério Barbosa Lima, Daniele Yara Lucca Zanardo, Wanderley Dantas Dos Santos, Maria de Lourdes Lucio Ferrarese, Osvaldo Ferrarese-Filho. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). Journal of plant physiology. 2011 Sep; 168(14):1627-33. doi: 10.1016/j.jplph.2011.03.005. [PMID: 21489652]
  • Debabrata Sircar, Adinpunya Mitra. Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota 2: confirming biosynthetic steps through feeding of inhibitors and precursors. Journal of plant physiology. 2009 Sep; 166(13):1370-80. doi: 10.1016/j.jplph.2009.02.006. [PMID: 19342120]
  • R Ranga Rao, Ashok K Tiwari, P Prabhakar Reddy, K Suresh Babu, Amtul Z Ali, K Madhusudana, J Madhusudana Rao. New furanoflavanoids, intestinal alpha-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.). Bioorganic & medicinal chemistry. 2009 Jul; 17(14):5170-5. doi: 10.1016/j.bmc.2009.05.051. [PMID: 19515570]
  • W D dos Santos, M L L Ferrarese, C V Nakamura, K S M Mourão, C A Mangolin, O Ferrarese-Filho. Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. Journal of chemical ecology. 2008 Sep; 34(9):1230-41. doi: 10.1007/s10886-008-9522-3. [PMID: 18626717]
  • Wai Shing Wong, Di Guo, Xiao Li Wang, Zhi Qi Yin, Bing Xia, Ning Li. Study of cis-cinnamic acid in Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2005 Oct; 43(10-11):929-37. doi: 10.1016/j.plaphy.2005.08.008. [PMID: 16310363]
  • Guillaume A Schoch, Georgi N Nikov, William L Alworth, Danièle Werck-Reichhart. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant physiology. 2002 Oct; 130(2):1022-31. doi: 10.1104/pp.004309. [PMID: 12376665]
  • J Chong, M A Pierrel, R Atanassova, D Werck-Reichhart, B Fritig, P Saindrenan. Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant physiology. 2001 Jan; 125(1):318-28. doi: 10.1104/pp.125.1.318. [PMID: 11154339]