Phycocyanobilin (BioDeep_00000005950)
Secondary id: BioDeep_00001870474
代谢物信息卡片
化学式: C33H38N4O6 (586.2791)
中文名称: 藻蓝素
谱图信息:
最多检出来源 Homo sapiens(otcml) 4.6%
Last reviewed on 2024-07-12.
Cite this Page
Phycocyanobilin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/phycocyanobilin (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000005950). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC=C1C(=CC2=NC(=Cc3[nH]c(C=C4NC(=O)C(CC)=C4C)c(C)c3CCC(=O)O)C(CCC(=O)O)=C2C)NC(=O)C1C
InChI: InChI=1S/C33H38N4O6/c1-7-20-19(6)32(42)37-27(20)14-25-18(5)23(10-12-31(40)41)29(35-25)15-28-22(9-11-30(38)39)17(4)24(34-28)13-26-16(3)21(8-2)33(43)36-26/h7,13-15,19,34-35H,8-12H2,1-6H3,(H,37,42)(H,38,39)(H,40,41)/b20-7+,24-13+,27-14-,28-15-
描述信息
Phycocyanobilin is a linear, open-chain tetrapyrrole pigment that belongs to the family of bilins. It serves as a chromophore in various phytochrome photoreceptors found in cyanobacteria, as well as in the chlorosomes of green sulfur bacteria. Phycocyanobilin is a key component of phycobiliproteins, which are water-soluble pigments involved in light harvesting during photosynthesis.
**Chemical Structure:**
Phycocyanobilin has a molecular formula of C33H36N4O6 and a molecular weight of approximately 596.67 g/mol. Structurally, it consists of a porphyrin backbone with four pyrrole rings connected by methine bridges. The pyrrole rings contain nitrogen atoms that coordinate a central magnesium ion in phycobiliproteins. Unlike chlorophyll, phycocyanobilin has an open-chain structure due to the presence of a double bond between the C-20 and C-21 positions of the macrocyclic ring, which prevents it from forming a fully circular porphyrin ring.
**Properties:**
- **Color:** Phycocyanobilin imparts a blue color to the phycobiliproteins in which it is bound. The specific color is due to the electronic structure of the phycocyanobilin molecule, which allows it to absorb light in the red region of the visible spectrum, typically around 620-630 nm.
- **Solubility:** Unlike many other pigments, phycocyanobilin is water-soluble due to its binding to phycobiliproteins, which enhances its functionality in the thylakoid membranes of cyanobacteria.
- **Chemical Reactivity:** Phycocyanobilin can be isomerized and oxidized to form other bilins, such as phycoerythrobilin and phycourobilin, which have different spectral properties and can be found in different phycobiliproteins.
**Biological Role:**
Phycocyanobilin plays a critical role in the photosynthetic process of cyanobacteria and certain green sulfur bacteria. Its primary functions include:
- **Light Harvesting:** In phycobiliproteins like phycocyanin, phycocyanobilin serves as a light-harvesting antenna. It absorbs light energy and transfers it to the photosynthetic reaction centers, where it is used to drive the synthesis of ATP and NADPH.
- **Photoregulation:** In cyanobacteria, phycocyanobilin is also involved in the regulation of photosynthesis through the action of phytochrome-like photoreceptors. These photoreceptors can switch between a Pr (red-absorbing) and a Pfr (far-red-absorbing) form in response to light, regulating gene expression and various metabolic processes.
**Synthesis:**
Phycocyanobilin is synthesized from the amino acid L-arginine through a series of enzymatic reactions that include the production of 5-aminolevulinic acid (ALA), which is then transformed into protoporphyrin IX. The protoporphyrin IX is subsequently modified to form phycocyanobilin, a process that involves the removal of the macrocyclic ring and the introduction of the double bond at the C-20 and C-21 positions.
In summary, phycocyanobilin is an essential pigment for the photosynthetic apparatus of certain photosynthetic organisms, contributing to their ability to capture and utilize light energy for the production of organic compounds. Its unique structure and properties allow it to perform a variety of functions that are critical to the survival and ecological success of these organisms.
同义名列表
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:47957
- ChEBI: CHEBI:15617
- ChEBI: CHEBI:47955
- KEGG: C05786
- PubChem: 20055378
- PubChem: 54611329
- PubChem: 365902
- PubChem: 5280816
- ChEMBL: CHEMBL2003283
- CAS: 20298-86-6
- PMhub: MS000186959
- PMhub: MS000125120
- PMhub: MS000111872
- PMhub: MS000018864
- 3DMET: B01894
- NIKKAJI: J2.759.269D
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- phycocyanobilin biosynthesis:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + ferroheme b ⟶ Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase] + biliverdin-IX-α + carbon monoxide
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yi Li. The Bioactivities of Phycocyanobilin from Spirulina.
Journal of immunology research.
2022; 2022(?):4008991. doi:
10.1155/2022/4008991
. [PMID: 35726224] - Manisha Banerjee, Prakash Kalwani, Dhiman Chakravarty, Beena Singh, Anand Ballal. Functional and mechanistic insights into the differential effect of the toxicant 'Se(IV)' in the cyanobacterium Anabaena PCC 7120.
Aquatic toxicology (Amsterdam, Netherlands).
2021 Jul; 236(?):105839. doi:
10.1016/j.aquatox.2021.105839
. [PMID: 34015754] - Takanari Kamo, Toshihiko Eki, Yuu Hirose. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling.
Plant & cell physiology.
2021 May; 62(2):334-347. doi:
10.1093/pcp/pcaa164
. [PMID: 33386854] - Erick Garcia-Pliego, Margarita Franco-Colin, Plácido Rojas-Franco, Vanessa Blas-Valdivia, Jose Ivan Serrano-Contreras, Giselle Pentón-Rol, Edgar Cano-Europa. Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury.
Food & function.
2021 Apr; 12(7):2985-2994. doi:
10.1039/d0fo03294h
. [PMID: 33704296] - Giselle Pentón-Rol, Javier Marín-Prida, Mark F McCarty. C-Phycocyanin-derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19- induced Damage to the Nervous System.
Current neuropharmacology.
2021; 19(12):2250-2275. doi:
10.2174/1570159x19666210408123807
. [PMID: 33829974] - Beatriz Piniella- Matamoros, Javier Marin- Prida, Giselle Penton- Rol. Nutraceutical and therapeutic potential of Phycocyanobilin for treating Alzheimer's disease.
Journal of biosciences.
2021; 46(?):. doi:
. [PMID: 34047285]
- Fangfang Wang, Jun Fang, Kaoling Guan, Shengji Luo, Vivek Dogra, Bingqi Li, Demin Ma, Xinyan Zhao, Keun Pyo Lee, Pengkai Sun, Jian Xin, Tong Liu, Weiman Xing, Chanhong Kim. The Arabidopsis CRUMPLED LEAF protein, a homolog of the cyanobacterial bilin lyase, retains the bilin-binding pocket for a yet unknown function.
The Plant journal : for cell and molecular biology.
2020 11; 104(4):964-978. doi:
10.1111/tpj.14974
. [PMID: 32860438] - Lena Hochrein, Leslie A Mitchell, Karina Schulz, Katrin Messerschmidt, Bernd Mueller-Roeber. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
Nature communications.
2018 05; 9(1):1931. doi:
10.1038/s41467-017-02208-6
. [PMID: 29789561] - Majel Cervantes-Llanos, Nielsen Lagumersindez-Denis, Javier Marín-Prida, Nancy Pavón-Fuentes, Viviana Falcon-Cama, Beatriz Piniella-Matamoros, Hanlet Camacho-Rodríguez, Julio Raúl Fernández-Massó, Carmen Valenzuela-Silva, Ivette Raíces-Cruz, Eduardo Pentón-Arias, Mauro Martins Teixeira, Giselle Pentón-Rol. Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis.
Life sciences.
2018 Feb; 194(?):130-138. doi:
10.1016/j.lfs.2017.12.032
. [PMID: 29287781] - Simeon Minic, Dragana Stanic-Vucinic, Mirjana Radomirovic, Milica Radibratovic, Milos Milcic, Milan Nikolic, Tanja Cirkovic Velickovic. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin.
Food chemistry.
2018 Jan; 239(?):1090-1099. doi:
10.1016/j.foodchem.2017.07.066
. [PMID: 28873526] - Mark F McCarty, Simon Iloki-Assanga. Co-administration of Phycocyanobilin and/or Phase 2-Inducer Nutraceuticals for Prevention of Opiate Tolerance.
Current pharmaceutical design.
2018; 24(20):2250-2254. doi:
10.2174/1381612824666180723162730
. [PMID: 30039753] - Youichi Uda, Yuhei Goto, Shigekazu Oda, Takayuki Kohchi, Michiyuki Matsuda, Kazuhiro Aoki. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.
Proceedings of the National Academy of Sciences of the United States of America.
2017 11; 114(45):11962-11967. doi:
10.1073/pnas.1707190114
. [PMID: 29078307] - Lena Hochrein, Fabian Machens, Katrin Messerschmidt, Bernd Mueller-Roeber. PhiReX: a programmable and red light-regulated protein expression switch for yeast.
Nucleic acids research.
2017 Sep; 45(15):9193-9205. doi:
10.1093/nar/gkx610
. [PMID: 28911120] - Nathan C Rockwell, Shelley S Martin, Fay-Wei Li, Sarah Mathews, John Clark Lagarias. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2.
The New phytologist.
2017 May; 214(3):1145-1157. doi:
10.1111/nph.14422
. [PMID: 28106912] - Milica Radibratovic, Simeon Minic, Dragana Stanic-Vucinic, Milan Nikolic, Milos Milcic, Tanja Cirkovic Velickovic. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study.
PloS one.
2016; 11(12):e0167973. doi:
10.1371/journal.pone.0167973
. [PMID: 27959940] - Jie Liu, Qing-Yu Zhang, Li-Ming Yu, Bin Liu, Ming-Yi Li, Run-Zhi Zhu. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice.
World journal of gastroenterology.
2015 May; 21(18):5465-72. doi:
10.3748/wjg.v21.i18.5465
. [PMID: 25987768] - Katrin Anders, Grazia Daminelli-Widany, Maria Andrea Mroginski, David von Stetten, Lars-Oliver Essen. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.
The Journal of biological chemistry.
2013 Dec; 288(50):35714-25. doi:
10.1074/jbc.m113.510461
. [PMID: 24174528] - Zbynek Strasky, Lenka Zemankova, Ivana Nemeckova, Jana Rathouska, Ronald J Wong, Lucie Muchova, Iva Subhanova, Jana Vanikova, Katerina Vanova, Libor Vitek, Petr Nachtigal. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis.
Food & function.
2013 Nov; 4(11):1586-94. doi:
10.1039/c3fo60230c
. [PMID: 24056745] - Deqiang Duanmu, David Casero, Rachel M Dent, Sean Gallaher, Wenqiang Yang, Nathan C Rockwell, Shelley S Martin, Matteo Pellegrini, Krishna K Niyogi, Sabeeha S Merchant, Arthur R Grossman, J Clark Lagarias. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Feb; 110(9):3621-6. doi:
10.1073/pnas.1222375110
. [PMID: 23345435] - Jing Zheng, Toyoshi Inoguchi, Shuji Sasaki, Yasutaka Maeda, Mark F McCarty, Masakazu Fujii, Noriko Ikeda, Kunihisa Kobayashi, Noriyuki Sonoda, Ryoichi Takayanagi. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress.
American journal of physiology. Regulatory, integrative and comparative physiology.
2013 Jan; 304(2):R110-20. doi:
10.1152/ajpregu.00648.2011
. [PMID: 23115122] - Chen Song, Lars-Oliver Essen, Wolfgang Gärtner, Jon Hughes, Jörg Matysik. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A.
Molecular plant.
2012 May; 5(3):698-715. doi:
10.1093/mp/sss017
. [PMID: 22419823] - Rui Yang, Kaori Nishiyama, Ayumi Kamiya, Yutaka Ukaji, Katsuhiko Inomata, Tilman Lamparter. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis.
The Plant cell.
2012 May; 24(5):1936-51. doi:
10.1105/tpc.111.094656
. [PMID: 22582099] - Mark F McCarty. Marinobufagenin and cyclic strain may activate endothelial NADPH oxidase, contributing to the adverse impact of salty diets on vascular and cerebral health.
Medical hypotheses.
2012 Feb; 78(2):191-6. doi:
10.1016/j.mehy.2011.09.028
. [PMID: 21968275] - Chen Song, Georgios Psakis, Christina Lang, Jo Mailliet, Jan Zaanen, Wolfgang Gärtner, Jon Hughes, Jörg Matysik. On the collective nature of phytochrome photoactivation.
Biochemistry.
2011 Dec; 50(51):10987-9. doi:
10.1021/bi201504a
. [PMID: 22124256] - Rei Narikawa, Fumiko Suzuki, Shizue Yoshihara, Sho-ichi Higashi, Masakatsu Watanabe, Masahiko Ikeuchi. Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803.
Plant & cell physiology.
2011 Dec; 52(12):2214-24. doi:
10.1093/pcp/pcr155
. [PMID: 22065076] - Angela Strambi, Bo Durbeej. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
2011 Apr; 10(4):569-79. doi:
10.1039/c0pp00307g
. [PMID: 21253657] - Maria Andrea Mroginski, Steve Kaminski, David von Stetten, Simone Ringsdorf, Wolfgang Gärtner, Lars-Oliver Essen, Peter Hildebrandt. Structure of the chromophore binding pocket in the Pr state of plant phytochrome phyA.
The journal of physical chemistry. B.
2011 Feb; 115(5):1220-31. doi:
10.1021/jp108265h
. [PMID: 21192668] - Serena Benedetti, Francesca Benvenuti, Stefano Scoglio, Franco Canestrari. Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae.
Journal of medicinal food.
2010 Feb; 13(1):223-7. doi:
10.1089/jmf.2008.0257
. [PMID: 20136460] - Mark F McCarty, Jorge Barroso-Aranda, Francisco Contreras. Genistein and phycocyanobilin may prevent hepatic fibrosis by suppressing proliferation and activation of hepatic stellate cells.
Medical hypotheses.
2009 Mar; 72(3):330-2. doi:
10.1016/j.mehy.2008.07.045
. [PMID: 18789597] - Daniel H Murgida, David von Stetten, Peter Hildebrandt, Pascale Schwinté, Friedrich Siebert, Shivani Sharda, Wolfgang Gärtner, Maria Andrea Mroginski. The chromophore structures of the Pr States in plant and bacterial phytochromes.
Biophysical journal.
2007 Oct; 93(7):2410-7. doi:
10.1529/biophysj.107.108092
. [PMID: 17545245] - Takami Ishizuka, Rei Narikawa, Takayuki Kohchi, Mitsunori Katayama, Masahiko Ikeuchi. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore.
Plant & cell physiology.
2007 Sep; 48(9):1385-90. doi:
10.1093/pcp/pcm106
. [PMID: 17715149] - S Sharda, R Shah, W Gärtner. Domain interaction in cyanobacterial phytochromes as a prerequisite for spectral integrity.
European biophysics journal : EBJ.
2007 Sep; 36(7):815-21. doi:
10.1007/s00249-007-0171-1
. [PMID: 17522854] - Marianne Jaubert, Jérôme Lavergne, Joël Fardoux, Laure Hannibal, Laurie Vuillet, Jean-Marc Adriano, Pierre Bouyer, David Pignol, Eric Giraud, André Verméglio. A singular bacteriophytochrome acquired by lateral gene transfer.
The Journal of biological chemistry.
2007 Mar; 282(10):7320-8. doi:
10.1074/jbc.m611173200
. [PMID: 17218312] - Shizue Yoshihara, Takashi Shimada, Daisuke Matsuoka, Kazunori Zikihara, Takayuki Kohchi, Satoru Tokutomi. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli.
Biochemistry.
2006 Mar; 45(11):3775-84. doi:
10.1021/bi051983l
. [PMID: 16533061] - Kai-Hong Zhao, Yong Ran, Mei Li, Ya-Nan Sun, Ming Zhou, Max Storf, Michaela Kupka, Stefan Böhm, Claudia Bubenzer, Hugo Scheer. Photochromic biliproteins from the cyanobacterium Anabaena sp. PCC 7120: lyase activities, chromophore exchange, and photochromism in phytochrome AphA.
Biochemistry.
2004 Sep; 43(36):11576-88. doi:
10.1021/bi0491548
. [PMID: 15350144] - Benjamin Quest, Wolfgang Gärtner. Chromophore selectivity in bacterial phytochromes: dissecting the process of chromophore attachment.
European journal of biochemistry.
2004 Mar; 271(6):1117-26. doi:
10.1111/j.1432-1033.2004.04015.x
. [PMID: 15009190] - Berthold Borucki, Harald Otto, Gregor Rottwinkel, Jonathan Hughes, Maarten P Heyn, Tilman Lamparter. Mechanism of Cph1 phytochrome assembly from stopped-flow kinetics and circular dichroism.
Biochemistry.
2003 Nov; 42(46):13684-97. doi:
10.1021/bi035511n
. [PMID: 14622015] - Michael D McConnell, Randy Koop, Sergej Vasil'ev, Doug Bruce. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition.
Plant physiology.
2002 Nov; 130(3):1201-12. doi:
10.1104/pp.009845
. [PMID: 12427987] - Karsten Heyne, Johannes Herbst, Dietmar Stehlik, Berta Esteban, Tilman Lamparter, Jon Hughes, Rolf Diller. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin.
Biophysical journal.
2002 Feb; 82(2):1004-16. doi:
10.1016/s0006-3495(02)75460-x
. [PMID: 11806940] - Jasper J van Thor, Klaas J Hellingwerf. Fluorescence resonance energy transfer (FRET) applications using green fluorescent protein. Energy transfer to the endogenous chromophores of phycobilisome light-harvesting complexes.
Methods in molecular biology (Clifton, N.J.).
2002; 183(?):101-19. doi:
10.1385/1-59259-280-5:101
. [PMID: 12136747] - F T Landgraf, C Forreiter, A Hurtado Picó, T Lamparter, J Hughes. Recombinant holophytochrome in Escherichia coli.
FEBS letters.
2001 Nov; 508(3):459-62. doi:
10.1016/s0014-5793(01)02988-x
. [PMID: 11728472] - T Jiang, J P Zhang, W R Chang, D C Liang. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome.
Biophysical journal.
2001 Aug; 81(2):1171-9. doi:
10.1016/s0006-3495(01)75774-8
. [PMID: 11463658] - T Hübschmann, T Börner, E Hartmann, T Lamparter. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803.
European journal of biochemistry.
2001 Apr; 268(7):2055-63. doi:
10.1046/j.1432-1327.2001.02083.x
. [PMID: 11277928] - V B Bhat, K M Madyastha. C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro.
Biochemical and biophysical research communications.
2000 Aug; 275(1):20-5. doi:
10.1006/bbrc.2000.3270
. [PMID: 10944434] - K Eichenberg, I Bäurle, N Paulo, R A Sharrock, W Rüdiger, E Schäfer. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B.
FEBS letters.
2000 Mar; 470(2):107-12. doi:
10.1016/s0014-5793(00)01301-6
. [PMID: 10734217] - F Andel, J T Murphy, J A Haas, M T McDowell, I van der Hoef, J Lugtenburg, J C Lagarias, R A Mathies. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues.
Biochemistry.
2000 Mar; 39(10):2667-76. doi:
10.1021/bi991688z
. [PMID: 10704217] - K H Zhao, M G Deng, M Zheng, M Zhou, A Parbel, M Storf, M Meyer, B Strohmann, H Scheer. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon.
FEBS letters.
2000 Mar; 469(1):9-13. doi:
10.1016/s0014-5793(00)01245-x
. [PMID: 10708746] - J Y Liu, T Jiang, J P Zhang, D C Liang. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A resolution.
The Journal of biological chemistry.
1999 Jun; 274(24):16945-52. doi:
10.1074/jbc.274.24.16945
. [PMID: 10358042] - M Zeidler, T Lamparter, J Hughes, E Hartmann, A Remberg, S Braslavsky, K Schaffner, W Gärtner. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion.
Photochemistry and photobiology.
1998 Dec; 68(6):857-63. doi:
10.1111/j.1751-1097.1998.tb05296.x
. [PMID: 9867036] - A Remberg, I Lindner, T Lamparter, J Hughes, C Kneip, P Hildebrandt, S E Braslavsky, W Gärtner, K Schaffner. Raman spectroscopic and light-induced kinetic characterization of a recombinant phytochrome of the cyanobacterium Synechocystis.
Biochemistry.
1997 Oct; 36(43):13389-95. doi:
10.1021/bi971563z
. [PMID: 9341232] - S H Wu, M T McDowell, J C Lagarias. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum.
The Journal of biological chemistry.
1997 Oct; 272(41):25700-5. doi:
10.1074/jbc.272.41.25700
. [PMID: 9325294] - A Ruddat, P Schmidt, C Gatz, S E Braslavsky, W Gärtner, K Schaffner. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy.
Biochemistry.
1997 Jan; 36(1):103-11. doi:
10.1021/bi962012w
. [PMID: 8993323] - T Kunkel, G Neuhaus, A Batschauer, N H Chua, E Schäfer. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts.
The Plant journal : for cell and molecular biology.
1996 Oct; 10(4):625-36. doi:
10.1046/j.1365-313x.1996.10040625.x
. [PMID: 8893541] - T Kunkel, V Speth, C Büche, E Schäfer. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast.
The Journal of biological chemistry.
1995 Aug; 270(34):20193-200. doi:
10.1074/jbc.270.34.20193
. [PMID: 7650038] - L Li, J T Murphy, J C Lagarias. Continuous fluorescence assay of phytochrome assembly in vitro.
Biochemistry.
1995 Jun; 34(24):7923-30. doi:
10.1021/bi00024a017
. [PMID: 7794904] - L J Jung, C F Chan, A N Glazer. Candidate genes for the phycoerythrocyanin alpha subunit lyase. Biochemical analysis of pecE and pecF interposon mutants.
The Journal of biological chemistry.
1995 May; 270(21):12877-84. doi:
10.1074/jbc.270.21.12877
. [PMID: 7759546] - L Li, J C Lagarias. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae.
Proceedings of the National Academy of Sciences of the United States of America.
1994 Dec; 91(26):12535-9. doi:
10.1073/pnas.91.26.12535
. [PMID: 7809073] - R MacColl, E C Williams, L E Eisele, P McNaughton. Chromophore topography and exciton splitting in phycocyanin 645.
Biochemistry.
1994 May; 33(21):6418-23. doi:
10.1021/bi00187a005
. [PMID: 8204574] - G Rhie, S I Beale. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors.
The Journal of biological chemistry.
1994 Apr; 269(13):9620-6. doi:
. [PMID: 8144549]
- S I Beale. Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria.
Ciba Foundation symposium.
1994; 180(?):156-68; discussion 168. doi:
10.1002/9780470514535.ch9
. [PMID: 7842851] - M J Terry, M D Maines, J C Lagarias. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase.
The Journal of biological chemistry.
1993 Dec; 268(35):26099-106. doi:
. [PMID: 8253726]
- G Shen, S Boussiba, W F Vermaas. Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function.
The Plant cell.
1993 Dec; 5(12):1853-63. doi:
10.1105/tpc.5.12.1853
. [PMID: 8305875] - G J Wedemayer, D G Kidd, D E Wemmer, A N Glazer. Phycobilins of cryptophycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins.
The Journal of biological chemistry.
1992 Apr; 267(11):7315-31. doi:
. [PMID: 1559975]
- L Deforce, K Tomizawa, N Ito, D Farrens, P S Song, M Furuya. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin.
Proceedings of the National Academy of Sciences of the United States of America.
1991 Dec; 88(23):10392-6. doi:
10.1073/pnas.88.23.10392
. [PMID: 1961705] - S I Beale, J Cornejo. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha.
The Journal of biological chemistry.
1991 Nov; 266(33):22333-40. doi:
. [PMID: 1939256]
- S B Brown, J D Houghton, D I Vernon. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin.
Journal of photochemistry and photobiology. B, Biology.
1990 Apr; 5(1):3-23. doi:
10.1016/1011-1344(90)85002-e
. [PMID: 2111391] - T D Elich, J C Lagarias. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro.
The Journal of biological chemistry.
1989 Aug; 264(22):12902-8. doi:
"
. [PMID: 2753895] - S B Brown, J A Holroyd, D I Vernon, Y K Shim, K M Smith. The biosynthesis of the chromophore of phycocyanin. Pathway of reduction of biliverdin to phycocyanobilin.
The Biochemical journal.
1989 Jul; 261(1):259-63. doi:
10.1042/bj2610259
. [PMID: 2505754] - J C Lagarias, A V Klotz, J L Dallas, A N Glazer, J E Bishop, J F O'Connell, H Rapoport. Exclusive A-ring linkage for singly attached phycocyanobilins and phycoerythrobilins in phycobiliproteins. Absence of singly D-ring-linked bilins.
The Journal of biological chemistry.
1988 Sep; 263(26):12977-85. doi:
. [PMID: 3417648]
- J E Bishop, J C Lagarias, J O Nagy, R W Schoenleber, H Rapoport, A V Klotz, A N Glazer. Phycobiliprotein-bilin linkage diversity. I. Structural studies on A- and D-ring-linked phycocyanobilins.
The Journal of biological chemistry.
1986 May; 261(15):6790-6. doi:
. [PMID: 3084489]
- S B Brown, J A Holroyd, D I Vernon, R F Troxler, K M Smith. The effect of N-methylprotoporphyrin IX on the synthesis of photosynthetic pigments in Cyanidium caldarium. Further evidence for the role of haem in the biosynthesis of plant billins.
The Biochemical journal.
1982 Nov; 208(2):487-91. doi:
10.1042/bj2080487
. [PMID: 6760860] - S B Brown, J A Holroyd, R F Troxler, G D Offner. Bile pigment synthesis in plants. Incorporation of haem into phycocyanobilin and phycobiliproteins in Cyanidium caldarium.
The Biochemical journal.
1981 Jan; 194(1):137-47. doi:
10.1042/bj1940137
. [PMID: 7305974] - I N Stadnichuk, L A Mineeva, M V Gusev. [Chromophore composition and nature of the absorption spectra of phycobiliproteins].
Biokhimiia (Moscow, Russia).
1980 Sep; 45(9):1560-7. doi:
"
. [PMID: 6788093] - P O'Carra, R F Murphy, S D Killilea. The native forms of the phycobilin chromophores of algal biliproteins. A clarification.
The Biochemical journal.
1980 May; 187(2):303-9. doi:
10.1042/bj1870303
. [PMID: 7396851]