Flavin adenine dinucleotide (BioDeep_00000000754)

 

Secondary id: BioDeep_00000394833, BioDeep_00000399945

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019 natural product


代谢物信息卡片


[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl (2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-2,3,4-trihydroxypentyl dihydrogen diphosphate (non-preferred name)

化学式: C27H33N9O15P2 (785.1571)
中文名称: 黄素腺嘌呤二核苷酸, 腺嘌呤黄素二核苷酸
谱图信息: 最多检出来源 Homo sapiens(feces) 8.33%

Reviewed

Last reviewed on 2024-09-07.

Cite this Page

Flavin adenine dinucleotide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/flavin_adenine_dinucleotide (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000754). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(CN(c54)C(=N6)C(C(=O)NC6=O)=Nc(cc(c(c5)C)C)4)O)(O)C(O)COP(OP(OCC(O1)C(C(C1n(c2)c(n3)c(c(N)nc3)n2)O)O)(O)=O)(O)=O
InChI: InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)

描述信息

FAD is a flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite, a prosthetic group and a cofactor. It is a vitamin B2 and a flavin adenine dinucleotide. It is a conjugate acid of a FAD(3-).
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide is approved for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2 deficiency.
Flavin adenine dinucleotide is a natural product found in Bacillus subtilis, Eremothecium ashbyi, and other organisms with data available.
FAD is a metabolite found in or produced by Saccharomyces cerevisiae.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
Flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. FAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. It is a flavoprotein in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) [HMDB]. FAD is found in many foods, some of which are common sage, kiwi, spearmint, and ceylon cinnamon.
A flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group.

FAD. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=146-14-5 (retrieved 2024-07-01) (CAS RN: 146-14-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.

同义名列表

66 个代谢物同义名

[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl (2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-2,3,4-trihydroxypentyl dihydrogen diphosphate (non-preferred name); [({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy})phosphinic acid; (((2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl)methoxy)(((((2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl)oxy)(hydroxy)phosphoryl)oxy)phosphinic acid; {[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid; [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate; Flavinadeninedinucleotide,riboflavinsquare5-adenosinesquarediphosphate,adenineflavindinucleotide,isoalloxazinesquareadeninedinucleotide,fad; adenosine 5-(3-{D-ribo-5-[7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl]-2,3,4-trihydroxypentyl} dihydrogen diphosphate); Adenosine 5-(trihydrogen pyrophosphoric acid), 5-5-ester with riboflavine; Adenosine 5-(trihydrogen pyrophosphate), 5-5-ester with riboflavine (8CI); Riboflavin 5-(trihydrogen diphosphate), P.fwdarw.5-ester with adenosine; Riboflavin 5-(trihydrogen diphosphoric acid), 5-5-ester with adenosine; ADENOSINE 5-(TRIHYDROGEN PYROPHOSPHATE), 5-5-ESTER with RIBOFLAVINE; RIBOFLAVINE 5-(TRIHYDROGEN DIPHOSPHATE) 5->5-ESTER WITH ADENOSINE; Riboflavin 5-(trihydrogen diphosphate), P->5-ester with adenosine; Riboflavin 5-(trihydrogen diphosphate), P-5-ester with adenosine; Riboflavin 5-(trihydrogen diphosphate), 5-5-ester with adenosine; Adenosine 5-[3-(riboflavin-5-yl) dihydrogen diphosphoric acid]; adenosine 5-[3-(riboflavin-5-yl) dihydrogen diphosphate]; Riboflavine, 5-ester with adenosine 5-diphosphate (8CI); 3-HYDROXY-1H-INDOLE-2-CARBOXYLICACIDETHYLESTER; 4-26-00-03632 (Beilstein Handbook Reference); Riboflavin 5-adenosine diphosphoric acid; 1H-Purin-6-amine, flavine dinucleotide; FLAVINE ADENINE DINUCLEOTIDE [WHO-DD]; 1H-Purin-6-amine, flavin dinucleotide; 1H-Purin-6-amine flavine dinucleotide; 1H-Purin-6-amine flavin dinucleotide; Flavin adenine dinucleotide oxidized; Riboflavin 5-adenosine diphosphate; Isoalloxazine-adenine dinucleotide; Flavin adenine dinucleotide (JAN); FLAVIN-ADENINE DINUCLEOTIDE [MI]; Riboflavine-adenine dinucleotide; Adenine-riboflavine dinucleotide; Adenine-riboflavin dinucleotide; Riboflavin-adenine dinucleotide; Adenine-riboflavin dinuceotide; Flavine adenosine diphosphate; Adenine-flavine dinucleotide; Flavine-adenine dinucleotide; Dinucleotide, Flavin-Adenine; Flavine adenine dinucleotide; Flavin-adenine dinucleotide; Adenine-flavin dinucleotide; flavin-adenine-dinucleotide; Flavin adenine dinucleotide; VWWQXMAJTJZDQX-UYBVJOGSSA-N; Flavin adenin dinucleotide; FLAVINADENINEDINUCLEOTIDE; Flavinadenindinucleotid; Flaziren (free acid); UNII-ZC44YTI8KK; Adeflavin (TN); Flamitajin B; ZC44YTI8KK; Flamitajin; Adeflavin; Flaziren; Flanin F; Flavinat; flavitan; Fademin; FAD; Flavin adenine dinucleotide (FAD); Flavin adenine dinucleotide(FAD); FAD



数据库引用编号

45 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(1)

PlantCyc(0)

代谢反应

918 个相关的代谢反应过程信息。

Reactome(128)

BioCyc(8)

WikiPathways(4)

Plant Reactome(720)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(57)

PharmGKB(0)

47 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AOC3, BLVRB, CAT, DAO, G6PD, NQO1, RFK, TXN, XDH
Peripheral membrane protein 5 CYP1B1, DAO, FDXR, G6PD, HSD17B6
Endoplasmic reticulum membrane 2 CYBB, CYP1B1
Mitochondrion membrane 1 MAOA
Nucleus 2 NQO1, TXN
cytosol 11 BLVRB, CAT, DAO, FLAD1, G6PD, GSR, MAOA, NQO1, RFK, TXN, XDH
dendrite 3 C4A, CYBB, NQO1
mitochondrial membrane 1 ETFDH
phagocytic vesicle 1 CYBB
nucleoplasm 2 BLVRB, TXN
Cell membrane 3 AOC3, CYBB, DAO
Cytoplasmic side 1 MAOA
Cell projection, axon 1 C4A
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 2 CYBB, MT-CYB
Synapse 2 C4A, NQO1
cell surface 1 AOC3
Golgi apparatus 1 AOC3
mitochondrial inner membrane 3 ETFDH, FDXR, MT-CYB
neuronal cell body 3 C4A, CYBB, NQO1
Cytoplasm, cytosol 3 DAO, G6PD, NQO1
plasma membrane 6 AOC3, BLVRB, C4A, CYBB, DAO, FLAD1
presynaptic active zone 1 DAO
Membrane 9 AOC3, CAT, CYBB, CYP1B1, ETFDH, G6PD, MAOA, MT-CYB, NQO1
axon 1 C4A
extracellular exosome 7 BLVRB, C4A, CAT, DAO, G6PD, GSR, TXN
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 AOC3, H6PD, HSD17B6
extracellular space 3 C4A, DAO, XDH
bicellular tight junction 1 DAO
mitochondrion 9 CAT, CYP1B1, ETFDH, FDXR, FLAD1, GSR, MAOA, MT-CYB, RFK
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 BLVRB, CAT, CYP1B1, G6PD, HSD17B6
Microsome membrane 2 CYP1B1, HSD17B6
Secreted 3 C4A, DAO, TXN
extracellular region 4 C4A, CAT, DAO, TXN
cytoplasmic side of plasma membrane 1 G6PD
Mitochondrion outer membrane 1 MAOA
Single-pass membrane protein 1 MAOA
mitochondrial outer membrane 1 MAOA
mitochondrial matrix 4 CAT, FDXR, FLAD1, GSR
Extracellular side 1 DAO
centriolar satellite 1 G6PD
external side of plasma membrane 1 GSR
Early endosome 1 AOC3
Single-pass type II membrane protein 1 AOC3
Mitochondrion inner membrane 2 FDXR, MT-CYB
focal adhesion 1 CAT
Peroxisome 3 CAT, DAO, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 2 CAT, DAO
peroxisomal matrix 2 CAT, DAO
peroxisomal membrane 1 CAT
cell projection 1 DAO
phagocytic vesicle membrane 1 CYBB
Secreted, extracellular space 1 DAO
blood microparticle 1 C4A
nuclear envelope 1 CYBB
microvillus 1 AOC3
monoatomic ion channel complex 1 CYBB
Cell projection, dendrite 1 C4A
specific granule membrane 1 CYBB
tertiary granule membrane 1 CYBB
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 C4A, H6PD
specific granule lumen 1 DAO
Single-pass type IV membrane protein 1 MAOA
perinuclear endoplasmic reticulum 1 CYBB
respiratory chain complex III 1 MT-CYB
catalase complex 1 CAT
NADPH oxidase complex 1 CYBB
[Isoform 1]: Mitochondrion matrix 1 FLAD1


文献列表

  • Lars Schuhmacher, Steffen Heck, Michael Pitz, Elena Mathey, Tilman Lamparter, Alexander Blumhofer, Kai Leister, Reinhard Fischer. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. The Journal of biological chemistry. 2024 May; 300(5):107238. doi: 10.1016/j.jbc.2024.107238. [PMID: 38552736]
  • Nowshin Farjana, Hiromitsu Furukawa, Hisako Sumi, Isao Yumoto. Effect of Fermentation Scale on Microbiota Dynamics and Metabolic Functions for Indigo Reduction. International journal of molecular sciences. 2023 Sep; 24(19):. doi: 10.3390/ijms241914696. [PMID: 37834143]
  • Ke-Na Feng, Yue Zhang, Mingfang Zhang, Yan-Long Yang, Ji-Kai Liu, Lifeng Pan, Ying Zeng. A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone. Nature communications. 2023 06; 14(1):3436. doi: 10.1038/s41467-023-39108-x. [PMID: 37301868]
  • Gesa Grüning, Siu Ying Wong, Luca Gerhards, Fabian Schuhmann, Daniel R Kattnig, P J Hore, Ilia A Solov'yov. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. Journal of the American Chemical Society. 2022 12; 144(50):22902-22914. doi: 10.1021/jacs.2c06233. [PMID: 36459632]
  • Kai-Yin Lo, Yi-Fang Tsai, Chun-Hua Hsu, Chia-Yin Lee. Functional Characterization and Structural Modeling of a Novel Glycine Oxidase from Variovorax paradoxus Iso1. Applied and environmental microbiology. 2022 12; 88(23):e0107722. doi: 10.1128/aem.01077-22. [PMID: 36377957]
  • Xiaodan Fu, Zhemin Liu, Rong Li, Junyi Yin, Han Sun, Changliang Zhu, Qing Kong, Haijin Mou, Shaoping Nie. Amelioration of hydrolyzed guar gum on high-fat diet-induced obesity: Integrated hepatic transcriptome and metabolome. Carbohydrate polymers. 2022 Dec; 297(?):120051. doi: 10.1016/j.carbpol.2022.120051. [PMID: 36184152]
  • Joseph H Lynch, Sanja Roje. A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase. The Journal of biological chemistry. 2022 12; 298(12):102626. doi: 10.1016/j.jbc.2022.102626. [PMID: 36273586]
  • Alok Kumar Verma, Akanksha Sharma, Nithyananthan Subramaniyam, Chandrashekhar R Gandhi. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. Journal of hepatology. 2022 11; 77(5):1410-1421. doi: 10.1016/j.jhep.2022.06.019. [PMID: 35777586]
  • Yanmin Hu, Xianjun Peng, Shihua Shen. Identification and Investigation of the Genetic Variations and Candidate Genes Responsible for Seed Weight via GWAS in Paper Mulberry. International journal of molecular sciences. 2022 Oct; 23(20):. doi: 10.3390/ijms232012520. [PMID: 36293375]
  • Wenyu Gai, Hua Sun, Ya Hu, Chunying Liu, Yuxi Zhang, Shupeng Gai, Yanchao Yuan. Genome-Wide Identification of Membrane-Bound Fatty Acid Desaturase Genes in Three Peanut Species and Their Expression in Arachis hypogaea during Drought Stress. Genes. 2022 Sep; 13(10):. doi: 10.3390/genes13101718. [PMID: 36292603]
  • Dilini Singappuli-Arachchige, Shuren Feng, Lijun Wang, Pierre E Palo, Samuel O Shobade, Michelle Thomas, Marit Nilsen-Hamilton. The Magnetosome Protein, Mms6 from Magnetospirillum magneticum Strain AMB-1, Is a Lipid-Activated Ferric Reductase. International journal of molecular sciences. 2022 Sep; 23(18):. doi: 10.3390/ijms231810305. [PMID: 36142217]
  • Ryan S Miller, Sarah N Bevins, Gericke Cook, Ross Free, Kim M Pepin, Thomas Gidlewski, Vienna R Brown. Adaptive risk-based targeted surveillance for foreign animal diseases at the wildlife-livestock interface. Transboundary and emerging diseases. 2022 Sep; 69(5):e2329-e2340. doi: 10.1111/tbed.14576. [PMID: 35490290]
  • Kinga Dulak, Sandra Sordon, Agata Matera, Bartosz Kozak, Ewa Huszcza, Jarosław Popłoński. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microbial cell factories. 2022 Aug; 21(1):175. doi: 10.1186/s12934-022-01899-x. [PMID: 36038906]
  • Ai-Hua Wang, Hong-Ye Ma, Bao-Hui Zhang, Chuan-Yuan Mo, En-Hong Li, Fei Li. Transcriptomic and Metabolomic Analyses Provide Insights into the Formation of the Peach-like Aroma of Fragaria nilgerrensis Schlecht. Fruits. Genes. 2022 07; 13(7):. doi: 10.3390/genes13071285. [PMID: 35886068]
  • Maria Tolomeo, Guglielmina Chimienti, Martina Lanza, Roberto Barbaro, Alessia Nisco, Tiziana Latronico, Piero Leone, Giuseppe Petrosillo, Grazia Maria Liuzzi, Bryony Ryder, Michal Inbar-Feigenberg, Matilde Colella, Angela M S Lezza, Rikke K J Olsen, Maria Barile. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free radical research. 2022 Jul; 56(7-8):511-525. doi: 10.1080/10715762.2022.2146501. [PMID: 36480241]
  • Nadine Godsman, Michael Kohlhaas, Alexander Nickel, Lesley Cheyne, Marco Mingarelli, Lutz Schweiger, Claire Hepburn, Chantal Munts, Andy Welch, Mirela Delibegovic, Marc Van Bilsen, Christoph Maack, Dana K Dawson. Metabolic alterations in a rat model of takotsubo syndrome. Cardiovascular research. 2022 06; 118(8):1932-1946. doi: 10.1093/cvr/cvab081. [PMID: 33711093]
  • Nawab John Dar, Ren Na, Qitao Ran. Functional Deficits of 5×FAD Neural Stem Cells Are Ameliorated by Glutathione Peroxidase 4. Cells. 2022 05; 11(11):. doi: 10.3390/cells11111770. [PMID: 35681465]
  • Chunzhen Cheng, Fan Liu, Xueli Sun, Bin Wang, Jiapeng Liu, Xueting Ni, Chunhua Hu, Guiming Deng, Zheng Tong, Yongyan Zhang, Peitao Lü. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. International journal of biological macromolecules. 2022 Apr; 204(?):661-676. doi: 10.1016/j.ijbiomac.2022.02.024. [PMID: 35181326]
  • Julia Krischer, Sarah König, Wolfram Weisheit, Maria Mittag, Claudia Büchel. The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. Journal of experimental botany. 2022 04; 73(7):1934-1948. doi: 10.1093/jxb/erac012. [PMID: 35034113]
  • Miguel A Uc-Chuc, Ángela F Kú-González, Irma A Jiménez-Ramírez, Víctor M Loyola-Vargas. Identification, analysis, and modeling of the YUCCA protein family genome-wide in Coffea canephora. Proteins. 2022 04; 90(4):1005-1024. doi: 10.1002/prot.26293. [PMID: 34890079]
  • Rafael Rivera-Lugo, Samuel H Light, Nicholas E Garelis, Daniel A Portnoy. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth. Proceedings of the National Academy of Sciences of the United States of America. 2022 03; 119(13):e2122173119. doi: 10.1073/pnas.2122173119. [PMID: 35316134]
  • Yuhei Hosokawa, Pavel Müller, Hirotaka Kitoh-Nishioka, Shigenori Iwai, Junpei Yamamoto. Limited solvation of an electron donating tryptophan stabilizes a photoinduced charge-separated state in plant (6-4) photolyase. Scientific reports. 2022 03; 12(1):5084. doi: 10.1038/s41598-022-08928-0. [PMID: 35332186]
  • Sadequl Islam, Yang Sun, Yuan Gao, Tomohisa Nakamura, Arshad Ali Noorani, Tong Li, Philip C Wong, Noriyuki Kimura, Etsuro Matsubara, Kensaku Kasuga, Takeshi Ikeuchi, Taisuke Tomita, Kun Zou, Makoto Michikawa. Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2022 02; 42(8):1574-1586. doi: 10.1523/jneurosci.2039-21.2021. [PMID: 34987110]
  • Lili Guo, Kun Li, Jiajun Zhou, Lian Luo. Panax Notoginseng Saponin Rg1 Can Effectively Improve the Cognitive Function of 5 × FAD Mice. Journal of healthcare engineering. 2022; 2022(?):5152761. doi: 10.1155/2022/5152761. [PMID: 35449867]
  • Haitao Hu, Deyong Ren, Jiang Hu, Hongzhen Jiang, Ping Chen, Dali Zeng, Qian Qian, Longbiao Guo. WHITE AND LESION-MIMIC LEAF1, encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. The Plant journal : for cell and molecular biology. 2021 12; 108(6):1690-1703. doi: 10.1111/tpj.15537. [PMID: 34628678]
  • Min Chen, Nan Chen, Jiwu Wang, YuJian Zhou, Liangliang Han, Xiaojun Shi, Yasufumi Hikichi, Kouhei Ohnishi, Jing Li, Yong Zhang. Involvement of a FAD-Linked Oxidase RSc0454 for Expression of the Type III Secretion System and Pathogenicity in Ralstonia solanacearum. Molecular plant-microbe interactions : MPMI. 2021 Nov; 34(11):1228-1235. doi: 10.1094/mpmi-07-21-0168-sc. [PMID: 34374557]
  • Reinmar Eggers, Alexandra Jammer, Shalinee Jha, Bianca Kerschbaumer, Majd Lahham, Emilia Strandback, Marina Toplak, Silvia Wallner, Andreas Winkler, Peter Macheroux. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. Phytochemistry. 2021 Sep; 189(?):112822. doi: 10.1016/j.phytochem.2021.112822. [PMID: 34118767]
  • Shaiju S Nazeer, T P Sreedevi, Ramapurath S Jayasree. Autofluorescence spectroscopy and multivariate analysis for predicting the induced damages to other organs due to liver fibrosis. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Aug; 257(?):119741. doi: 10.1016/j.saa.2021.119741. [PMID: 33872953]
  • Shima Mehrvar, Soudeh Mostaghimi, Amadou K Camara, Farnaz Foomani, Jayashree Narayanan, Brian Fish, Meetha Medhora, Mahsa Ranji. Three-dimensional vascular and metabolic imaging using inverted autofluorescence. Journal of biomedical optics. 2021 07; 26(7):. doi: 10.1117/1.jbo.26.7.076002. [PMID: 34240589]
  • Lucía Guevara, María Ángeles Domínguez-Anaya, Alba Ortigosa, Salvador González-Gordo, Caridad Díaz, Francisca Vicente, Francisco J Corpas, José Pérez Del Palacio, José M Palma. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). International journal of molecular sciences. 2021 Apr; 22(9):. doi: 10.3390/ijms22094476. [PMID: 33922964]
  • Yuan Ma, Yan Zheng, Yanli Ji, Xiuli Wang, Baoxian Ye. Raloxifene, identified as a novel LSD1 inhibitor, suppresses the migration of renal cell carcinoma. Future medicinal chemistry. 2021 03; 13(6):533-542. doi: 10.4155/fmc-2020-0323. [PMID: 33527838]
  • Mariana Voicescu, Oana Craciunescu, Daniel G Angelescu, Rodica Tatia, Lucia Moldovan. Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Feb; 246(?):118997. doi: 10.1016/j.saa.2020.118997. [PMID: 33032115]
  • Miquel Huix-Rotllant, Karno Schwinn, Nicolas Ferré. Infrared spectroscopy from electrostatic embedding QM/MM: local normal mode analysis of infrared spectra of arabidopsis thaliana plant cryptochrome. Physical chemistry chemical physics : PCCP. 2021 Jan; 23(2):1666-1674. doi: 10.1039/d0cp06070d. [PMID: 33415326]
  • Malathy Palayam, Jagadeesan Ganapathy, Angelica M Guercio, Lior Tal, Samuel L Deck, Nitzan Shabek. Structural insights into photoactivation of plant Cryptochrome-2. Communications biology. 2021 01; 4(1):28. doi: 10.1038/s42003-020-01531-x. [PMID: 33398020]
  • Celia Arib, Hui Liu, Qiqian Liu, Anne-Marie Cieutat, Didier Paleni, Xiaowu Li, Jolanda Spadavecchia. A Pegylated Flavin Adenine Dinucleotide PEG Complex to Boost Immunogenic and Therapeutic Effects in a Liver Cancer Model. Nanotheranostics. 2021; 5(4):405-416. doi: 10.7150/ntno.59290. [PMID: 33912380]
  • Shima Mehrvar, Amadou K S Camara, Mahsa Ranji. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction. Methods in molecular biology (Clifton, N.J.). 2021; 2276(?):259-270. doi: 10.1007/978-1-0716-1266-8_20. [PMID: 34060048]
  • Jihye Seok, Yeo-Jin Kim, Il-Kwon Kim, Kyung-Jin Kim. Structural basis for stereospecificity to d-amino acid of glycine oxidase from Bacillus cereus ATCC 14579. Biochemical and biophysical research communications. 2020 12; 533(4):824-830. doi: 10.1016/j.bbrc.2020.09.093. [PMID: 32993959]
  • Anne C Rea. More Than Just a FAD(5): Unsaturated Fatty Acids in Chloroplasts Elicit Protective Autoimmunity. The Plant cell. 2020 10; 32(10):3049-3050. doi: 10.1105/tpc.20.00637. [PMID: 32796125]
  • Paola Pizzo, Emy Basso, Riccardo Filadi, Elisa Greotti, Alessandro Leparulo, Diana Pendin, Nelly Redolfi, Michela Rossini, Nicola Vajente, Tullio Pozzan, Cristina Fasolato. Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells. 2020 09; 9(10):. doi: 10.3390/cells9102166. [PMID: 32992716]
  • Adrían Martínez-Limón, Giulia Calloni, Robert Ernst, R Martin Vabulas. Flavin dependency undermines proteome stability, lipid metabolism and cellular proliferation during vitamin B2 deficiency. Cell death & disease. 2020 09; 11(9):725. doi: 10.1038/s41419-020-02929-5. [PMID: 32895367]
  • Patrick Schall, Lucas Marutschke, Bernhard Grimm. The Flavoproteome of the Model Plant Arabidopsis thaliana. International journal of molecular sciences. 2020 Jul; 21(15):. doi: 10.3390/ijms21155371. [PMID: 32731628]
  • Huiying Liu, Feng Xu, Yuqing Gao, Yuanyuan Pang, Cen Xie, Changtao Jiang. An Integrated LC-MS/MS Strategy for Quantifying the Oxidative-Redox Metabolome in Multiple Biological Samples. Analytical chemistry. 2020 07; 92(13):8810-8818. doi: 10.1021/acs.analchem.0c00242. [PMID: 32510199]
  • Karno Schwinn, Nicolas Ferré, Miquel Huix-Rotllant. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein. Physical chemistry chemical physics : PCCP. 2020 Jun; 22(22):12447-12455. doi: 10.1039/d0cp01714k. [PMID: 32458897]
  • Ling Ma, Xiang Wang, Zeyuan Guan, Lixia Wang, Yidong Wang, Le Zheng, Zhou Gong, Cuicui Shen, Jing Wang, Delin Zhang, Zhu Liu, Ping Yin. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2. Nature structural & molecular biology. 2020 05; 27(5):472-479. doi: 10.1038/s41594-020-0410-z. [PMID: 32398826]
  • Qin Wang, Chentao Lin. A structural view of plant CRY2 photoactivation and inactivation. Nature structural & molecular biology. 2020 05; 27(5):401-403. doi: 10.1038/s41594-020-0432-6. [PMID: 32398828]
  • Wei Tan, Tian-Hua Liao, Jin Wang, Yu Ye, Yu-Chen Wei, Hao-Kui Zhou, Youli Xiao, Xiao-Yang Zhi, Zhi-Hui Shao, Liang-Dong Lyu, Guo-Ping Zhao. A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. The Journal of biological chemistry. 2020 04; 295(15):5051-5066. doi: 10.1074/jbc.ra120.012859. [PMID: 32111737]
  • Tingting Tian, Mingxia Liu, Lixia Chen, Fengjiao Zhang, Xin Yao, Hong Zhao, Xiangjun Li. D-amino acid electrochemical biosensor based on D-amino acid oxidase: Mechanism and high performance against enantiomer interference. Biosensors & bioelectronics. 2020 Mar; 151(?):111971. doi: 10.1016/j.bios.2019.111971. [PMID: 31868610]
  • Gayatri Gouda, Manoj Kumar Gupta, Ravindra Donde, Jitendra Kumar, Ramakrishna Vadde, Trilochan Mohapatra, Lambodar Behera. Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant. Journal of biomolecular structure & dynamics. 2020 03; 38(4):1158-1167. doi: 10.1080/07391102.2019.1597771. [PMID: 30896372]
  • Behrooz Moosavi, Edward A Berry, Xiao-Lei Zhu, Wen-Chao Yang, Guang-Fu Yang. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cellular and molecular life sciences : CMLS. 2019 Oct; 76(20):4023-4042. doi: 10.1007/s00018-019-03200-7. [PMID: 31236625]
  • V V Vorobieva, P D Shabanov. Tissue-Specific Peculiarities of Vibration-Induced Hypoxia in Rabbit Liver and Kidney. Bulletin of experimental biology and medicine. 2019 Sep; 167(5):621-623. doi: 10.1007/s10517-019-04583-0. [PMID: 31606807]
  • Fabien Lacombat, Agathe Espagne, Nadia Dozova, Pascal Plaza, Pavel Müller, Klaus Brettel, Sophie Franz-Badur, Lars-Oliver Essen. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome. Journal of the American Chemical Society. 2019 08; 141(34):13394-13409. doi: 10.1021/jacs.9b03680. [PMID: 31368699]
  • Eric D Kees, Augustus R Pendleton, Catarina M Paquete, Matthew B Arriola, Aunica L Kane, Nicholas J Kotloski, Peter J Intile, Jeffrey A Gralnick. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Applied and environmental microbiology. 2019 08; 85(16):. doi: 10.1128/aem.00852-19. [PMID: 31175188]
  • Josephine Bradley, Iestyn Pope, Yisu Wang, Wolfgang Langbein, Paola Borri, Karl Swann. Dynamic label-free imaging of lipid droplets and their link to fatty acid and pyruvate oxidation in mouse eggs. Journal of cell science. 2019 07; 132(13):. doi: 10.1242/jcs.228999. [PMID: 31182643]
  • Shima Mehrvar, Mette Funding la Cour, Meetha Medhora, Amadou K S Camara, Mahsa Ranji. Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril. Annals of biomedical engineering. 2019 Jul; 47(7):1564-1574. doi: 10.1007/s10439-019-02255-8. [PMID: 30963380]
  • Daniel Holub, Tomáš Kubař, Thilo Mast, Marcus Elstner, Natacha Gillet. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD. Physical chemistry chemical physics : PCCP. 2019 Jun; 21(22):11956-11966. doi: 10.1039/c9cp00694j. [PMID: 31134233]
  • Xun Hu, Zhiwen Zhao, Tao Zhuo, Xiaojing Fan, Huasong Zou. The RSc0454-Encoded FAD-Linked Oxidase Is Indispensable for Pathogenicity in Ralstonia solanacearum GMI1000. Molecular plant-microbe interactions : MPMI. 2019 Jun; 32(6):697-707. doi: 10.1094/mpmi-08-18-0224-r. [PMID: 30540527]
  • Lei Xu, Bin Wen, Wengui Shao, Pengcheng Yao, Wei Zheng, Zhiqiang Zhou, Yao Zhang, Guoping Zhu. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome. Chembiochem : a European journal of chemical biology. 2019 04; 20(7):940-948. doi: 10.1002/cbic.201800660. [PMID: 30548754]
  • Eugene Futai. Advanced Yeast Models of Familial Alzheimer Disease Expressing FAD-Linked Presenilin to Screen Mutations and γ-Secretase Modulators. Methods in molecular biology (Clifton, N.J.). 2019; 2049(?):403-417. doi: 10.1007/978-1-4939-9736-7_23. [PMID: 31602624]
  • Jingwen Xu, Duoling Li, Jingwei Lv, Xuebi Xu, Bing Wen, Pengfei Lin, Fuchen Liu, Kunqian Ji, Jingli Shan, Honghao Li, Wei Li, Yuying Zhao, Dandan Zhao, Joo Y Pok, Chuanzhu Yan. ETFDH Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavin-Responsive Multiple Acyl-Coenzyme A Dehydrogenation Deficiency. Annals of neurology. 2018 11; 84(5):659-673. doi: 10.1002/ana.25338. [PMID: 30232818]
  • John M Robbins, Jiafeng Geng, Bridgette A Barry, Giovanni Gadda, Andreas S Bommarius. Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase. Biochemistry. 2018 10; 57(40):5818-5826. doi: 10.1021/acs.biochem.8b00571. [PMID: 30226367]
  • Wei Peng, Xiu-Wei Ma, Xiao Yang, Wan-Qiao Zhang, Lei Yan, Yong-Xia Wang, Xin Liu, Yan Wang, Zhi-Chun Feng. Two novel L2HGDH mutations identified in a rare Chinese family with L-2-hydroxyglutaric aciduria. BMC medical genetics. 2018 09; 19(1):167. doi: 10.1186/s12881-018-0675-9. [PMID: 30217188]
  • M Atif, M S AlSalhi, S Devanesan, V Masilamani, K Farhat, D Rabah. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine. Photodiagnosis and photodynamic therapy. 2018 Sep; 23(?):40-44. doi: 10.1016/j.pdpdt.2018.05.012. [PMID: 29800712]
  • Guang Liu, JingJing Wang, Yi Hou, Yan-Bo Huang, JiaJia Wang, Cunzhi Li, ShiJun Guo, Lin Li, Song-Qing Hu. Characterization of wheat endoplasmic reticulum oxidoreductin 1 and its application in Chinese steamed bread. Food chemistry. 2018 Aug; 256(?):31-39. doi: 10.1016/j.foodchem.2018.02.080. [PMID: 29606453]
  • Carlo Barnaba, Thirupathi Ravula, Ilce G Medina-Meza, Sang-Choul Im, G M Anantharamaiah, Lucy Waskell, Ayyalusamy Ramamoorthy. Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase. Chemical communications (Cambridge, England). 2018 Jun; 54(49):6336-6339. doi: 10.1039/c8cc02003e. [PMID: 29863198]
  • Jue Hou, Joshua Williams, Elliot L Botvinick, Eric O Potma, Bruce J Tromberg. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State. Cancer research. 2018 05; 78(10):2503-2512. doi: 10.1158/0008-5472.can-17-2618. [PMID: 29535219]
  • Hannah A Bullock, Huifeng Shen, Tye O Boynton, Lawrence J Shimkets. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development. Journal of bacteriology. 2018 05; 200(10):. doi: 10.1128/jb.00572-17. [PMID: 29507089]
  • Cai You, Changshui Liu, Yingjie Li, Peng Jiang, Qingjun Ma. Structural and enzymatic analysis of the cytochrome b5 reductase domain of Ulva prolifera nitrate reductase. International journal of biological macromolecules. 2018 May; 111(?):1175-1182. doi: 10.1016/j.ijbiomac.2018.01.140. [PMID: 29371148]
  • Sangwoo Kim, Kyung-Jin Kim. Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA. Journal of microbiology and biotechnology. 2018 Apr; 28(4):597-605. doi: 10.4014/jmb.1711.11032. [PMID: 29429324]
  • Minna M Koskela, Käthe M Dahlström, Guillermina Goñi, Nina Lehtimäki, Markus Nurmi, Adrian Velazquez-Campoy, Guy Hanke, Bettina Bölter, Tiina A Salminen, Milagros Medina, Paula Mulo. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Physiologia plantarum. 2018 Feb; 162(2):177-190. doi: 10.1111/ppl.12621. [PMID: 28833218]
  • Rubén M Buey, Juan B Arellano, Luis López-Maury, Sergio Galindo-Trigo, Adrián Velázquez-Campoy, José L Revuelta, José M de Pereda, Francisco J Florencio, Peter Schürmann, Bob B Buchanan, Monica Balsera. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America. 2017 11; 114(48):12725-12730. doi: 10.1073/pnas.1713698114. [PMID: 29133410]
  • Bastian Daniel, Barbara Konrad, Marina Toplak, Majd Lahham, Julia Messenlehner, Andreas Winkler, Peter Macheroux. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions. Archives of biochemistry and biophysics. 2017 10; 632(?):88-103. doi: 10.1016/j.abb.2017.06.023. [PMID: 28676375]
  • Kelsey M Kean, Russell A Carpenter, Vittorio Pandini, Giuliana Zanetti, Andrea R Hall, Rick Faber, Alessandro Aliverti, P Andrew Karplus. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily. The FEBS journal. 2017 10; 284(19):3302-3319. doi: 10.1111/febs.14190. [PMID: 28783258]
  • Damien Sorigué, Bertrand Légeret, Stéphan Cuiné, Stéphanie Blangy, Solène Moulin, Emmanuelle Billon, Pierre Richaud, Sabine Brugière, Yohann Couté, Didier Nurizzo, Pavel Müller, Klaus Brettel, David Pignol, Pascal Arnoux, Yonghua Li-Beisson, Gilles Peltier, Fred Beisson. An algal photoenzyme converts fatty acids to hydrocarbons. Science (New York, N.Y.). 2017 09; 357(6354):903-907. doi: 10.1126/science.aan6349. [PMID: 28860382]
  • Patrícia A de Castro, Jéssica Chiaratto, Enyara Rezende Morais, Thaila Fernanda Dos Reis, Thomas K Mitchell, Neil A Brown, Gustavo H Goldman. The putative flavin carrier family FlcA-C is important for Aspergillus fumigatus virulence. Virulence. 2017 08; 8(6):797-809. doi: 10.1080/21505594.2016.1239010. [PMID: 27652896]
  • Francisco J Corpas, Juan B Barroso. Nitric oxide synthase-like activity in higher plants. Nitric oxide : biology and chemistry. 2017 08; 68(?):5-6. doi: 10.1016/j.niox.2016.10.009. [PMID: 27816665]
  • Cen Zhang, Guowen Zhang, Yijing Liao, Deming Gong. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase. Food chemistry. 2017 Apr; 221(?):1569-1577. doi: 10.1016/j.foodchem.2016.10.136. [PMID: 27979130]
  • Tanja Göbel, Stefan Reisbacher, Alfred Batschauer, Richard Pokorny. Flavin Adenine Dinucleotide and N5 ,N10 -Methenyltetrahydrofolate are the in planta Cofactors of Arabidopsis thaliana Cryptochrome 3. Photochemistry and photobiology. 2017 01; 93(1):355-362. doi: 10.1111/php.12622. [PMID: 27463507]
  • Congyun Jin, Yoshiaki Yao, Atsushi Yonezawa, Satoshi Imai, Hiroki Yoshimatsu, Yuki Otani, Tomohiro Omura, Shunsaku Nakagawa, Takayuki Nakagawa, Kazuo Matsubara. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane. Biological & pharmaceutical bulletin. 2017; 40(11):1990-1995. doi: 10.1248/bpb.b17-00292. [PMID: 29093349]
  • Wolfgang Gärtner. In-Planta Expression: Searching for the Genuine Chromophores of Cryptochrome-3 from Arabidopsis thaliana. Photochemistry and photobiology. 2017 01; 93(1):382-384. doi: 10.1111/php.12693. [PMID: 28211124]
  • Andrea von Zadow, Elisabeth Ignatz, Richard Pokorny, Lars-Oliver Essen, Gabriele Klug. Rhodobacter sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity. The FEBS journal. 2016 12; 283(23):4291-4309. doi: 10.1111/febs.13924. [PMID: 27739235]
  • Na Sa, Renu Rawat, Chelsea Thornburg, Kevin D Walker, Sanja Roje. Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2016 12; 88(5):705-716. doi: 10.1111/tpj.13291. [PMID: 27490826]
  • Maria Barile, Teresa Anna Giancaspero, Piero Leone, Michele Galluccio, Cesare Indiveri. Riboflavin transport and metabolism in humans. Journal of inherited metabolic disease. 2016 07; 39(4):545-57. doi: 10.1007/s10545-016-9950-0. [PMID: 27271694]
  • Xiao Wang, Lin Liu. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase. The Journal of biological chemistry. 2016 Jun; 291(25):13349-59. doi: 10.1074/jbc.m116.720342. [PMID: 27072131]
  • Pavel Müller, Klaus Brettel, Laszlo Grama, Miklos Nyitrai, Andras Lukacs. Photochemistry of Wild-Type and N378D Mutant E. coli DNA Photolyase with Oxidized FAD Cofactor Studied by Transient Absorption Spectroscopy. Chemphyschem : a European journal of chemical physics and physical chemistry. 2016 05; 17(9):1329-40. doi: 10.1002/cphc.201501077. [PMID: 26852903]
  • Yann Mathieu, Francois Piumi, Richard Valli, Juan Carro Aramburu, Patricia Ferreira, Craig B Faulds, Eric Record. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass. Applied and environmental microbiology. 2016 Apr; 82(8):2411-2423. doi: 10.1128/aem.03761-15. [PMID: 26873317]
  • Chao Kang, Hai-Long Wu, Chang Zhou, Shou-Xia Xiang, Xiao-Hua Zhang, Yong-Jie Yu, Ru-Qin Yu. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage. Analytica chimica acta. 2016 Mar; 910(?):36-44. doi: 10.1016/j.aca.2015.12.047. [PMID: 26873466]
  • Alexandre Ismail, Vincent Leroux, Myriam Smadja, Lucie Gonzalez, Murielle Lombard, Fabien Pierrel, Caroline Mellot-Draznieks, Marc Fontecave. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6. PLoS computational biology. 2016 Jan; 12(1):e1004690. doi: 10.1371/journal.pcbi.1004690. [PMID: 26808124]
  • Valerii Fedchenko, Arthur Kopylov, Nadezhda Kozlova, Olga Buneeva, Alexei Kaloshin, Victor Zgoda, Alexei Medvedev. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action. Kidney & blood pressure research. 2016; 41(5):593-603. doi: 10.1159/000443460. [PMID: 27577995]
  • David Kopečný, Radka Končitíková, Hana Popelka, Pierre Briozzo, Armelle Vigouroux, Martina Kopečná, David Zalabák, Marek Šebela, Jana Skopalová, Ivo Frébort, Solange Moréra. Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. The FEBS journal. 2016 Jan; 283(2):361-77. doi: 10.1111/febs.13581. [PMID: 26519657]
  • Daniela Hampel, Setareh Shahab-Ferdows, Linda S Adair, Margaret E Bentley, Valerie L Flax, Denise J Jamieson, Sascha R Ellington, Gerald Tegha, Charles S Chasela, Debbie Kamwendo, Lindsay H Allen. Thiamin and Riboflavin in Human Milk: Effects of Lipid-Based Nutrient Supplementation and Stage of Lactation on Vitamer Secretion and Contributions to Total Vitamin Content. PloS one. 2016; 11(2):e0149479. doi: 10.1371/journal.pone.0149479. [PMID: 26886782]
  • Christian Koch, Piotr Neumann, Oliver Valerius, Ivo Feussner, Ralf Ficner. Crystal Structure of Alcohol Oxidase from Pichia pastoris. PloS one. 2016; 11(2):e0149846. doi: 10.1371/journal.pone.0149846. [PMID: 26905908]
  • Ross D Milton, Koun Lim, David P Hickey, Shelley D Minteer. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Bioelectrochemistry (Amsterdam, Netherlands). 2015 Dec; 106(Pt A):56-63. doi: 10.1016/j.bioelechem.2015.04.005. [PMID: 25890695]
  • I S Severina, V I Fedchenko, A V Veselovsky, A E Medvedev. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase]. Biomeditsinskaia khimiia. 2015 Nov; 61(6):667-79. doi: 10.18097/pbmc20156106667. [PMID: 26716738]
  • Douglas A Whitelaw, Rochelle Tonkin, Carla E Meints, Kirsten R Wolthers. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes. Archives of biochemistry and biophysics. 2015 Oct; 584(?):107-15. doi: 10.1016/j.abb.2015.09.002. [PMID: 26361974]
  • Justin F Acheson, Hannah Moseson, Brian G Fox. Structure of T4moF, the Toluene 4-Monooxygenase Ferredoxin Oxidoreductase. Biochemistry. 2015 Sep; 54(38):5980-8. doi: 10.1021/acs.biochem.5b00692. [PMID: 26309236]
  • Mark D Kleven, Mensur Dlakić, C Martin Lawrence. Characterization of a single b-type heme, FAD, and metal binding sites in the transmembrane domain of six-transmembrane epithelial antigen of the prostate (STEAP) family proteins. The Journal of biological chemistry. 2015 Sep; 290(37):22558-69. doi: 10.1074/jbc.m115.664565. [PMID: 26205815]
  • F Salehpour, Z Ghanian, C Yang, N N Zheleznova, T Kurth, R K Dash, A W Cowley, M Ranji. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging. American journal of physiology. Renal physiology. 2015 Aug; 309(4):F377-82. doi: 10.1152/ajprenal.00098.2015. [PMID: 26062875]
  • Daisuke Seo, Hiroshi Naito, Erika Nishimura, Takeshi Sakurai. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH. Photosynthesis research. 2015 Aug; 125(1-2):321-8. doi: 10.1007/s11120-015-0099-8. [PMID: 25698107]
  • Somchart Maenpuen, Pratchaya Watthaisong, Pacharee Supon, Jeerus Sucharitakul, Derek Parsonage, P Andrew Karplus, Al Claiborne, Pimchai Chaiyen. Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae. The FEBS journal. 2015 Aug; 282(16):3043-59. doi: 10.1111/febs.13247. [PMID: 25712468]