Xanthosine (BioDeep_00000001710)

 

Secondary id: BioDeep_00000398755

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-9H-purine-2,6-diol

化学式: C10H12N4O6 (284.0757)
中文名称: 黄嘌呤核苷, 黄苷, 黄嘌呤
谱图信息: 最多检出来源 Homo sapiens(plant) 9.68%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Xanthosine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/xanthosine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001710). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c2[nH]c(=O)[nH]c3=O)O1)O)O)O
InChI: InChI=1S/C10H12N4O6/c15-1-3-5(16)6(17)9(20-3)14-2-11-4-7(14)12-10(19)13-8(4)18/h2-3,5-6,9,15-17H,1H2,(H2,12,13,18,19)

描述信息

Xanthosine, also known as xanthine riboside, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine exists in all living species, ranging from bacteria to plants to humans. In plants xanthosine is the biosynthetic precursor to 7-methylxanthosine which is produced by the action of the enzyme known as 7-methylxanthosine synthase. 7-Methylxanthosine in turn is the precursor to theobromine (the active alkaloid in chocolate), which in turn is the precursor to caffeine, the active alkaloid in coffee and tea. Within humans, xanthosine participates in a number of enzymatic reactions. In particular, xanthosine can be biosynthesized from xanthylic acid; which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In addition, xanthosine can be converted into xanthine and ribose 1-phosphate; which is mediated by the enzyme purine nucleoside phosphorylase. Xanthosine monophosphate (XMP) is an intermediate in purine metabolism, formed from IMP (inosine monophosphate).
Biological Source: Production by guanine-free mutants of bacteria e.g. Bacillus subtilis, Aerobacter aerogenesand is also reported from seeds of Trifolium alexandrinum Physical Description: Prismatic cryst. (H2O) (Chemnetbase) The deamination product of guanosine; Xanthosine monophosphate is an intermediate in purine metabolism, formed from IMP, and forming GMP.; Xanthylic acid can be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism, as recommended to ensure optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Xanthosine is found in many foods, some of which are calabash, rambutan, apricot, and pecan nut.
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE standard compound; INTERNAL_ID 126
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].

同义名列表

24 个代谢物同义名

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-9H-purine-2,6-diol; 9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purine-2,6-diol; 3,9-Dihydro-9-beta-delta-ribofuranosyl-1H-purine-2,6-dione; 9-beta-D-Ribofuranosyl-3,9-dihydro-1H-purine-2,6-dione; 3,9-Dihydro-9-delta-ribofuranosyl-1H-purine-2,6-dione; 3,9-Dihydro-9-b-D-ribofuranosyl-1H-purine-2,6-dione; 9-Β-D-ribofuranosyl-3,9-dihydro-1H-purine-2,6-dione; 9-b-D-Ribofuranosyl-3,9-dihydro-1H-purine-2,6-dione; 3,9-Dihydro-9-D-ribofuranosyl-1H-purine-2,6-dione; 9-beta-delta-Ribofuranosylxanthine; Xanthine 9-beta-D-ribofuranoside; 9-beta-D-Ribofuranosylxanthine; 9 beta-D-Ribofuranosylxanthine; Xanthine 9-β-D-ribofuranoside; Xanthine 9-b-D-ribofuranoside; 9-delta-Ribofuranosylxanthine; 9-Β-D-ribofuranosylxanthine; 9-b-D-Ribofuranosylxanthine; 9-D-Ribofuranosylxanthine; Xanthine riboside; Xanthosine; Xanthosine; Xanthosine; Xanthosine



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(6)

PlantCyc(7)

代谢反应

701 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(117)

WikiPathways(3)

Plant Reactome(3)

INOH(2)

PlantCyc(527)

COVID-19 Disease Map(2)

PathBank(47)

PharmGKB(0)

76 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ADA, AKT1, ALDH1A1, ALDH3B1, APRT, CSN2, DGUOK, EGFR, EMP2, NT5C2, PNP, XDH
Peripheral membrane protein 1 ADA
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 1 EGFR
Nucleus 7 ADK, AKT1, CSN2, DGUOK, EGFR, EMP2, FABP3
cytosol 13 ADA, ADK, AKT1, ALDH1A1, ALDH3B1, APRT, CSN2, DGUOK, FABP3, GDA, NT5C2, PNP, XDH
nucleoplasm 4 ADK, AKT1, APRT, CSN2
Cell membrane 5 ADA, AKT1, ALDH3B1, EGFR, EMP2
Lipid-anchor 1 ALDH3B1
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Cell projection, axon 1 ALDH1A1
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 EMP2, GDA
Golgi apparatus membrane 1 EMP2
Synapse 1 ALDH1A1
cell cortex 1 AKT1
cell junction 2 ADA, EGFR
cell surface 3 ADA, EGFR, EMP2
glutamatergic synapse 2 AKT1, EGFR
Golgi apparatus 1 EMP2
Golgi membrane 4 EGFR, EMP2, INS, LALBA
mitochondrial inner membrane 1 GDA
postsynapse 1 AKT1
Cytoplasm, cytosol 2 ALDH1A1, NT5C2
Lysosome 1 ADA
endosome 1 EGFR
plasma membrane 7 ADA, ADK, AKT1, ALDH3B1, EGFR, EMP2, GCG
Membrane 5 ADA, AKT1, EGFR, EMP2, FNDC3B
apical plasma membrane 2 EGFR, EMP2
axon 1 ALDH1A1
basolateral plasma membrane 1 EGFR
extracellular exosome 5 ALDH1A1, ALDH3B1, APRT, FABP3, PNP
extracellular space 8 CSN2, EGFR, FABP3, GCG, INS, LALBA, PNP, XDH
perinuclear region of cytoplasm 2 EGFR, EMP2
mitochondrion 2 DGUOK, GDA
protein-containing complex 3 AKT1, EGFR, LALBA
Single-pass type I membrane protein 1 EGFR
Secreted 5 CSN2, GCG, INS, LALBA, PNP
extracellular region 5 APRT, CSN2, GCG, INS, PNP
Single-pass membrane protein 1 FNDC3B
mitochondrial matrix 1 DGUOK
Extracellular side 1 ADA
Cytoplasmic vesicle lumen 1 ADA
anchoring junction 1 ADA
nuclear membrane 1 EGFR
external side of plasma membrane 1 ADA
cytoplasmic vesicle 1 EMP2
microtubule cytoskeleton 1 AKT1
apical part of cell 1 EMP2
cell-cell junction 1 AKT1
vesicle 2 AKT1, ALDH3B1
Apical cell membrane 1 EMP2
Cytoplasm, perinuclear region 1 EMP2
Mitochondrion inner membrane 1 GDA
Membrane raft 2 EGFR, EMP2
focal adhesion 1 EGFR
spindle 1 AKT1
Peroxisome 1 XDH
intracellular vesicle 1 EGFR
sarcoplasmic reticulum 1 XDH
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
receptor complex 1 EGFR
ciliary basal body 1 AKT1
COP9 signalosome 1 CSN2
endosome lumen 1 INS
specific granule membrane 1 ALDH3B1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 PNP
secretory granule lumen 4 APRT, GCG, INS, PNP
secretory granule membrane 1 ALDH3B1
Golgi lumen 2 INS, LALBA
endoplasmic reticulum lumen 2 GCG, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Cytoplasm 1 ADK
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 ADK
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Glucagon-like peptide 1]: Secreted 1 GCG


文献列表

  • Yan Chen, Leila R Zelnick, Matthew P Huber, Ke Wang, Nisha Bansal, Andrew N Hoofnagle, Rajan K Paranji, Susan R Heckbert, Noel S Weiss, Alan S Go, Chi-Yuan Hsu, Harold I Feldman, Sushrut S Waikar, Rupal C Mehta, Anand Srivastava, Stephen L Seliger, James P Lash, Anna C Porter, Dominic S Raj, Bryan R Kestenbaum. Association Between Kidney Clearance of Secretory Solutes and Cardiovascular Events: The Chronic Renal Insufficiency Cohort (CRIC) Study. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2021 08; 78(2):226-235.e1. doi: 10.1053/j.ajkd.2020.12.005. [PMID: 33421453]
  • Ke Wang, Leila R Zelnick, Yan Chen, Andrew N Hoofnagle, Terry Watnick, Stephen Seliger, Bryan Kestenbaum. Alterations of Proximal Tubular Secretion in Autosomal Dominant Polycystic Kidney Disease. Clinical journal of the American Society of Nephrology : CJASN. 2020 01; 15(1):80-88. doi: 10.2215/cjn.05610519. [PMID: 31628117]
  • Chiara Baccolini, Claus-Peter Witte. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. The Plant cell. 2019 03; 31(3):734-751. doi: 10.1105/tpc.18.00899. [PMID: 30787180]
  • Chao-Jung Chen, Wen-Ling Liao, Chiz-Tzung Chang, Yu-Ning Lin, Fuu-Jen Tsai. Identification of Urinary Metabolite Biomarkers of Type 2 Diabetes Nephropathy Using an Untargeted Metabolomic Approach. Journal of proteome research. 2018 11; 17(11):3997-4007. doi: 10.1021/acs.jproteome.8b00644. [PMID: 30265543]
  • Philipp Opitz, Olf Herbarth, Annerose Seidel, Andreas Boehm, Milos Fischer, Christian Mozet, Andreas Dietz, Gunnar Wichmann. Modified Nucleosides - Molecular Markers Suitable for Small-volume Cancer?. Anticancer research. 2018 Nov; 38(11):6113-6119. doi: 10.21873/anticanres.12962. [PMID: 30396926]
  • Ratan K Choudhary, Shanti Choudhary, Ramneek Verma. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat. Molecular biology reports. 2018 Aug; 45(4):581-590. doi: 10.1007/s11033-018-4196-6. [PMID: 29804277]
  • Eugene P Rhee, Qiong Yang, Bing Yu, Xuan Liu, Susan Cheng, Amy Deik, Kerry A Pierce, Kevin Bullock, Jennifer E Ho, Daniel Levy, Jose C Florez, Sek Kathiresan, Martin G Larson, Ramachandran S Vasan, Clary B Clish, Thomas J Wang, Eric Boerwinkle, Christopher J O'Donnell, Robert E Gerszten. An exome array study of the plasma metabolome. Nature communications. 2016 07; 7(?):12360. doi: 10.1038/ncomms12360. [PMID: 27453504]
  • Jie Zhang, Xiaoli Mu, Yankai Xia, Francis L Martin, Wei Hang, Liangpo Liu, Meiping Tian, Qingyu Huang, Heqing Shen. Metabolomic analysis reveals a unique urinary pattern in normozoospermic infertile men. Journal of proteome research. 2014 Jun; 13(6):3088-99. doi: 10.1021/pr5003142. [PMID: 24796210]
  • Kathleen Dahncke, Claus-Peter Witte. Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis. The Plant cell. 2013 Oct; 25(10):4101-9. doi: 10.1105/tpc.113.117184. [PMID: 24130159]
  • Agneta Kiss, Marianna Lucio, Aurélie Fildier, Corinne Buisson, Philippe Schmitt-Kopplin, Cécile Cren-Olivé. Doping control using high and ultra-high resolution mass spectrometry based non-targeted metabolomics-a case study of salbutamol and budesonide abuse. PloS one. 2013; 8(9):e74584. doi: 10.1371/journal.pone.0074584. [PMID: 24058591]
  • Yun Liu, Pinhua Yu, Xiaoming Sun, Duolong Di. Metabolite target analysis of human urine combined with pattern recognition techniques for the study of symptomatic gout. Molecular bioSystems. 2012 Nov; 8(11):2956-63. doi: 10.1039/c2mb25227a. [PMID: 22932763]
  • C A Bourke. Motor neurone disease in molybdenum-deficient sheep fed the endogenous purine xanthosine: possible mechanism for Tribulus staggers. Australian veterinary journal. 2012 Jul; 90(7):272-4. doi: 10.1111/j.1751-0813.2012.00947.x. [PMID: 22731949]
  • Nari Son, Haeng Jeon Hur, Mi Jeong Sung, Myung-Sunny Kim, Jin-Taek Hwang, Jae Ho Park, Hye Jeong Yang, Dae Young Kwon, Suk Hoo Yoon, Hae Young Chung, Hyun-Jin Kim. Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from aged rats. Journal of proteome research. 2012 Apr; 11(4):2551-8. doi: 10.1021/pr201263q. [PMID: 22380686]
  • Zu-fei Feng, Xiao-fen Chen, Duo-long Di. Online extraction and isolation of highly polar chemical constituents from Brassica napus L. pollen by high shear technique coupled with high-performance counter-current chromatography. Journal of separation science. 2012 Mar; 35(5-6):625-32. doi: 10.1002/jssc.201100992. [PMID: 22517637]
  • Dapo Akingbade, Philip J Kingsley, Sarah C Shuck, Tracy Cooper, Robert Carnahan, Jozef Szekely, Lawrence J Marnett. Selection of monoclonal antibodies against 6-oxo-M(1)dG and their use in an LC-MS/MS assay for the presence of 6-oxo-M(1)dG in vivo. Chemical research in toxicology. 2012 Feb; 25(2):454-61. doi: 10.1021/tx200494h. [PMID: 22211372]
  • Guangguo Tan, Wenting Liao, Xin Dong, Genjing Yang, Zhenyu Zhu, Wuhong Li, Yifeng Chai, Ziyang Lou. Metabonomic profiles delineate the effect of traditional Chinese medicine sini decoction on myocardial infarction in rats. PloS one. 2012; 7(4):e34157. doi: 10.1371/journal.pone.0034157. [PMID: 22493681]
  • Stefanie Cornelius, Sandra Witz, Hardy Rolletschek, Torsten Möhlmann. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. Journal of experimental botany. 2011 Nov; 62(15):5623-32. doi: 10.1093/jxb/err251. [PMID: 21865177]
  • Heike Riegler, Claudia Geserick, Rita Zrenner. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. The New phytologist. 2011 Jul; 191(2):349-359. doi: 10.1111/j.1469-8137.2011.03711.x. [PMID: 21599668]
  • Benjamin Jung, Christiane Hoffmann, Torsten Möhlmann. Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. The Plant journal : for cell and molecular biology. 2011 Mar; 65(5):703-11. doi: 10.1111/j.1365-313x.2010.04455.x. [PMID: 21235647]
  • Cheng-Ying Shi, Hua Yang, Chao-Ling Wei, Oliver Yu, Zheng-Zhu Zhang, Chang-Jun Jiang, Jun Sun, Ye-Yun Li, Qi Chen, Tao Xia, Xiao-Chun Wan. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC genomics. 2011 Feb; 12(?):131. doi: 10.1186/1471-2164-12-131. [PMID: 21356090]
  • Hiroshi Ashihara, Misako Kato, Alan Crozier. Distribution, biosynthesis and catabolism of methylxanthines in plants. Handbook of experimental pharmacology. 2011; ?(200):11-31. doi: 10.1007/978-3-642-13443-2_2. [PMID: 20859792]
  • Wei-Wei Deng, Hiroshi Ashihara. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings. Plant & cell physiology. 2010 Dec; 51(12):2105-18. doi: 10.1093/pcp/pcq175. [PMID: 21071429]
  • Luis González-Candelas, Santiago Alamar, Paloma Sánchez-Torres, Lorenzo Zacarías, Jose F Marcos. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC plant biology. 2010 Aug; 10(?):194. doi: 10.1186/1471-2229-10-194. [PMID: 20807411]
  • Ning Ma, Mikio Sasoh, Shosuke Kawanishi, Hiromichi Sugiura, Fengyuan Piao. Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. Journal of biomedical science. 2010 Aug; 17 Suppl 1(?):S7. doi: 10.1186/1423-0127-17-s1-s7. [PMID: 20804627]
  • Sudha Rana, Raj Kumar, Sarwat Sultana, Rakesh Kumar Sharma. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses. Journal of pharmacy & bioallied sciences. 2010 Jul; 2(3):189-96. doi: 10.4103/0975-7406.68500. [PMID: 21829314]
  • Jeffrey K Yao, George G Dougherty, Ravinder D Reddy, Matcheri S Keshavan, Debra M Montrose, Wayne R Matson, Joseph McEvoy, Rima Kaddurah-Daouk. Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia. PloS one. 2010 Mar; 5(3):e9508. doi: 10.1371/journal.pone.0009508. [PMID: 20209081]
  • Misako Kato, Naoko Kitao, Mariko Ishida, Hanayo Morimoto, Fumi Irino, Kouichi Mizuno. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2010 Mar; 65(3-4):245-56. doi: 10.1515/znc-2010-3-413. [PMID: 20469645]
  • Rahul C Deo, Luke Hunter, Gregory D Lewis, Guillaume Pare, Ramachandran S Vasan, Daniel Chasman, Thomas J Wang, Robert E Gerszten, Frederick P Roth. Interpreting metabolomic profiles using unbiased pathway models. PLoS computational biology. 2010 Feb; 6(2):e1000692. doi: 10.1371/journal.pcbi.1000692. [PMID: 20195502]
  • T Maiguma, T Yosida, K Otsubo, Y Okabe, A Sugitani, M Tanaka, R Oishi, D Teshima. Evaluation of inosin-5'-monophosphate dehydrogenase activity during maintenance therapy with tacrolimus. Journal of clinical pharmacy and therapeutics. 2010 Feb; 35(1):79-85. doi: 10.1111/j.1365-2710.2009.01072.x. [PMID: 20175815]
  • Paolo Mannelli, Ashwin Patkar, Steve Rozen, Wayne Matson, Ranga Krishnan, Rima Kaddurah-Daouk. Opioid use affects antioxidant activity and purine metabolism: preliminary results. Human psychopharmacology. 2009 Dec; 24(8):666-75. doi: 10.1002/hup.1068. [PMID: 19760630]
  • Ashwin A Patkar, Steve Rozen, Paolo Mannelli, Wayne Matson, Chi-Un Pae, K Ranga Krishnan, Rima Kaddurah-Daouk. Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study. Psychopharmacology. 2009 Oct; 206(3):479-89. doi: 10.1007/s00213-009-1625-1. [PMID: 19649617]
  • Yongqing Jiang, Yinfa Ma. A fast capillary electrophoresis method for separation and quantification of modified nucleosides in urinary samples. Analytical chemistry. 2009 Aug; 81(15):6474-80. doi: 10.1021/ac901216n. [PMID: 19552424]
  • John B Tyburski, Andrew D Patterson, Kristopher W Krausz, Josef Slavík, Albert J Fornace, Frank J Gonzalez, Jeffrey R Idle. Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice. Radiation research. 2009 Jul; 172(1):42-57. doi: 10.1667/rr1703.1. [PMID: 19580506]
  • Carsten Henneges, Dino Bullinger, Richard Fux, Natascha Friese, Harald Seeger, Hans Neubauer, Stefan Laufer, Christoph H Gleiter, Matthias Schwab, Andreas Zell, Bernd Kammerer. Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection. BMC cancer. 2009 Apr; 9(?):104. doi: 10.1186/1471-2407-9-104. [PMID: 19344524]
  • M Sharaf. Chemical constituents from the seeds of Trifolium alexandrinum. Natural product research. 2008 Dec; 22(18):1620-3. doi: 10.1080/14786410701869226. [PMID: 19085418]
  • Yeyun Li, Shinjiro Ogita, Chaman Ara Keya, Hiroshi Ashihara. Expression of caffeine biosynthesis genes in tea (Camellia sinensis). Zeitschrift fur Naturforschung. C, Journal of biosciences. 2008 Mar; 63(3-4):267-70. doi: 10.1515/znc-2008-3-417. [PMID: 18533472]
  • Michael G Cornelius, Heinz H Schmeiser. RNA analysis by MEKC with LIF detection. Electrophoresis. 2007 Nov; 28(21):3901-7. doi: 10.1002/elps.200700127. [PMID: 17922502]
  • Andrew A McCarthy, James G McCarthy. The structure of two N-methyltransferases from the caffeine biosynthetic pathway. Plant physiology. 2007 Jun; 144(2):879-89. doi: 10.1104/pp.106.094854. [PMID: 17434991]
  • A Panattoni, F D'Anna, E Triolo. Antiviral activity of tiazofurin and mycophenolic acid against Grapevine leafroll-associated virus 3 in Vitis vinifera explants. Antiviral research. 2007 Mar; 73(3):206-11. doi: 10.1016/j.antiviral.2006.10.007. [PMID: 17125850]
  • Yun-Soo Kim, Hirotaka Uefuji, Shinjiro Ogita, Hiroshi Sano. Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic research. 2006 Dec; 15(6):667-72. doi: 10.1007/s11248-006-9006-6. [PMID: 17091387]
  • Nils Tore Vethe, Stein Bergan. Determination of inosine monophosphate dehydrogenase activity in human CD4+ cells isolated from whole blood during mycophenolic acid therapy. Therapeutic drug monitoring. 2006 Oct; 28(5):608-13. doi: 10.1097/01.ftd.0000245680.38143.ca. [PMID: 17038874]
  • Robin Tuytten, Filip Lemière, Eddy L Esmans, Wouter A Herrebout, Benjamin J van der Veken, Ed Dudley, Russell P Newton, Erwin Witters. In-source CID of guanosine: gas phase ion-molecule reactions. Journal of the American Society for Mass Spectrometry. 2006 Aug; 17(8):1050-1062. doi: 10.1016/j.jasms.2006.03.012. [PMID: 16750381]
  • Maciej Szuwart, Elzbieta Starzyńska, Małgorzata Pietrowska-Borek, Andrzej Guranowski. Calcium-stimulated guanosine--inosine nucleosidase from yellow lupin (Lupinus luteus). Phytochemistry. 2006 Jul; 67(14):1476-85. doi: 10.1016/j.phytochem.2006.05.021. [PMID: 16820181]
  • I M Rusina, A F Makarchikov, E A Makar, V L Kubyshin. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes]. Biomeditsinskaia khimiia. 2006 Jul; 52(4):364-9. doi: NULL. [PMID: 17044594]
  • A Seidel, S Brunner, P Seidel, G I Fritz, O Herbarth. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. British journal of cancer. 2006 Jun; 94(11):1726-33. doi: 10.1038/sj.bjc.6603164. [PMID: 16685264]
  • Barbara Tavazzi, Giuseppe Lazzarino, Paola Leone, Angela Maria Amorini, Francesco Bellia, Christopher G Janson, Valentina Di Pietro, Lia Ceccarelli, Sonia Donzelli, Jeremy S Francis, Bruno Giardina. Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clinical biochemistry. 2005 Nov; 38(11):997-1008. doi: 10.1016/j.clinbiochem.2005.08.002. [PMID: 16139832]
  • K V Satyanarayana, Vinod Kumar, A Chandrashekar, G A Ravishankar. Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora. Journal of biotechnology. 2005 Sep; 119(1):20-5. doi: 10.1016/j.jbiotec.2005.06.008. [PMID: 16043251]
  • Hirotaka Uefuji, Yuko Tatsumi, Masayuki Morimoto, Pulla Kaothien-Nakayama, Shinjiro Ogita, Hiroshi Sano. Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant molecular biology. 2005 Sep; 59(2):221-7. doi: 10.1007/s11103-005-8520-x. [PMID: 16247553]
  • Shu-ou Shan, Peter Walter. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Biochemistry. 2005 Apr; 44(16):6214-22. doi: 10.1021/bi0500980. [PMID: 15835909]
  • Hiroshi Ashihara, Takeo Suzuki. Distribution and biosynthesis of caffeine in plants. Frontiers in bioscience : a journal and virtual library. 2004 May; 9(?):1864-76. doi: 10.2741/1367. [PMID: 14977593]
  • Edward Dudley, Filip Lemière, Walter Van Dongen, Robin Tuytten, Salah El-Sharkawi, A Gareth Brenton, Eddy L Esmans, Russell P Newton. Analysis of urinary nucleosides. IV. Identification of urinary purine nucleosides by liquid chromatography/electrospray mass spectrometry. Rapid communications in mass spectrometry : RCM. 2004; 18(22):2730-8. doi: 10.1002/rcm.1685. [PMID: 15499664]
  • Henrik Aronsson, Jonathan Combe, Paul Jarvis. Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS letters. 2003 Jun; 544(1-3):79-85. doi: 10.1016/s0014-5793(03)00478-2. [PMID: 12782294]
  • Hirotaka Uefuji, Shinjiro Ogita, Yube Yamaguchi, Nozomu Koizumi, Hiroshi Sano. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant physiology. 2003 May; 132(1):372-80. doi: 10.1104/pp.102.019679. [PMID: 12746542]
  • Kouichi Mizuno, Akira Okuda, Misako Kato, Naho Yoneyama, Hiromi Tanaka, Hiroshi Ashihara, Tatsuhito Fujimura. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS letters. 2003 Jan; 534(1-3):75-81. doi: 10.1016/s0014-5793(02)03781-x. [PMID: 12527364]
  • D F Smee, M Bray, J W Huggins. Intracellular phosphorylation of carbocyclic 3-deazaadenosine, an anti-Ebola virus agent. Antiviral chemistry & chemotherapy. 2001 Jul; 12(4):251-8. doi: 10.1177/095632020101200406. [PMID: 11771734]
  • H O Kim, X D Ji, N Melman, M E Olah, G L Stiles, K A Jacobson. Selective ligands for rat A3 adenosine receptors: structure-activity relationships of 1,3-dialkylxanthine 7-riboside derivatives. Journal of medicinal chemistry. 1994 Nov; 37(23):4020-30. doi: 10.1021/jm00049a021. [PMID: 7966162]
  • . . . . doi: . [PMID: 16845529]